自然伽马测井和自然伽马能谱测井
伽马测井

➢ 铋(Bi):214Bi是铀系中的主要伽马辐射体,特征伽马射线的能量是1.76MeV。
在自然伽马能谱测井中,主要根据214Bi的这一特征峰确定铀在地层中的含量;
➢ 钋(Po):钋有七个同位素,其中218Po, 214Po和210Po是铀系的子体。218Po和9Be 混合可制造中子源,在铀矿普查时可利用210Po寻找铀矿;
2点认识: 1)铀的伽马辐射强度会随时间而变化,所以将碳酸盐岩或火成岩裸眼井段 作为标准井,对自然伽马强度和能谱测井都是不合适的。 2)由于铀及其子体的化学性质活跃,风化、运移、富集过程影响因素多, 通常不是泥质含量的可靠指示元素。
c) 以各类腐殖酸盐络合物形式运移,在下述条件下沉积:腐殖
酸氧化,络合物被破坏;吸附作用;与某些盐类作用形成不 溶性盐;
d) 呈铀的胶溶体U02(OH)2的形式运移,在下述条件下沉积:被带
负电荷的硅酸胶体及Fe(OH)3吸附;与还原剂相遇。
③ 铀系中的几个典型核素:
➢ 镭(Ra):镭有四个同位素,其中226Ra是238U的一个子体。由于在采油井水驱前 沿的镭在井眼周围的富集,使自然伽马总强度增强能指示储层水淹级别的高低;
208Tl,其次是238Ac。这两个核素发
射的伽马射线的总能量约占钍系发 射的伽马射线总能量85%,而其辐 射强度约占钍系总强度的71%。 208Tl发射的能量为2.62MeV的伽马 射线,是钍系能量最高强度最大的 伽马谱线。
②散射伽马测井:测量点状伽马源生成的散射伽马辐射场; ③示踪伽马测井:测量由载体携带的放射性示踪剂发射的伽马辐
油气勘探常用的测井技术和方法简介

(二) 油气勘探常用的测井技术和方法简介1、电法测井-饱和度测井方法电阻率测井是最先发展起来的测井方法,从用途上分为两类:电阻率含油饱和度测井和用于地质学研究的电法测井;从测量方法上可分为三类,即普通电法(电极系)测井,电流聚焦测井和电磁聚焦测井。
在不含金属矿物的地层中,地层导电性表现在电阻率的高低主要受地层孔隙大小和所含流体性质的影响。
对于具有一定孔隙的地层,当其含水时,一般电阻率较低(与地层水矿化度有关),当其含油时电阻率较高。
因此,利用电阻率测井资料,按有关的理论和实验关系,可以确定地层含油饱和度的大小。
(1)普通电阻率测井普通电阻率测井是指早期的电极系横向测井,它采用供电电极A 、B 供给低频矩形交变电流I ,由测量电极M 、N (按不同排列方法及尺寸组成不同的电位电极和梯度电极系,我油田常用的电位电极系为0.5米,常用的梯度电极系为2.5米和4米),测量M 、N 之间的电位差为U MN ,电位差的大小反映了井内不同地层电阻率的变化,从IU K R MN a ∙=公式可以得到地层视电阻率a R (是地层真电阻率、泥浆冲洗带和侵入带的函数),地层电阻率和储层岩性、物性和含油性有密切关系,从而能确定岩性,划分油层、水层,确定地层界面和含油饱和度。
为求得地层真电阻率,通常采用浅、中、深三个径向探测深度的电阻率测量、测量三个环带的视电阻率,建立三个响应方程求之。
普通电阻率测井方法使用的电极系结构简单,不能聚焦,不能推靠到井壁上,又受井眼大小、泥浆、地层厚薄、非均质和围岩等客观条件的影响,难以求准地层真电阻率,所以趋于被淘汰,但因划分地层和岩性很直观、方便,因此保留了几种电阻率曲线。
