高分子材料分析测试与研究方法复习材料.doc

合集下载

高分子材料研究方法-第二篇复习

高分子材料研究方法-第二篇复习
第二篇 相对分子质量及分布-复习
第8-11章
选择题
1、下列四种方法中,( C )可以测定聚合物的重 均分子量。
A、粘度法, B、膜滲透压法, C、光散射法,
D、沸点升高法 2、 两试样的凝胶渗透色谱的淋出体积相等,则它 们的下列参数相等的是( )。 D
A 相对分子质量, B 特性黏数,
C Huggins参数, D 流体力学体积
3、光散射法不可测量的是( A )。
A、数均分子量, B、质均分子量,
C、第二维利系数, D、均方末端距 4、关于GPC说法正确的是( ACE )。 A、凝胶渗透色谱, B、气相色谱,
C、利用体积排除的原理,
D、小分子会最先洗脱出来
E、采用色谱柱作为分离系统
F、首先要确定淋洗质量或淋洗时间与相对分子 质量之间的关系,即校正曲线
5、分别用下列方法测量同一高分子样品,测得 的平均分子量大小顺序为:
( C )>( A )>( B )
A、粘度法; B、蒸气压渗透法; C、光散射法 Байду номын сангаас、相对分子质量分布Dp的定义是( A ) A、质均/数均; C、数均/质均; B、质均/黏均; D、黏均/数均
7、下列说法正确的是( BCE) A、聚合物的强度对相对分子质量增加而增加; B、当相对分子质量足够高时,聚合物玻璃化温 度与之无关;
C、聚合物相对分子质量越大,溶解越困难,时 间也越长;
D、聚合物老化后,相对分子质量降低; E、聚合物相对分子质量越大,加工越困难
8、端基滴定法中,下列说法错误的是( BD ) A、被测聚合物末端必须带有能进行定量化学反 应的基团; B、该法测定的是质均相对分子质量;
C、属于化学方法;
D、不适于测定相对分子质量太大或太小的聚合 物; E、杂质的影响很大,需提纯试样

高分子材料分析与测试

高分子材料分析与测试

高分子材料分析与测试引言高分子材料是一类重要的工程材料,在各个领域有着广泛的应用。

为了确保高分子材料的质量和性能,对其进行准确的分析与测试是至关重要的。

本文将介绍高分子材料分析与测试的基本原理、常用方法和技术,并对其在实际应用中的重要性进行讨论。

1. 高分子材料的特性分析高分子材料具有许多特殊的性质,如高分子链结构、长链分子的柔性和高分子材料的热性能等。

为了准确分析和测试高分子材料的特性,我们需要运用一些常用的分析方法。

下面介绍几种常用的高分子材料特性分析方法:•红外光谱分析:红外光谱是一种常见的高分子材料分析方法,通过对材料吸收、发射或散射红外辐射进行分析,可以确定材料的化学成分和结构。

