AMATLAB微积分及泰勒级数计算
matlab微分与积分

[I,n]=quadl('fname',a,b,tol,trace) 其中参数的含义和quad函数相似,只是用高
阶自适应递推法,该函数可以更精确地求 出定积分的值,且一般情况下函数调用的 步数明显小于quad函数,从而保证能以更 高的效率求出所需的定积分值。
(3) fft(X,[],dim)或fft(X,N,dim):这是对于矩 阵而言的函数调用格式,前者的功能与 FFT(X)基本相同,而后者则与FFT(X,N) 基本相同。只是当参数dim=1时,该函数 作用于X的每一列;当dim=2时,则作用于 X的每一行。
数值微积分以及数值分析
2020/5/17
1
数值微分
数值微分的实现 两种方式计算函数f(x)在给定点的数值导数:1.用多项式或
者样条函数 2. 利用数据的有限差分
在MATLAB中,没有直接提供求数值导数的函数,只有计 算向前差分的函数diff,其调用格式为:
DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i), i=1,2,…,n-1。
I=
2.4674
2020/5/17
8
3.Trapz : 计算梯形面积的和来计算定积分 在MATLAB中,对由表格形式定义的函数关系的求定积分
问题用trapz(X,Y)函数。其中向量X,Y定义函数关系 Y=f(X)。
例 用trapz函数计算定积分。 命令如下:
X=1:0.01:2.5; Y=exp(-X); %生成函数关系数据向量 trapz(X,Y) ans =
• Help dell2
2020/5/17
3
数值积分
数值积分基本原理 求解定积分的数值方法多种多样,如简单 的梯形法、辛普生(Simpson)•法、牛顿- 柯特斯(Newton-Cotes)法等都是经常采用 的方法。它们的基本思想都是将整个积分 区i积=1间分,2[问,a…,题b,n]分就,成分其n解中个为x子1=求区a和,间问x[nx+题1i,=x。bi+。1],这样求定
matlab数学实验

《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。
(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。
【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。
(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。
(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。
(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。
【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。
0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。
reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。
A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。
MATLAB实验四_求微分方程的解

参数说明
[T,Y] = solver(odefun,tspan,y0)
odefun 为显式常微分方程,可以用命令 inline 定义,或 在函数文件中定义,然后通过函数句柄调用。
dy 2 2 y 2 x 2x 求初值问题 的数值解,求解范 例: dx 围为 [0,0.5] y( 0 ) 1
dsolve的输出个数只能为一个 或 与方程个数相等。
只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
Matlab函数数值求解
[T,Y] = solver(odefun,tspan,y0)
其中 y0 为初值条件,tspan为求解区间;Matlab在数值求解 时自动对求解区间进行分割,T (列向量) 中返回的是分割点 的值(自变量),Y (数组) 中返回的是这些分割点上的近似解, 其列数等于因变量的个数。
数学实验
实验四
求微分方程的解
问题背景和实验目的
自牛顿发明微积分以来,微分方程在描述事物运 动规律上已发挥了重要的作用。实际应用问题通过 数学建模所得到的方程,绝大多数是微分方程。 由于实际应用的需要,人们必须求解微分方程。 然而能够求得解析解的微分方程十分有限,绝大多 数微分方程需要利用数值方法来近似求解。 本实验主要研究如何用 Matlab 来计算微分方程 (组)的数值解,并重点介绍一个求解微分方程的 基本数值解法--Euler折线法。
Runge-Kutta 方法
Euler 法与 R-K法误差比较
Matlab 解初值问题
用 Maltab自带函数 解初值问题 求解析解:dsolve 求数值解:
ode45、ode23、 ode113、ode23t、ode15s、 ode23s、ode23tb
matlab 函数积分

MATLAB函数积分1. 函数的定义在MATLAB中,函数是一段可重复使用的代码,用于执行特定任务或计算。
函数可以接受输入参数,并返回输出结果。
函数的定义包括函数名、输入参数和输出结果,以及函数体内执行的操作。
MATLAB中的积分函数是一类特定的函数,用于计算数学上的积分。
积分是微积分中的重要概念,表示曲线下面的面积或曲线沿某一轴方向的累积量。
通过对函数进行积分,可以求解曲线下面的面积、求解曲线长度等问题。
2. 积分函数的用途MATLAB提供了多个不同类型的积分函数,用于处理不同类型的积分问题。
这些函数可以用于科学计算、工程建模、数据处理等各种领域。
主要应用包括:•数学建模:在数学建模过程中,需要对各种复杂函数进行求解和分析。
通过使用MATLAB中的积分函数,可以方便地计算数学模型中各种变量之间的关系。
•工程计算:在工程领域中,常常需要对信号、图像、声音等进行处理和分析。
通过使用MATLAB中的积分函数,可以方便地对这些信号进行变换和处理。
•数据分析:在数据分析过程中,需要对大量的数据进行处理和统计。
通过使用MATLAB中的积分函数,可以对数据进行平滑、拟合和插值等操作。
3. 常用积分函数3.1 integralintegral函数是MATLAB中最常用的积分函数之一。
它可以用于计算一维函数在给定区间上的定积分。
integral函数的定义如下:Q = integral(fun,a,b)其中,fun是要进行积分的函数句柄(function handle),a和b是积分区间的起始点和终止点,Q是计算得到的积分结果。
例如,我们要计算函数 y = x^2 在区间 [0,1] 上的定积分,可以使用以下代码:fun = @(x) x^2;Q = integral(fun,0,1);3.2 quadquad函数是另一个常用的积分函数,它可以用于计算一维函数在给定区间上的数值积分。
与integral函数不同,quad函数允许用户指定更多选项以控制数值积分的精度和效率。
MATLAB课件第九篇微积分基础