(2)微电极测井它是将三个间距为0.025米的纽扣电极镶嵌在具有向井壁地层推靠能力的橡胶极板上,通过测量主要受泥饼影响的微梯度电阻率和主要受冲洗带影响的微电位电阻率,确定泥饼电阻率和冲洗带电阻率划分渗透性储层的测井方法。
自然伽马测井

勘探开发工程监督管理中心
一、伽马测井的核物理基础
1
核衰变及其放射性
(2)、同位素和放射性核素
核素指的是原子核中具有一定数量的质子和中子并 在同一能态上的同类原子,同一核素的原子核中质 子数和中子数都相等。而同位素是原子核中质子数 相同而中子数不同的核素,它们具有相同的化学性 质,在元素周期表中占有同一位置。
一、伽马测井的核物理基础
1
核衰变及其放射性
(3)、核衰变
放射性核素的原子核自发地放射出一 种带电粒子( α或β),蜕变成另 外某种原子核,同时放射出γ射线的 过程叫核衰变。核能自发地释放α、 β、γ射线的性质叫放射性。
勘探开发工程监督管理中心
一、伽马测井的核物理基础
1
核衰变及其放射性
(3)、核衰变
勘探开发工程监督管理中心
一、伽马测井的核物理基础
1
核衰变及其放射性
(3)、核衰变
这里给出几种放射性核素的半衰期。
放射性核素 钾 铯 钡
铟 钴
符号 K 40
19
55 Cs137
Ba131 In113
Co60
半衰期T
1.3 109 年
3.3 年 11.8 天
100 分钟
5.27 年
勘探开发工程监督管理中心
2
伽马射线和物质的作用
γ光子和物质的这三种作用的几率和γ光子的能量有关,低能γ 光子和物质作用以光电效应为主,中能γ光子和物质发生康普顿 效应的几率最大,而电子对效应则发生在伽马光子的能量大于 1.022 MeV时。
低能
光电效应
中能
康普顿效应
大于1.022MeV
电子对效应
自然电位、自然伽马测井基本原理

⾃然电位、⾃然伽马测井基本原理⾃然电位测井⽅法原理在早期的电阻率测井中发现:在供电电极不供电时,测量电极M在井内移动,仍可在井内测量到有关电位的变化。
这个电位是⾃然产⽣的,故称为⾃然电位。
使⽤图1所⽰电路,沿井提升M电极,地⾯仪器即可同时测出⼀条⾃然电位变化曲线。
⾃然电位曲线变化与岩性有密切关系,能以明显的异常显⽰出渗透性地层,这对于确定砂岩储集层具有重要意义。
⾃然电位测井⽅法简单,实⽤价值⾼,是划分岩性和研究储集层性质的基本⽅法之⼀。
图 1⾃然电位测井原理⼀、井内⾃然电位产⽣的原因井内⾃然电位产⽣的原因是复杂的,但对于油井,主要有以下两个原因:地层⽔的含盐量(矿化度)与泥浆的含盐量不同,地层压⼒和泥浆柱压⼒不同,在井壁附近产⽣了⾃然电动势,形成了⾃然电场。
1.扩散电动势(Ed)的产⽣如图2所⽰,在⼀个玻璃容器中,⽤⼀个渗透性的半透膜将其分隔开,两边分别装上浓度为Cl和C2(C1>C2)的NaCl溶液,并且在两边分别放⼈⼀只电极,此时表头指针发⽣偏转。
此现象可解释为:两种不同浓度的NaCl溶液接触时,存在着使浓度达到平衡的⾃然趋势,即⾼浓度溶液中的离⼦受渗透压的作⽤要穿过渗透性隔膜迁移到低浓度溶液中去,这⼀现象称为离⼦扩散。
在扩散过程中,由于Cl-的迁移率⼤于Na+的迁移率,扩散结果使低浓度溶液中的Cl-相对增多,形成负电荷聚集,⾼浓度溶图2扩散电动势产⽣⽰意图液中Na+相对增多,形成正电荷聚集。
这就在两种不同浓度的溶液间产⽣了电动势,所以可测到电位差。
离⼦在继续扩散,⾼浓度溶液中的Cl-,由于受⾼浓度溶液中正电荷的吸引和低浓度溶液中负电荷的排斥,其迁移速度减慢;⽽⾼浓度溶液中的Na+,由于受⾼浓度溶液中正电荷的排斥和低浓度溶液中负电荷的吸引,其迁移速度加快,这使得电荷聚集速度减慢。