•热分析:热分析是一种通过加热样品并监测其温度和质量变化来分析材料热性能的方法。

常见的热分析方法包括热重分析(TGA)和差热分析(DSC)等。

•X射线衍射(XRD):XRD是一种通过测量材料对入射X射线的衍射情况来分析其晶体结构的方法。

通过XRD可以确定高分子材料的结晶性质和晶格参数。

•核磁共振(NMR):核磁共振是一种通过测量材料中核自旋的共振现象来分析材料结构和化学环境的方法。

在高分子材料分析中,NMR可以提供关于材料分子结构、分子量和链结构等信息。

2. 高分子材料的力学性能测试高分子材料的力学性能是评价其质量和使用性能的关键指标之一。

为了准确测试高分子材料的力学性能,常用的测试方法包括:•拉伸测试:拉伸测试是一种通过施加拉伸力来测量材料在拉伸过程中的力学性能的方法。

通过拉伸测试可以确定高分子材料的强度、延展性和弹性模量等指标。

•弯曲测试:弯曲测试是一种通过施加弯曲力来测量材料在弯曲过程中的力学性能的方法。

通过弯曲测试可以确定高分子材料的弯曲强度和弯曲模量等参数。

•硬度测试:硬度测试是一种通过在材料表面施加静态或动态载荷来测量材料硬度的方法。

常用的高分子材料硬度测试方法包括巴氏硬度和洛氏硬度等。

•冲击测试:冲击测试是一种通过施加冲击载荷来测量材料抗冲击性能的方法。

高分子测试分析技术复习

高分子测试分析技术复习

下图为PTMG/HMDI型聚氨酯(PU)的红外光谱图,其中PTMG为聚 丁二醇(聚醚二元醇),HMDI为氢化MDI(被称为不黄变的二异 氰酸酯),其结构式如下: 请根据聚氨酯(PU)的结构特征,指出红外谱图中(a) 3332cm-1、(b)1718cm-1和(c)1112cm-1三处吸收峰分别归属 于哪个基团的伸缩振动?并写出该聚合物分子的结构示意图。
析方法评估选用的热稳定剂是否有效,并测定增塑剂和 热稳定剂含量,说明测试原理。如果改为玻纤增强的尼 龙复合材料,你会做吗?
• 解释热分析法并列举3种热分析法,简述其基本原理。
A-COOCH3、B-CH3、C1-等规、C2-无规、C3-间规
A
C3
C2 B
C1
5.0
4.0
3.0
2.0
1.0
0.0
ppm (t1)
红外光谱对分子的极性基团十分敏感,拉曼光谱则对分 子中的非概述: 对样品的尺寸、形状、透明度要求低,只要被激光照射到就 可直接测定 水不影响测定 对称性高的键S-S, C-C, N=N拉曼光谱中的信号都较强
附件3 例:在60MHz的仪器上,测得CHCl3与TMS间 吸收频率之差为437Hz,则CHCl3中1H的化学 位移为:
2.红外光谱的应用—如测结晶度
其他—掌握红外光谱与拉曼光谱的区别,什么是拉曼活性
红外光谱定量分析的依据—朗伯比尔定律 红外谱图3要素
紫外光谱 第一节—1.了解紫外光谱的产生及分类—电子跃迁(4种)、
电子光谱、近紫外光谱 2.了解电子跃迁的类别 3.熟知生色团、助色团的概念
4.掌握紫外光谱的四个吸收带 5.理解并应用溶剂的影响—如溶剂的极性影响 6.紫外光谱主要应用于定量分析,适合于不饱和结构的分析 7.紫外光谱的应用— 7.1 红外光谱分析的三要素—谱峰位置、形状、强度 7.2 定性分析 熟知苯环等不饱和结构紫外吸收 7.3 了解定量分析及结构分析

高分子材料分析与测试方法

高分子材料分析与测试方法

重点整理高分子材料分析与测试方法第一章 NMR一、名词解释1.同位素:质子数相同而中子数不同的同一元素的不同核素。

2.弛豫:原子核通过无辐射的途径,由高能级回复到低能级的过程; 弛豫时间:原子核从高能态回复到低能态所需时间; 纵向(自旋-晶格)弛豫:体系与环境交换能量。

处于高能级的核将其能转移给周围分子骨架中的其它核,从而使自己返回到低能态的现象;横向(自旋-自旋)弛豫:核磁矩之间的相互作用。

两个相邻的核处于不同能级,进动频率相同,高能级核与低能级核通过自旋状态而实现能量转移所发生的弛豫现象。

3.核磁共振:在静磁场中,具有磁矩的原子核存在不同能级,用某一特定频率的电磁波照射样品,若电磁波满足一定条件,原子核发生能级跃迁的现象。

4.屏蔽效应:电子在外磁场作用下,产生了相对于外磁场方向的感应磁场,使核实际受到的外磁场作用减弱的现象;远磁屏蔽效应:除了核自身的核外电子云外,远处各类原子或基团的成键电子云也将产生感应磁场,使核所受磁场强度变化的现象;去屏蔽效应:核外电子产生的感应磁场与外加磁场方向相同,核所感受到的实际磁场强度增大的现象。

