第3节 卡诺循环与卡诺定理
第3节 卡诺循环与卡诺定理

W=W1+W3 (W2和W4抵消)
二、卡诺循环的效率(η)
任何热机从高温(T2)热源吸热Q2,一部分转 化为功W,另一部分Q1传给低温(T1)热源。将 热机所作的功与所吸的热之比值称为热机效率, 或称为热机转换系数,用η表示。
W Q2
三、卡诺循环的计算
根据绝热可逆过程方程式
1 1 T V T V 过程2: 2 2 1 3
W2 U CV (T1 T2 )
Q0
3、过程3:等温(T2)可逆压缩 由p3V3到p4V4(C ΔU3=0
V4 W3 nRT 1 ln V3
D)
Q1=-W3
4、过程4:绝热可逆压缩过程 由p4V4T1到p1V1T2(D
W4 U CV (T2 T1 )
A)
Q0
ηIR<ηR
将一个功率大于可逆机的不可逆热机与
一逆向可逆机联合操作。
卡诺定理的证明示意图
卡诺定理推论:
所有工作于同温热源与同温冷源之间的可逆 机,其热机效率都相等,即与热机的工作物质无关。 卡诺定理的意义:
(1)引入了一个不等号η I<ηR ,原则上解决了
化学反应的方向问题; (2)解决了热机效率的极限值问题。
如果将卡诺机倒开,就变成了致冷机,这时 环境对体系做功W,体系从低温(T1)热源吸热 Q1’,而放给高温(T2)热源Q2’的热量,将所吸的 热与所作的功之比值称为冷冻系数,用β 表示。
Q T1 W T2 T1
式中W表示环境对体系所作的功。
' 1
五、从卡诺循环得到的结论
W Q1 Q2 T1 T2 Q1 Q1 T1
过程4: T2V1 ∴
1
卡诺循环与卡诺定理

卡诺循环与卡诺定理一、卡诺热机1.卡诺定理的提出从19世纪起,蒸汽机在工业、交通运输中起到愈来愈重要的作用。
但是,蒸汽机的效率是很低的,还不到5%,有95%以上的热量都没有得到利用。
在生产需要的推动下,一大批科学家和工程师开始由理论上来研究热机的效率。
萨迪·卡诺(Sadi Carnot,1796—1832),这位法国工程师正是其中的一位。
当时盛行热质说,普遍认为热也是一种没有重量、可以在物体中自由流动的物质。
卡诺也信奉热质说,他在他的论文《关于热的动力的思考》中有这样一段话:“我们可以恰当地把热的动力和一个瀑布的动力相比。
……瀑布的动力依赖于它的高度和水量;热的动力依赖于所用的热质的量和我们可以称之为热质的下落高度,即交换热质的物体之间的温度差。
”在这里,卡诺关于“热只在机器中重新分配,热量并不消耗”的观点是不正确的,他没有认识到热和功转化的内在的本质联系。
但是卡诺定理的提出,却是一件具有划时代意义的事。
2.卡诺循环热力学理论指出,要实现一个可逆循环过程,必须使循环过程中的每一分过程都是可逆的。
而要实现过程的可逆,除了要使过程没有摩擦存在以外,更重要的就是要求过程的进行是准静态的。
如下图:要完成一个双热源的可逆循环,其方式应当是由两个等温过程与两个绝热过程组成,如下图:卡诺循环的效率为:其中T2为低温热源的温度,T1为高温热源的温度。
3.卡诺定理及其推论(1). 卡诺定理(Carnot principle):在两个不同温度的恒温热源间工作的所有热机,以可逆热机的热效率为最高。
即在恒温T1、T2下,ηt,IR≤ηt,R.卡诺的证明基于热质说,是错误的。
下面给出克劳修斯在1850年给出的反证法:(2). 卡诺定理的推论:A. 不可能制造出在两个温度不同的热源间工作的热机,而使其效率超过在同样热源间工作的可逆热机。
证明如下:B. 在两个热源间工作的一切可逆热机具有相同的效率。
证明如下:结论:由卡诺定理的两个推论我们可以得出——卡诺循环的热效率最大。
11-1-卡诺循环,热力学第二定律,卡诺定理