当接触⾯附近的电荷聚集使正、负离⼦的迁移速度相等时,电荷聚集就停⽌了,但离⼦还在继续扩散,溶液达到了动平衡,此时电动势将保持⼀定值:这个电动势是由离⼦扩散作⽤产⽣的,故称为扩散电位(Ed),也称扩散电动势,可⽤下式表⽰:EE dd=KK dd lg cc1cc2式中EE dd为扩散电位系数,mv;cc1,cc2为溶液盐类的浓度,g/L。
测井理论和方法

一、电阻率测井1、普通电阻率测井电阻率测井就是沿井身测量井周围地层地层电阻率的变化。
普通电阻率测井是把一个普通的电极系(由三个电极组成)放入井内,测量井内岩石电阻率变化的曲线。
在测量地层电阻率时,要受井径、泥浆电阻率、上下围岩及电极距等因素的影响,测得的参数不等于地层的真电阻率,而是被称为地层的视电阻率。
因此普通电阻率测井又称为视电阻率测井。
2、侧向测井是利用聚焦电流测量地层电阻率的一种测井方法。
在地层厚度较大,地层电阻率与泥浆电阻率相差不太悬殊的情况下,可以用普通电极系的横向测井,能比较准确地求出地层电阻率。
但是在地层较薄且电阻率很高,或者在盐水泥桨的条件下由于泥浆电阻率很低,使供电电极流出的电流,大部分都由井内和围岩中流过,流入测量层内的电流很少,因此测量的视电阻率曲线变化平缓,不能用来划分地层,判断岩性。
为了解决这些问题,创造了带有聚焦电极的侧向测井。
他是在主电极两侧加有同极性的屏蔽电极,把主电极发出的电流聚焦成一定厚度的平板状电流束,沿垂直于井轴方向进入地层,使井的分流作用和围岩的影响大大减小。
实践证明,侧向测井在高电阻率薄层和高矿化度泥浆的井中,比普通电阻率测井曲线变化明显。
3、感应测井是利用电磁感应原理来研究地层电层电阻率的一种测井方法。
电阻率测井法都需要井内有导电的液体,使供电电极电流通过它进入地层,在井内形成直流电场。
然后测量井轴上的电位分布,求出地层电阻率。
这些方法只能用于导电性能好的泥浆中。
为了获得地层的原始含油饱和度,需要在个别的井中使用油基泥浆,在这样的条件下,井内无导电性介质,就不能使用普通电阻率测井方法。
感应测井就是为了解决测量油基泥浆电阻率的需要而产生的,它也能用于淡水泥浆的井中,在一定条件下,它比普通电阻率测井法优越,受高阻临层影响小、对低电阻率地层反应灵敏。
感应测井和普通电阻率测井一样记录的是一条随深度变化的视电导率曲线,也可同时记录出视电阻率变化曲线。
二、介电测井介电测井也称电磁波传播测井,它是用来测量井下地层的介电常数。
放射性测井之自然伽马测井讲解

放射性:不稳定核素原子核自发地释放、β、 等射线
2
3) 核衰变 核衰变:原子核自发地释放出一种带电粒子,并蜕变成另外某种原子核, 同时放出伽马射线。
核衰变常数λ:决定于该放射性核素本身的性质,其值越大衰变越快。
一种元素经过放射变成另一种元素的过程称为衰变或蜕变。
例如
1)原子的结构:原子核(质子+中子)+核外电子 2)放射性核素
核素:原子核中具有相同数量的质子和中子并在同一能态上的同类原子 (同类核素的原子核中质子数和中子数都相同)。
放射性核素:不稳定的核素 ( 其结构和能量都会发生改变, 衰变成其他核素,并放出射线)。
同位素:原子核中质子数相同而中子数不同,但具有相同的化学性质, 在元素周期表中占有同一位置。
通式为: ZXA → Z+1YA+(一个负电荷)
例如:衰变
90Th234 → 91Pa234+