5.化学位移:由于不同环境下原子核共振频率或磁场强度发生变化,在谱图上反映出的出峰位置的移动。

6.诱导效应:由于电负性差异导致的基团对所连原子电子云密度的影响;共轭效应:由于共轭多重键π电子或p 电子转移,导致原子的电子云密度变化的现象。

7.耦合常数:发生自旋-自旋耦合裂分时,分裂峰之间的距离。

8.化学等价质子:在同一分子中,位于相同化学环境的,化学位移相同的质子;磁等价质子:一组化学等价质子,当它们与组外任一磁核耦合时,耦合常数若相等,则磁等价。

二、基本原理及仪器1.原子核的自旋运动 (1)核自旋运动条件自旋量子数I 可以是整数/半整数。

I ≠0时,原子核有自旋运动。

I =12:1H 1、13C 6、15N 7、31P 15; I =2:11B 5; I =1:2H 1、14N 7(2)核磁矩与磁量子数①P μγ=⋅ μ:核磁矩; γ:磁旋比,核的特征常数,原子核的重要属性; P :自旋角动量。

高分子材料分析与测试(期末复习及答案)

高分子材料分析与测试(期末复习及答案)

高分子材料分析与测试(期末复习及答案)期末复习作业一、名词解释1. 透湿量透湿量即指水蒸气透过量。

薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时内所透过的蒸汽量(用表示)2. 吸水性吸水性是指材料吸收水分的能力。

通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。

3. 表观密度对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用表示)对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用表示)4、拉伸强度在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用表示)5、弯曲强度试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用表示)6、压缩强度指在压缩试验中试样所承受的最大压缩应力。

它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用表示)7、屈服点应力-应变曲线上应力不随应变增加的初始点。

8、细长比指试样的高度与试样横截面积的最小回转半径之比(用表示)9、断裂伸长率断裂时伸长的长度与原始长度之比的百分数(用表示)10、弯曲弹性模量比例极限内应力与应变比值(用表示)11、压缩模量指在应力-应变曲线的线性范围内压缩应力与压缩应变的比值。

由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用表示)12、弹性模量在负荷-伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示)13、压缩变形指试样在压缩负荷左右下高度的改变量(用h表示)14、压缩应变指试样的压缩变形除以试样的原始高度(用表示)15、断纹剪切强度指沿垂直于板面的方向剪断的剪切强度。

16、剪切应力试验过程中任一时刻试样在单位面积上所承受的剪切负荷。

高分子材料研究方法实验材料

高分子材料研究方法实验材料

实验一聚合物材料燃烧氧指数测试一实验目的1 了解聚合物材料的结构与燃烧,以及聚合物燃烧性能测试标准;2 掌握聚合物材料的氧指数测试方法。

二实验原理聚合物含有大量的碳氢元素,且热稳定性较差,因此聚合物极易燃烧。

聚合物燃烧的四要素:热源、空气〔氧气〕、可燃性物质、自由基反应。

为了改善聚合物的燃烧性能,可通过物理或化学的方法引入阻燃元素,如卤素〔氯、溴〕、磷、氮等,并通过点燃性及自熄性测试〔塑料点着温度、极限氧指数、水平燃烧法、垂直燃烧法等〕、火焰传播性能测试〔隧道燃烧法等〕、热释放速率测试〔氧消耗〕、烟密度测试、毒气及腐蚀性气体测试、火焰穿透性测试等,了解聚合物阻燃性能的提高。

本次实验依据《GB/T 2406.2-2009塑料用氧指数法测定燃烧行为第2部分:室温试验》,测试聚合物材料的燃烧氧指数。

物质燃烧时,需要消耗大量的氧气,不同的可燃物,燃烧时需要消耗的氧气量不同,通过对物质燃烧过程中消耗最低氧气量的测定,计算出物质的氧指数值,可以评价物质的燃烧性能。