例2 一电冰箱放在室温为 20 C 的房间里 ,冰 箱储藏柜中的温度维持在 5 C .现每天有 2.0 107 J
的热量自房间传入冰箱内, 若要维持冰箱内温度不 变 , 外界每天需作多少功 , 其功率为多少? 设 在5 C至 20 C 之间运转的冰箱的致冷系数是卡诺致 冷机致冷系数的 55% .
NO. 11-1
Fundamentals of Thermodynamics
2012-1定律
三、卡诺定理
1. 热机的效率能否达到100%吗?
分析:
热 源
等温膨胀过程
p ,V
随着气体膨胀,压强逐渐减小,当减至与外界 压强相等时,就不能再对外作功; 要让气体不断膨胀,就必须做很长的气缸。
T2 55 e e卡 55% 10.2 T1 T2 100
Q2 由 e W
房间传入冰箱的热量 热平衡时 Q2 Q
Q2 得 W e
Q 2.0 107 J
W 2 108 P W 23 W t 24 3600
W 2 108 J
例3.理想气体进行卡诺循环,如图中abcda 所示,
不现实!
为了能够连续不断地对外作功,必须让 工作物质经过膨胀作功后回到初始状态, 形成一个循环过程。
四、循环过程
(cycle process)
1. 循环过程(正循环、逆循环)
系统(如热机中的工作物质)经一系列变化后又 回到初态的整个过程叫循环过程。 p A p
A
c
1
W
d
B
VB V
W
2
B
o
VA
正循环
c
b
a
o
1
2 V (103 m3 )
卡诺循环 卡诺定理

第3章-3-卡诺循环ppt

高温热源 T1
Q1 W Q2
逆循环的特征:
在一个循环中,外界作功W,从低温热源吸 收热量Q2,向高温热源放出热量Q1。并且工 质回到初态,内能不变。
低温热源 T2
W= Q1-Q2
制冷系数:
表示制冷机的效率
Q2 Q2 W Q1 Q2
低温 热源
高温 热源
冰箱循环示意图
※补充例题. 1 mol 氦气经过如图所示的循环过程, 其中P2=2P1 , V4=2V1 , 求: (1). 热机的效率 .
48% 25%
柴油机 蒸汽机
37% 8%
3-3.1 循环过程 卡诺循环 一、循环过程
在热机中被用来吸收热量并对外作功的物质叫工作物 质,简称工质。工质往往经历着循环过程,即经历一 系列变化又回到初始状态。
1、定义:
系统经过一系列状态变化以后,又回到原来状态的过 程叫作热力学系统的循环过程,简称循环。
p
T1
2. 第二次循环的高温热源的温度T1׳ D
o
T1
W
T2
C
V
小
•循环过程 •热机和制冷机 •卡诺循环效率
T2 1 T1
结
T2 T1 T2
作业:P152
练习题:2,4,7,9,10, 11,13
※ 3-7,求abca的循环效率?
※ 3-10,(3). 求循环效率?
热力学第一定律
A
Q W
c
W
d
B
净功 W Q1 Q2 Q 总吸热
Q1
Q2
o
VA
VB V
总放热
(取绝对值)
二、热机和制冷机
1、循环过程的分类
卡诺循环与卡诺定理

1.卡诺循环
A→B:恒温可逆膨胀 B→C:绝热可逆膨胀 C→D:恒温可逆压缩 D→A:绝热可逆压缩
卡诺热机 ~ 理想热机
卡诺
上一页 下一页 节首
A→B:恒温可逆膨胀 B→C:绝热可逆膨胀 C→D:恒温可逆压缩 D→A:绝热可逆压缩
WR QR1 QR2 0
η R
WR QR1
T环1 T环2 T环1
T1 T2 T1
上一页 下一页 节首
3.热力学温标
QR1 QR2
1
1 ηR
F (1 ,2 )
QR1 f (1 ) QR2 f (2 )
η R
QR1 QR2 QR1
T环1 T环2 T环1
第十届国际计量大会决定水的三相点的热力 学温度为273.16K
上一页 下一页 节首
Q2 900 J, Q'R2 920 J, QR2 920 J
将 R 的热机与逆转的可逆热机耦合,则
(W W 'R ) Q2 Q'R2 20 J
U 0
上一页 下一页 节首
2.卡诺定理
所有工作于两个温度一定的热源之间的热机, 以可逆热机的热机效率为最大
(W WR ) 0
不 可
卡诺:(1796—1832)法国物理学家、 工程师,24岁为军官。后研究热机, 1824年即28岁,提出卡诺循环,同时 在其发表的论文《论火的动力》中提 出了卡诺定理。36岁逝于二号病。在 其兄隐藏的卡诺的衣服口袋中,发现 了卡诺的日记本,上载卡诺定理的正 确证明。
卡诺循环及卡诺定理是建立热力学 第二定律的重要基础。
W WR
WR WR QR 1 QR1 QR 2 QR2
将 R 的热机与逆转的可逆热机耦合
工程热力学全部章节复习习题