衰变:放出射线的衰变。
射线通常是在、衰变的过程中伴随放出的。
7
2) 、和 射线比较
射线种类 产生原因
实物
射线 衰变放出
氦(2He4) 原子核流
射线 衰变放出
高速运动的电子流
式中GR 、GRmax 、GRmin分别为待研究地层、纯泥岩、纯砂岩的自然伽马 测井强度。
进行非线性 校正:
Vsh
2cSH 1 2c 1
C = 3.7 新地层 C = 2.0 老地层
应用条件: (1)不同地层中粘土矿物放射性是相同的
(2)除了粘土矿物之外,不含有其他放射性矿物
27
200
160
特高 → 高 → 中等 → 最低
3) 碳酸盐岩剖面
自然伽马能谱测井在油田的应用分析

技术与检测Һ㊀自然伽马能谱测井在油田的应用分析赵金宝摘㊀要:自然伽马能谱测井是根据铀㊁钍㊁钾放射性核素在衰变时放出的Υ射线的能谱特征不同从而确定铀㊁钍㊁钾在地层中的含量ꎮ自然伽马能谱测井与自然伽马测井都是测量地层的自然伽马ꎮ不同之处是将入射的伽马射线的能量以幅度大小输出到多道脉冲幅度分析器ꎬ所测是地层伽马能谱ꎬ地面仪器将接受的伽马能谱进行解谱ꎬ得到地层中铀㊁钍钾的含量ꎬ仪器最终输出伽马射线的总强度和地层中铀㊁钍㊁钾的含量ꎮ关键词:自然伽马能谱测井ꎻ储层评价ꎻ泥质含量ꎻ岩性分析一㊁自然伽马能谱测井原理油田勘探开发中ꎬ储层评价㊁解释是测井解释重要工作ꎬ其中黏土矿物识别和岩性识别是这项工作的重要内容ꎮ自然伽马能谱测井是根据铀㊁钍㊁钾放射性核素在衰变时放出的Υ射线的能谱特征不同从而确定铀㊁钍㊁钾在地层中的含量ꎮ自然伽马能谱测井是放射性测井中一种最基本的测井方法ꎬ与自然伽马不同之处是它采用能谱分析的方法ꎬ可定量测量地层中铀㊁钍㊁钾的含量ꎬ并给出地层总的伽马放射性强度ꎮ所以自然伽马能谱测井可以解决更多的地质问题ꎮ二㊁自然伽马能谱测井的应用自然伽马能谱测井可以研究地层特性ꎬ包括泥质含量准确计算㊁识别高放射性储层㊁识别钾盐㊁识别黏土类型㊁沉积环境分析以及变质岩岩性识别等ꎮ下面主要介绍自然伽马能谱测井资料在测井解释中的应用ꎮ(一)计算泥质含量在自然伽马能谱测井资料中ꎬ地层的泥质含量与钍或钾的含量有较好的线性关系ꎬ而与地层的铀含量关系较复杂ꎮ因此ꎬ可以同时利用钍㊁钾及无铀伽马曲线或根据地质情况选其中一条曲线ꎬ计算地层泥质含量ꎮ(二)识别高放射性储集层利用自然伽马能谱测井可以有效识别和划分具有高自然伽马放射性的储集层ꎮ在人们传统的概念ꎬ储集层是低放射性㊁泥质含量较少㊁比较纯的岩石ꎬ因而忽视了高放射性储集层的生产价值ꎮ在纯砂岩和碳酸盐岩的放射性元素含量都较低ꎬ但对于某些渗透性砂岩和碳酸盐岩地层ꎬ由于水中含有易溶的铀元素ꎬ并随水运移ꎬ在某些适宜条件下沉淀ꎬ形成具有高放射性渗透层ꎬ即高伽马储层ꎬ此时可用自然伽马能谱测井进行储层划分ꎮ高自然伽马的地层一方面可以作为标志层与邻井进行对比ꎬ另一方面又可以帮助识别流体性质ꎮ另外ꎬ硬地层中高铀会指示具有渗流能力的储集层ꎮ(三)黏土矿物类型识别一般来讲ꎬ在绝大多数黏土矿物中ꎬ钾和钍的含量高ꎬ而铀的含量相对较低ꎬ因此ꎬ根据Th/Kꎬ可大致确定黏土类型ꎮTh/K比值在28以上为重钍矿ꎬ在12~28之间为高岭石ꎬ在3.5~12之间为蒙脱石ꎬ在2~3.5之间为伊利石ꎬ在1.5~2之间为云母ꎬ在0.8~1.5之间为海绿石ꎬ在0.5~0.8之间为长石ꎬ小于0.5为钾蒸发岩ꎮˑ井ˑˑ组Th测量值主要在7~20ppmꎬK测量值主要在2.4~4.0%之间ꎬTh/K比值在2~5之间ꎬ黏土类