所谓氧指数〔Oxygen index〕,是指在规定的试验条件下,试样在氧氮混合气流中,维持平稳燃烧〔即进行有焰燃烧〕所需的最低氧气浓度,以氧所占的体积百分数的数值表示〔即在该物质引燃后,能保持燃烧50 mm长或燃烧时间3 min时所需要的氧、氮混合气体中最低氧的体积百分比浓度〕。

作为判断材料在空气中与火焰接触时燃烧的难易程度非常有效。

一般认为,OI<27的属易燃材料,27≤OI<32的属可燃材料,OI≥32的属难燃材料。

JF-3型氧指数测定仪,就是用来测定物质燃烧过程中所需氧的体积百分比。

该仪器适用于塑料、橡胶、纤维、泡沫塑料及各种固体的燃烧性能的测试,准确性、重复性好,因此普遍被广泛采用。

需要说明的是氧指数法并不是唯一的判定条件和检测方法,但它的应用非常广泛,已成为评价燃烧性能级别的一种有效方法。

三实验仪器与药品测量聚合物材料燃烧氧指数,对应不同氧气浓度、氮气浓度下,测量材料的燃烧时间〔或燃烧长度〕,最后总结燃烧结果。

材料分析方法考试资料(1)汇总

材料分析方法考试资料(1)汇总

《材料科学研究方法》考试试卷(第一套)课程号6706606030 考试时间 120 分钟一.名词解释(每题2分,选做5题,共10分,多答不加分) 1. 基态2. 俄歇电子3. 物相分析4. 色散5. 振动耦合6. 热重分析二.填空题(每空1分,选做20空,共20分,多答不加分)1. 对于X 射线管而言,在各种管电压下的连续X 射线谱都存在着一个最短的波长长值0λ,称为 ,当管电压增大时,此值 。

2. 由点阵常数测量精确度与θ角的关系可知,在相同条件下,θ角越大,测量的精确度 。

3. 对称取代的S=S 、C ≡N 、C=S 等基团在红外光谱中只能产生很弱的吸收带(甚至无吸收带),而在 光谱中往往产生很强的吸收带。

4. 根据底片圆孔位置和开口位置的不同,德拜照相法的底片安装方法可以分为: 、 、 。

5. 两组相邻的不同基团上的H 核相互影响,使它们的共振峰产生了裂分,这种现象适用专业年级(方向): 材料学、高分子 考试方式及要求:闭卷、笔试叫 。

6. 德拜法测定点阵常数,系统误差主要来源于相机的半径误差、底片的伸缩误差、样品的偏心误差和 。

7. 激发电压是指产生特征X 射线的最 电压。

8. 凡是与反射球面相交的倒易结点都满足衍射条件而产生衍射,这句话是对是错? 。

9. 对于电子探针,检测特征X 射线的波长和强度是由X 射线谱仪来完成的。

常用的X 射线谱仪有两种:一种 ,另一种是 。

10. 对于红外吸收光谱,可将中红外区光谱大致分为两个区: 和 。

区域的谱带有比较明确的基团和频率对应关系。

11. 衍射仪的测量方法分哪两种: 和 。

12. DTA 曲线描述了样品与参比物之间的 随温度或时间的变化关系。

13. 在几大透镜中,透射电子显微镜分辨本领的高低主要取决于 。

14. 紫外吸收光谱是由分子中 跃迁引起的。

红外吸收光谱是由分子中跃迁引起的。

15. 有机化合物的价电子主要有三种,即 、 和 。

16. 核磁共振氢谱规定,标准样品四甲基硅δ TMS = 。

高分子物理实验必备复习材料

高分子物理实验必备复习材料

高分子物理实验必备复习材料一、浊点滴定法测定聚合物的溶解度参数1、测定聚合物溶解度参数的实验方法有:黏度法、交联后的溶胀平衡法、反相色谱法和浊点滴定法等,实验用浊点滴定法2、溶解度参数是表示物体混合能与相互溶解的关系:2/1)(VE ?=δ,单位3/cm J ,根据溶解度参数的定义,溶解度参数δ应为“内聚能密度”的平方根原理:浊点滴定法是在两元互溶体系中,如果聚合物的溶解度参数p δ在两个互溶的溶剂s δ值的范围内,就可调节这两个互溶混合溶剂的溶解度参数sm δ,使sm δ与p δ很接近。