第二章基本概念基本要求:通过本章的学习,你应该掌握以下工程热力学的基本概念:工质,热力学系统(及其分类),外界,边界,热力学平衡态(与稳态、均匀的区别),状态参数(及其特征),准静态过程,可逆过程,功,热量本章重点:1、热力学系统的概念及其分类。
2、热力学平衡态的概念及其判断。
3、状态参数的概念及其特征。
4、准静态过程的概念及其意义、判断。
5、可逆过程的概念及其判断。
6、准静态过程与可逆过程的联系与区别。
7、功、热量的概念及其区别、方向符号。
第一节工质热力学系统1. 作为工质应具有良好的______和______。
A. 流动性/多变性B. 膨胀性/多变性C. 膨胀性/分离性2. 把热能转化为机械能,通过______的膨胀来实现。
A. 高温气体C. 液体D. A、B、C均不对3. 把热量转化为功的媒介物称为______。
A. 功源B. 热源C. 质源工质必须具有良好的膨胀性和流动性,常用工质有:B. 润滑油C. 水D. 天然气4. 内燃机动力装置的工质是_______。
B. 蒸气C. 燃油D. 水5. 燃气轮机动力装置的做功工质是:B. 蒸汽C. 氧气D. 水6. 蒸汽动力装置的工质必须具有良好的______性。
B. 耐高温C. 纯净D. 导热7. 下列哪一种系统与外界肯定没有质量交换但可能有热量交换?A. 绝热系统B. 孤立系统D. 开口系统8. 与外界没有质量交换的系统是______,同时它也可能是______。
A. 开口系统/孤立系统B. 开口系统/绝热系统D. 绝热系统/孤立系统9. 封闭系统是指______的系统。
B. 与外界没有热量交换C. 与外界既没有物质交换也没有热量交换D. 与外界没有功的交换10. 开口系统是指______的系统。
B. 与外界有热量交换C. 与外界有物质交换没有热量交换D. 与外界有功的交换11. 与外界有质量交换的系统是开口系统,同时它也可能是:A.封闭系统C.孤立系统D.B+C12. _____与外界肯定没有能量交换。
第四章 热力学第二定律