型为伊利石和蒙脱石为主的混合黏土层ꎬ见图1ꎮ(四)沉积环境分析由钾㊁铀㊁钍的性质可知ꎬ高能环境钍含量比低能环境高ꎬ铀和钾含量在低能环境比高能环境高ꎮ另外ꎬ铀含量与氧化还原条件有关ꎬ还原环境有机质含量高ꎬ铀含量高ꎻ钾含量与黏土关系密切ꎮTh/U值可判断沉积环境的氧化还原条件ꎬ据经验统计:Th/U值大于7时ꎬ属风化完全㊁有氧化和淋滤作用的陆相沉积ꎻTh/U值2~7ꎬ岩性为灰色和绿色泥岩夹砂岩ꎬ属还原环境沉积ꎻ小于2时ꎬ属强还原环境ꎮˑ井ˑˑ组Th/K比值主要在2~6.3之间ꎬTh/U比值在2~7之间ꎬ沉积环境主要属低能还原沉积ꎮ(五)变质岩岩性分析利用自然伽马能谱测井曲线制作的测井数据交会图是识别含油气盆地内变质岩岩性的简单而有效的方法ꎮ它是图1㊀ˑ井ˑˑ组黏土类型分析图把两种测井数据在平面图上交会ꎬ根据交会点的坐标定出所求参数的数值和范围的一种方法ꎮ在交会图上能直观地看出各种岩性的分界和分布的区域ꎬ能比较直观的识别变质岩ꎮ通过对变质岩物理特性进行分析ꎬ发现作为变质岩分类指标的二氧化硅(SiO2)含量与钾(K)含量有很强的相关性ꎬSiO2含量高则钾含量高ꎬ钍含量从酸性岩石向超基性岩石减少ꎬ而自然伽马测井测量的是地层中放射性元素的总含量ꎬ一般从基性到酸性变质岩逐渐升高ꎬ另一个指示岩性的光电吸收截面指数ꎬ一般从基性到酸性变质岩逐渐降低ꎮ自然伽马㊁光电吸收截面指数㊁钍三条测井曲线的交会图可以区分之ꎮˑ井发育的变质岩为玄武质安山岩㊁火山角砾岩㊁花岗岩ꎮ研究发现:利用GR-ThꎬPe-Th交会图可以有效识别变质岩岩性ꎬGR-Th交会图版可以分成四个区:基性岩性区㊁中性岩性区㊁中性向酸性过渡岩性区㊁酸性岩性区ꎮˑ井中玄武质安山岩落在基性岩为主以及部分中性区域ꎬ显示低GR㊁低Th特征ꎮ火山角砾岩和花岗岩落在酸性岩性区ꎬ显示高GR㊁高Th特征ꎮPe-Th交会图中玄武质安山岩显示高Pe值ꎬ火山角砾岩和花岗岩显示低Pe值ꎮ即ˑ井中玄武质安山岩显示低GR㊁低Th㊁高Pe特征ꎻ火山角砾岩和花岗岩显示高GR㊁高Th㊁低Pe特征ꎮ三㊁结论自然伽马能谱测井是放射性测井中一种最基本的测井方法ꎬ它可以定量测定地层中铀㊁钍㊁钾的含量ꎬ并给出地层总的伽马放射性强度ꎮ随着勘探和开发难度的加大ꎬ自然伽马能谱测井将发挥越来越重要的作用ꎮ参考文献:[1]胡挺ꎬ潘秀萍.自然伽马能谱测井在杭锦旗地区的应用[J].工程地球物理学报ꎬ2017(1).作者简介:赵金宝ꎬ胜利油田油藏动态监测中心ꎮ102。
自然伽马能谱测井

二、自然伽马能谱测井的 应用
• 一)研究储集层 • 1、储集层的分类 • 1)陆源碎屑岩储集层 • 包括砾岩、砂或砂岩、粉砂或粉砂岩 • 2)火山碎屑岩储集层 • 主要由火山碎屑构成,按颗粒大小可
• 分为集块岩和火山砂、凝灰或火山灰 • 3)碳酸盐岩碎屑储集层 • 主要是由贝壳碎片或碳酸盐岩碎屑堆
一、自然伽马能谱测井原 理
• 自然伽马能谱测井仪器的井下仪器与自 然伽马测井基本相同,将入射的伽马射 线能量的大小以脉冲的幅度大小输出, 不同的是地面仪器,自然伽马能谱测井 仪器地面部分有多道脉冲幅度分析器, 该分析器将能量分为五个能量窗。
• W1: 0.15~0.5MEV • : 0.5~1.1MEV • W3: 1.32~1.575MEV • W4: 1.65~2.39MEV • W5: 2.475~2.765MEV • 五个能量窗输出的信号分别进入5个计数
2、环境监测