只要把两个互溶的溶剂按照一定的百分比配成混合溶剂,该混合溶剂的溶解度参数sm δ可以近似地表示成:2211δ?δ?δ+=sm3、混合溶剂的溶解度参数sm δ:2211δ?δ?δ+=sm,1?,2?分别是混合溶剂中组分1和组分2的体积分数。

1δ、2δ为混合溶剂中组分1和组分2的溶解度参数。

4、聚合物的溶解度参数p δ:2mlmh p δδδ+=,式中,mh δ为高溶解度参数的沉淀剂滴定聚合物溶液在混浊点时混合溶剂的溶解度参数;ml δ为低溶解度参数的沉淀剂滴定聚合物的混浊点时混合溶剂的溶解度参数。

5、试剂:三氯甲烷,正戊烷(ml δ),甲醇(mh δ),聚苯乙烯(PMMA ,溶于三氯甲烷)6、注意事项:(1)溶解PMMA 时,PMMA 与CHCl3要充分混匀,防止滴定时容易出现浑浊;(2)所用试剂为有机溶剂,故滴定管塞口不能涂凡士林,以免污染试剂;(3)读数时视线要与凹液面相平;(4)判定终点时,要将试剂对着阳光,以便判定终点;(5)CHCl3有挥发性,故在配制试样和移取过程中要准确迅速,防止其挥发,造成浓度变化,且其有剧毒,用完应回收,不可随意倾倒。

7、浊点滴定法测定聚合物溶解度参数时候,根据什么原则选择溶剂和沉淀剂?溶剂与聚合物的溶解度参数相近,能否保证二者相溶?为什么?答:对非极性溶剂,根据相似相溶原理,对极性溶剂,根据溶剂比原则来选择溶剂和沉淀剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 傅里叶红外光谱仪1. 什么是红外光谱图当一束连续变化的各种波长的红外光照射样品时,其中一部分被吸收,吸收的这部分光能就转变为分子的振动能量和转动能量;另一部分光透过,若将其透过的光用单色器进行色散,就可以得到一谱带。

若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,也有称红外振-转光谱图2. 红外光谱仪基本工作原理用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。

3. 红外光谱产生的条件(1) 辐射应具有能满足物质产生振动跃迁所需的能量;(2) 辐射与物质间有相互偶合作用。

4. 红外光谱图的三要素峰位、峰强和峰形5. 红外光谱样品的制备方法1) 固体样品的制备a. 压片法b. 糊状法:c. 溶液法2) 液体样品的制备a. 液膜法b. 液体吸收池法3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试4) 特殊样品的制备—薄膜法a. 熔融法b. 热压成膜法c. 溶液制膜法6. 红外对供试样品的要求①试样纯度应大于98%,或者符合商业规格,这样才便于与纯化合物的标准光谱或商业光谱进行对照,多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析。

②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。

所用试样应当经过干燥处理。

③试样浓度和厚度要适当使最强吸收透光度在5~20%之间7. 红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构;4)分析速度快;5)固、液、气态样均可用,且用量少、不破坏样品;6)与色谱等联用(GC-FTIR)具有强大的定性功能;7)可以进行定量分析;二. 紫外光谱1. 什么是紫外-可见分光光度法?产生的原因及其特点?紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。