第九章微积分基础1函数的极限(符号解法)一元函数求极限函数 limit格式 limit(F,x,a) %计算符号表达式F=F(x) 当x→a时的极限值。
limit(F,a) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→a时的极限值。
limit(F) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→0时的极限值。
limit(F,x,a,'right')或limit(F,x,a,'left') %计算符号函数F的单侧极限:左极限x →a- 或右极限x→a+。
【例1】>>syms x a t h n;>>L1 = limit((cos(x)-1)/x)>>L2 = limit(1/x^2,x,0,'right')>>L3 = limit(1/x,x,0,'left')>>L4 = limit((log(x+h)-log(x))/h,h,0)>>v = [(1+a/x)^x, exp(-x)];>>L5 = limit(v,x,inf,'left')>>L6 = limit((1+2/n)^(3*n),n,inf)计算结果为:L1 =L2 =infL3 =-infL4 =1/xL5 = [ exp(a), 0] L6 = exp(6)注:在求解之前,应该先声明自变量x,再概念极限表达式fun,假设0x 为∞,那么能够用inf 直接表示。
若是需要求解左右极限问题,还需要给出左右选项。
【例2】 试别离求出tan 函数关于pi/2点处的左右极限。
>> syms t;f=tan(t);L1=limit(f,t,pi/2,'left'), L2=limit(f,t,pi/2,'right') L1 = Inf L2 = -Inf【例3】求以下极限1)312lim20+-→x x x 2)x x x t 3)21(lim +∞→解:编程如下:>>syms x t ;L1 = limit((2*x-1)/(x^2+3)) >>L2 = limit((1+2*t/x)^(3*x),x,inf)回车后可得: L1 = -1/3 L2 = exp(6*t) 多元函数求极限求多元函数的极限能够嵌套利用limit()函数,其挪用格式为:limit(limit(f,x,x0),y,y0)或limit(limit(f,y,y0),x,x0)【例4】求极限:x xy y x )sin(lim 30→→>> syms x y;f=sin(x*y)/x;limit(limit(f,x,0),y,3)ans = 3注:若是x0或y0不是确信的值,而是另一个变量的函数,如)(y g x →,那么上述的极限求取顺序不能互换。
matlab解微积分方程

matlab解微积分方程Matlab是一种功能强大的数值计算软件,可以用于解决各种数学问题,包括微积分方程。
微积分方程是描述自然界中许多现象的数学模型,它们在物理、化学、生物等领域有着广泛的应用。
本文将介绍如何使用Matlab解微积分方程。
我们需要明确什么是微积分方程。
微积分方程是包含未知函数及其导数的方程,通常可以写成形如y''(x) + p(x)y'(x) + q(x)y(x) = f(x)的形式。
其中y(x)是未知函数,p(x)、q(x)和f(x)是已知函数。
解微积分方程的过程可以分为两步:建立方程和求解方程。
建立方程是将实际问题转化为数学模型,而求解方程则是找到满足方程的函数。
在Matlab中,可以使用dsolve函数来求解微积分方程。
dsolve 函数可以根据方程的类型自动选择合适的求解方法,并给出满足方程的函数表达式。
例如,对于一阶线性微分方程dy/dx + p(x)y = q(x),可以使用以下代码求解:syms x y(x)p = input('请输入p(x)的表达式:'); % 输入p(x)的表达式q = input('请输入q(x)的表达式:'); % 输入q(x)的表达式eqn = diff(y,x) + p*y - q == 0; % 建立微分方程sol = dsolve(eqn); % 求解微分方程disp('方程的解为:');disp(sol);在以上代码中,首先使用syms命令定义符号变量x和y(x),然后使用input命令分别输入p(x)和q(x)的表达式。
接下来,使用diff 命令计算y'(x),然后将其代入微分方程中得到eqn。
最后,使用dsolve命令求解方程,并将结果存储在sol中,最后将结果打印出来。
对于更高阶的微积分方程,可以使用符号变量来表示未知函数及其导数的各阶,并按照相应的形式建立方程。
第三章-matlab求解微积分