• 用伽马能谱测井可对放射性矿物的开采、 加工、各类核工业和科研部门的环境进 行定期监测,主要防范铀对水体的污染。 其方法是定期在观察井中做自然伽马能 谱分析,配合取样分析,观察铀系和锕 系子体的扩散。
• 式中Th为目的层钍曲线值(ppm); Thmin为邻近不含泥质地层的钍读数 (ppm);Thmax为邻近泥岩层的钍读 数(ppm)。
• (2)用经验公式求出泥质含量的估值, 如用公式
二)研究生油层
• 这里主要讨论用自然 伽马能谱测井从粘土 岩中定性识别生油岩 和定量估算生油指标
1、定性识别生油岩
• 1)普遍泥岩的钾、铀、钍响应 • 普通粘土岩的钾、铀、钍含量都比较高,
其中钾和钍和粘土矿产的体积含量比铀 相关性好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、自然伽马测井的原理
自然伽马测井是在井内测量岩 层中自然存在的放射性元素核衰 变过程中放射出来的伽马射线的 强度来研究岩层的一种方法 。
岩石中的放射性元素产生的射 线穿过地层、泥浆、仪器的外壳 进入井下仪器的探测器。探测器 每接收到一个γ光子,就产生一个 电脉冲。
属于核测井的范畴。即是根据岩石及 其孔隙流体的核物理性质来研究井剖
面的一类测井方法 。
一、核物理基础
1、物质的结构 物质由分子组成,分子又是由原子组成的。原
子包括原子核和核外电子两部分。原子核又是
由质子和中子组成 。
一、核物理基础
2、放射性 如果构成物质的原子核不稳定,那么,该元素就
会发生衰变,由一种原子核衰变为另一种原子核 ,同时释放一定量的射线。如:
所以在井眼中,能被探测得到的射线只有γ 射线 。
一、核物理基础
4、岩石的放射性 只要岩石中含有放射性元素,那么就会产生
各种射线(α、β、γ),而且放射性物质越多 (放射性越强),产生的射线越强,井眼中探 测到的射线(γ)也就越强。
所以,根据探测到的射线的强弱就可研究岩 石的放射性 。
岩石中有无放射性及放射性与什么地质问题 相关联,是我们关注的焦点 。
地层越薄,影响越明显。
影响因素
二、自然伽马测井的原理
①具有统计起伏(曲线的 锯齿状);
②对于厚层(层厚>探测 范围)其曲线的单幅点 对应于层界面。
③地层中部的平均值最能 反映地层的真实的放射 性。
曲线特点
三、自然伽马测井的应用
⑴划分岩性及识别渗透层: 砂泥岩面:
纯砂岩:GR=min——渗透层 纯泥岩:GR=max——非渗透层 泥质砂岩:GR=min~max——渗透层 砂质泥岩:GR= min ~ max——非渗透层
左右。
β射线(电子流):由于带电荷,所以在物质中 的射程也很短,如能量为1mev的β射线在铅中的
射程仅为1.48cm 左右,而在空气中大于2.5cm,
但大不了多少。
一、核物理基础
3、放射性射线的性质 γ射线(光子流):不带电,而且能量也较高 (0.5mev~5.3mev),所以其在物质中的射
程较大,一般能穿透几十厘米的地层、套管、 仪器的外壳等 。
即自然伽马测井的探测范 围(深度)约为45cm。
二、自然伽马测井的原理
①统计起伏的影响:
衰变是随机的,即使 是同仪器对同一点进行 测量,其值也是不同的 ,但是是围绕某一值波 动的。
影响因素
二、自然伽马测井的原理
②测井速度V和积分电路的 充电时间常数τ的影响: Ⅰ使GRmax下降; Ⅱ使GRmax的位置不在地 层的中心而是上移; Ⅲ视ha增大; Ⅲ半幅点位置上移。
放射性测井