紫外-可见吸收光谱主要产生于分子价电子(最外层电子)在电子能级间的跃迁。

该方法具有灵敏度高,准确度好,使用的仪器设备简便,价格廉价,且易于操作等优点,故广泛应用于无机和有机物质的定性和定量测定。

2. 什么是吸收曲线?及其吸收曲线的特点?测量某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可得到一条曲线,称为吸收光谱曲线或光吸收曲线,它反映了物质对不同波长光的吸收情况。

① 同一种物质对不同波长光的吸光度不同。

吸光度最大处对应的波长称为最大吸收波长λmax 。

② 不同浓度的同一种物质,其吸收曲线形状相似λmax 不变。

而对于不同物质,它们的吸收曲线形状和λmax 则不同。

③ 吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。

④ 不同浓度的同一种物质,在某一定波长下吸光度A 有差异,在λmax 处吸光度A 的差异最大。

此特性可作作为物质定量分析的依据。

⑤ 在λmax 处吸光度随浓度变化的幅度最大,所以测定最灵敏。

吸收曲线是定量分析中选择入射光波长的重要依据。

3. 分光光度法定量定性的依据是什么?定性的依据:同一种吸光物质,浓度不同时,吸收曲线的形状相同,最大吸收波长不变,只是相应的吸光度大小不同。

定量的依据:吸光度的大小与其浓度相关,其定量关系符合朗伯-比耳定律。

4. 什么是朗伯-比耳定律,及其各物理量所代表的意义? 公式为:0lgI A abc I == a 比例常数,称为吸光系数b 液层厚度,单位cmc 浓度。

当浓度c 以g·L-1为单位,液层厚度b 以cm 为单位时,吸光系数的单位为:L·g-1·cm-1。

三. 质谱分析1. 什么是质谱法?一般采用高能离子束(如电子)轰击样品蒸气分子,打掉分子中的价电子,形成带正电荷的离子,然后按核质比(m/z )的大小顺序进行收集和记录,得到质谱图,根据质谱图可实现对样品成分、结构和相对分子质量的测定。

2. 质谱仪的工作原理质谱仪是利用电磁学原理,使带电的样品离子按质核比进行分离的装置,离子电离后经加速进入磁场中,其动能与加速电压及电荷有关,即212ezU m υ= 式中z 为离子电荷数,e 为元电荷, U 为加速电压。

显然,在一定的加速电压下,离子的运动速度与质量m 有关。

具有速度v 的带电粒子进入质谱仪分析器的电磁场中,将各种离子按m/z 的大小实现分离和测定3. 质谱分析法有哪些特点?1) 应用范围广。

测定样品可以是无机物,也可以是有机物。

应用上可做化合物的结构分析、测定原子量与相对分子量、同位素分析、生产过程监测、环境监测、热力学与反应动力学、空间探测等。

被分析的样品可以是气体和液体,也可以是固体。

2) 灵敏度高,样品用量少。

目前有机质谱仪的绝对灵敏度可达50 pg (pg 为10−12g ),无机质谱仪绝对灵敏度可达10−14 。

用微克级样品即可得到满意的分析结果。

3) 分析速度快,并可实现多组分同时测定。

4) 与其它仪器相比,仪器结构复杂,价格昂贵,使用及维修比较困难。

对样品有破坏性。

4. 质谱仪由哪些系统构成?有质谱是通过对样品电离后产生的具有不同m/z 的离子来进行分离分析的,仪包括进样系统、离子系统、质量分析器、检测器和真空系统。

四. 核磁共振1. 核磁共振定义在强磁场中,一些具有磁性的原子核的能量裂分为2个或2个以上的能量,如果此时外加的能量等于相邻2个能级之差,则该核就会吸收能量,产生共振吸收,从低能态跃迁至高能态,同时产生核磁共振信号,得到核磁共振谱。