虽然为实现各种非自发过程补偿是必不可少 的,但是为提高能量利用的经济性,人们一 直在最大限度地减少补偿。 热力学第二定律的任务:研究热力过程的方 向性,以及由此而引出的非自发过程的补偿 和补偿限度等。 二、热力学第二定律的表述 克劳修斯的说法:不可能把热量从低温物体 传向高温物体而不引起其他变化。
⑵卡诺循环热效率永远小于1。这是因为Tl= ∞或T2 = 0 是不可能达到的。 ⑶当Tl= T2时,卡诺循环热效率为零,即只 有单一热源存在时,不可能将热能转变为机 械能。 二、逆卡诺循环 如果卡诺循环按逆时针方向进行,则称为卡 诺逆循环。 如下图所示。
对于制冷机的卡诺逆循环,其制冷系数用下 式表示,
同理可证 A B 也不成立,因此唯一可以
成立的结果是 A B 。
定理一得证。
例题: 1.某热力设备,工作在1650℃ 的炉膛燃气 温度和15℃的低温热源之间,求:1)该 热力设备按卡诺循环工作时的热效率以及 产生 6×105 kw时的吸热量Q1和放热量Q2 ; 2)如果热力设备的实际效率只有40% , 其有效功率仍为6×105 kw ,问吸热量Q1 和放热量Q2又是多少?
若循环中全部过程都可逆,则该循环称为可逆循环; 若循环中部分过程或全部过程都不可逆,则该循环为 不可逆循环。 根据循环的热力学特征,可把循环分为热机循环(正 循环)和制冷循环(逆循环)。 正循环的效果是使热能转变为机械能,系统向外输出 功。如图所示,循环按顺时针方向进行,图(a)中12-3为工质膨胀,从高温热源吸收热量Q1。工质经3-41回到初态的过程中,工质受压缩,向低温热源放出热 量Q2。工质对外做功的净功为W,用循环1-2-3-4-1所 包围的面积表示,等于工质从高温热源吸取的热量与 向低温源放出的热量之差。即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ηIR<ηR
将一个功率大于可逆机的不可逆热机与
一逆向可逆机联合操作。
卡诺定理的证明示意图
卡诺定理推论:
所有工作于同温热源与同温冷源之间的可逆 机,其热机效率都相等,即与热机的工作物质无关。 卡诺定理的意义:
(1)引入了一个不等号η I<ηR ,原则上解决了
化学反应的方向问题; (2)解决了热机效率的极限值问题。
某可逆热机分别从600 K和1000 K的高温 热源吸热,向300 K的冷却水放热。问每
吸收100 kJ的热量,对环境所作的功-
Wr分别为: 和 。
作业 p56 习题2
§2.3 卡诺循环与卡诺定理
一、卡诺循环(Carnot Cycle)的内容
由四个循环的可逆膨胀压缩过程组成
1mol 理想气体的卡诺循环在pV图上可
以分为四步:
1、过程1: 等温(T2)可逆膨胀过程 由p1V1到p2V2(A
U1 0
B)
V2 W1 nRT2 ln V1
Q2 W1
2、过程2:绝热可逆膨胀过程 由p2V2T2到p3V3T1(B C)
过程4: T2V1 ∴
1
T1V4 1
V2 V3 相除得 V1 V4
V2 V4 W1 W3 nRT2 ln nRT 1 ln V1 V3 V2 nR(T2 T1 ) ln V1
W Q2 Q1 T2 T1 Q2 Q2 T2
四、冷冻系数
如果将卡诺机倒开,就变成了致冷机,这时 环境对体系做功W,体系从低温(T1)热源吸热 Q1’,而放给高温(T2)热源Q2’的热量,将所吸的 热与所作的功之比值称为冷冻系数,用β 表示。
Q T1 W T2 T1
式中W表示环境对体系所作的功。
' 1
五、从卡诺循环得到的结论
W Q1 Q2 T1 T2 Q1 Q1 T1
以上这个循环是1824 年,
法国工程师N.L.S.Carnot
(1796~1832)设计的,以理想 气体为工作物质,从高温T2 热源吸收Q2的热量,一部分 通过理想热机用来对外做功
W,另一部分Q1的热量放给
低温T1热源。这种循环称为
卡诺循环。
卡诺循环示意图
考虑整个循环:
ΔU=0
Q=Q1+Q2
Q2是体系所吸的热,为正值, Q1是体系放出的热,为负值。
Q2 T2 1 1 Q1 T1
Q2 Q1 T2 T1
或:
Q2 Q1 0 T2 T1
即卡诺循环中,热效应与温度商值的加和等于零。
六、卡诺定理 (Carnot’s Theorem)
卡诺定理:所有工作于同温热源和同温冷源之 间的热机,其效率都不能超过可逆机,即可逆 机的效率最大。
证明:
W2 U CV (T1 T2 )
Q0
3、过程3:等温(T2)可逆压缩 由p3V3到p4V4(C ΔU3=0
V4 W3 nRT 1 ln V3
D)
Q1=-W3
4、过程4:绝热可逆压缩过程 由p4V4T1到p1V1T2(D
W4 U CV (T2 T1 )
A)
Q0
W=W1+W3 (W2和W4抵消)
二、卡诺循环的效率(η)
任何热机从高温(T2)热源吸热Q2,一部分转 化为功W,另一部分Q1传给低温(T1)热源。将 热机所作的功与所吸的热之比值称为热机效率, 或称为热机转换系数,用η表示。
W Q2
三、卡诺循环的计算
根据绝热可逆过程方程式
1 1 T V T V 过程Fra bibliotek: 2 2 1 3