第一节自然伽马测井和自然伽马能谱测井
核物理基础
授
自然伽马测井的原理
课
内 容
自然伽马测井的应用
自然伽马能谱测井
教
应用自然伽马测井识别岩性
学
重
点
应用自然伽马测井计算泥质含量
第一节自然伽马测井和自然伽马能谱测井
泥质对各种地球物理参数有着重要的影响。因此,
弄清岩石中的泥质含量对正确利用地球物理参数
粘土颗粒的表面带有负电荷,容易吸收放射性 元素。如:K
某些粘土矿物中含有放射性元素,如钾矿(水
云母、正长石等),钾含量较多。
粘土中往往夹杂有大量的有机物质,有些有机
物质吸收的有放射性矿物:K、U 。
一、核物理基础
4、岩石的放射性 我们打交道的是沉积岩,对于沉积岩来说
,其放射性主要取决于粘土的类型及含量 。
210 84
Po(钋)
206 82
Pb
4 2
He( ) (0.89mev)
我们把元素经核衰变释放出某种射线的性质
称为元素的放射性,而原子核不稳定的元素就 是放射性元素 。
一、核物理基础
3、放射性射线的性质
α射线(He流):带两个单位的正电荷,且质 量大,在运动中容易引起物质的电离或激发而被
物质吸收。所以其射程很短,在空气中约2.5cm
放射性最弱:沉积岩
一、核物理基础
4、岩石的放射性 在沉积岩中: 纯地层(无泥、无放射性元素矿物)放 射性最弱。泥岩及含有放射性元素的岩石 放射性最强。其它地层的放射性为中等 。
一、核物理基础
4、岩石放射性 泥岩具有较强放射性的原因:粘土颗粒细,沉积
时间长,有充分的时间与放射性物质接触而一同
沉积。
来解决相应的地质问题至关重要。 ቤተ መጻሕፍቲ ባይዱ然SP测井能够在砂岩剖面中的合适条件下,方便
地确定岩石中的泥质含量,但在很多情况下,却不能 用来计算岩石中的泥质含量(例如:Cw≈Cmf、纯碳酸 盐岩剖面、膏盐剖面等),因此,发展了GR,NGS测井
。
第一节自然伽马测井和自然伽马能谱测井
自然伽马测井(GR)及自然伽马能 谱测井(NGS),不同于SP测井,它们
对于厚层,层界面的位置用半幅点确定 ,而非厚层,则应借助其它测井方法确定层
界面 。
三、自然伽马测井的应用
三、自然伽马测井的应用
三、自然伽马测井的应用
一、核物理基础
4、岩石中的放射性
一般的岩石中或多或少有些放射性元素存在
,所以岩石元素具有一定的放射性。
放射性元素一般是:钍(
)Th、92032铀(
)
、钾 U 238 88
(
) 。K 40 19
研究结果表明:各种岩石中放射性元素的种
类及含量不同,其放射性的强弱也有所不同 。
放射性最强:火成岩
放射性中等:变质岩
二、自然伽马测井的原理
纵坐标为深度坐标
横坐标为反映岩石放射性强弱 的计数率,读值的单位有两种: 一种是:脉冲数/分; 另一种是:API。
API是一种美国石油学会所采 用的单位。两倍于北美泥岩平均 放射性的模拟地层的自然伽马测 井值的1/200,就定义为一个API
。
二、自然伽马测井的原理
自然伽马测井反映的是以 探测器中点为球心,半径为 45cm的球体内物质所具有 的放射性。
二、自然伽马测井的原理
电缆将电脉冲送到地面仪器。 地面仪器:
一方面负责计数,即统计单
位时间内的电脉冲数。显然放 射性越强,单位时间内收到的 电脉冲数越多(计数率越高) 。
另一方面,将计数率转变为 与其成比例的电位差进行记录
。
二、自然伽马测井的原理
仪器在井眼中移动就可测得 各深度点反映岩石放射性强弱 的电脉冲计数率,即自然伽马 曲线 。