2. 化学位移的定义,及其影响化学位移的各种因素?这种由于氢原子在分子中的化学环境不同,因而在不同磁场强度下产生吸收峰,峰与峰之间的差距称为化学位移。

化学位移是由于核外电子云密度不同而造成的,因此影响核外电子云密度分布的因素都会影响化学位移。

1)诱导效应由于电负性基团的存在,如卤素、硝基、氰基等,使之与之相连的核外电子云密度下降,从而产生去屏蔽作用。

使共振信号移向低场。

2)共轭效应共轭效应亦可使电子云密度发生变化,从而使化学位移向高场或低场变化。

3)磁各向异性效应4)氢键当形成分子内氢键时,氢质子周围的电子云密度降低,氢键中质子的信号明显的移向低磁场,使化学位移值变大。

3. 核磁共振谱图可以得到哪些信息?(1)由吸收峰数可知分子中氢原子的种类。

(2)由化学位移可了解各类氢的化学环境。

(3)由裂分峰数目大致可知各种氢的数目。

(4)由各种峰的面积比即知各种氢的数目。

五. X射线分析1. X射线衍射的基本原理是什么?X射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。

每种晶体所产生的衍射花样都反映出晶体内部的原子分布规律。

衍射花样可以由两个方面组成:1)衍射线在空间的分布规律(衍射几何)(由晶胞大小、形状和位向决定的)2)衍射线束的强度(取决于原子在原子在晶胞中的位置、数量和种类)六. 热重分析法——TG1. 什么是热重分析法热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。

检测质量的变化最常用的办法就是用热天平,测量的原理有两种,可分为变位法和零位法。

七. 差示扫描量热法(DSC)1. 什么是差示扫描量热法?根据所用测量方法的不同,可分为哪几种方法?在程序控制温度下,测量物质与参比物之间的能量差随温度变化关系的一种技术。

功率补偿型DSC和热流型DSC。

2. 什么是差热分析,及其基本原理。

差热分析,也称差示热分析,是在温度程序控制下,测量物质与基准物(参比物)之间的温度差随温度变化的技术。

试样在加热(冷却)过程中,凡有物理变化和化学变化发生时,就有吸热(或放热)效应发生,若以在实验温度范围内不发生物理变化和化学变化的惰性物质做参比物,试样和参比物之间就出现温度差,温度差随温度变化的曲线称差热曲线或DTA曲线八. 凝胶渗透色谱(GPC)法测定聚合物分子量及分子量分布1. 详细论述凝胶渗透色谱(GPC)的工作原理。

GPC色谱柱装填的是多孔性凝胶(如最常用的高度交联聚苯乙烯凝胶)或多孔微球(如多孔硅胶和多孔玻璃球),它们的孔径大小有一定的分布,并与待分离的聚合物分子尺寸可相比拟。

GPC仪工作流程图如下所示。

当被分析的样品随着淋洗溶剂(流动相)进入色谱柱后,体积很大的分子不能渗透到凝胶(固定相)空穴中而受到排阻,最先流出色谱柱,中等体积的分子可以渗透凝胶的一些大孔,而不能进入小孔,产生部分渗透作用,比体积大的分子流出色谱柱的时间稍后;较小的分子能全部渗入凝胶内部的孔穴中,而最后流出色谱柱。

因此,聚合物的淋出体积与高分子的体积即分子量的大小有关,分子量越大,淋出体积越小。

分离后的高分子按分子量从大到小被连续的淋洗出色谱柱并进入浓度检测器。

九. 聚合物材料的拉伸性能1. 什么是拉伸实验?从拉伸实验可得到什么曲线、及其从曲线上得到那些性能指标?拉伸实验是在规定的试验温度、湿度、速度条件下,对标准试样沿纵轴方向施加静态拉伸负荷,直到试样被拉断为止。

通过拉伸实验可以得到试样在拉伸变形过程中的拉伸应力-应变曲线。

从应力-应变曲线上可得到材料的各项拉伸性能指标值:拉伸强度、拉伸断裂应力、拉伸屈服应力、偏置屈服应力、拉伸弹性模量、断裂伸长率等。

2. 高聚物的应力-应变曲线上各个量所代表的物理意义。

相关文档
最新文档