第三章 微积分的数学实验3.1极限与一元微积分3.1.1 初等运算1.定义单个或多个符号变量:syms x y z t ;定义单个符号变量或者符号函数还可以用单引号定义,如x=’x ’,f=’sin(x^2)+2*x-1’。
符号表达式的反函数运算g=finverse(f),g 是返回函数f 的反函数。
例1 求sin(1)y x =-的反函数>>syms x>>y=sin(x-1); g=finverse(y),结果为 g=1+asin(t)2. f actor(f) 因式分解函数f3.Collect(f) 对函数f 合并同类项4. expand(f) 将函数f 表达式展开5. simple(f) 找出表达式的最简短形式(有时需要用2次)6. roots (p )对多项式p 求根函数。
7. solve(F) 一般方程的求根函数例2 解方程2510x x +-=解 >>syms x>>solve(x^2+5*x-1)结果为x =[ -5/2+1/2*29^(1/2) -5/2-1/2*29^(1/2)]8.fzero(f,x0)或fzero(f,[a,b]) 在初始点x0处开始或在区间[a,b]上搜索函数的零点,f(a)与f(b)需要符号相反。
3.1.2 Matlab计算函数的极限函数形式:1)limit(F,x,a),求函数F在 x ->a时的极限。
2)limit(F,a),默认其中的变量为极限变量.3)limit (F),默认其中的变量为极限变量且趋向于0.4)limit(F,x,a,'right')或limit(F,x,a,’left') 求函数F在x->a时的右、左极限.例3 >>syms x a t h; %syms作用是申明x,a,t,h是符号变量,不需先赋值再调用。
>>limit(sin(x)/x) %结果为 1>>limit((x-2)/(x^2-4),2) %结果为 1/4>>limit((1+2*t/x)^(3*x),x,inf) %结果为 exp(6*t)>>limit(1/x,x,0,'right') %结果为 inf>>limit(1/x,x,0,'left') %结果为 -inf>>limit((sin(x+h)-sin(x))/h,h,0) %结果为 cos(x)>>v = [(1 + a/x)^x, exp(-x)];limit(v,x,inf,'left') %结果为[exp(a),0]3.1.3 Matlab计算导数与微分1.一元导数和微分diff函数用以计算函数的微分和导数,相关的函数语法有下列4个:diff(f) 返回f对预设独立变量的一次导数值diff(f,'t')或diff(f,t) 返回f对独立变量t的一次导数(值)diff(f,n) 返回f对预设独立变量的n阶导数(值)diff(f,'t',n) 或diff(f,t,n)返回f对独立变量t的n阶导数(值)这里尽管自变量已经作为符号变量,可以不用syms说明,但是在具体执行diff(f)、diff(f,'t')和diff(f,t)会出现差异,有的能够执行,有的不能够,有的执行符号微分,有的执行数值微分,所以比较麻烦。
利用matlab进行微积分的计算

Matlab的微积分符号运算都可以对数组进行。
函数的积分 积分符号运算的基本语句 int(F); %求函数表达式F的不定积分 int(F,v); %求函数表达式F关于变量v的不定积分 int(F,a,b); %求函数表达式F在区间[a,b]上的定积分 int(F,v,a,b); %求函数表达式F在区间[a,b]上的关于变量v的 定积分
elapsed time is 17.471170 seconds. s=
53362913282294785045591045624042980409652472280384260097101349248456268889497101757 50609790198503569140908873155046809837844217211788500946430234432656602250210027842 563285208140554494121044251014267277029477471270891796396777961045322469242686646888 828158207198489710511079687324931915552939701750893156451997608573447301418328401172 44122806490743077037366831700558002936592350885893602352858528081607595747378366554 13175508131522517/712886527466509305316638415571427292066835886188589304045200199115 432408758111149947644415191387158691171781701957525651298026406762100925146587100430 513107268626814320019660997486274593718834370501543445252373974529896314567498212823 69562328237940110688092623177088619795407912477545580493264757378299233527517967352 48042463638051137034331214781746850878453485678021888075373249921995672056932029099 390891687487672697950931603520000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 微分运算
2.2.1符号表达式的极限运算 limit
函数的调用格式为:
limit(f,x,a) Limit(f)
lim f (x)
xa
limit函数的另一种功能是求单边极限,其调用 格式为:
limit(f,x,a,'right')
limit(f,x,a,'left')
例2.10求极限。
在MATLAB命令窗口,输入命令:
int(f,x,a,b)
例2.14求定积分。
2
y1 1 1 x dx
1
y2
dx
1 x 2
sin t
y3 4txdx
2
3
y4
x3
dx
2 ( x 1)100
命令如下: x=sym('x');t=sym('t'); int(abs(1-x),1,2) f=1/(1+x^2); int(f,-inf,inf)
s1=expand(s)
%对s展开
s2=collect(s,x) %对s按变量x合并同类项(无同 类项)
factor(s2)
% 对s2分解因式
(4)表达式化简 MATLAB提供的对符号表达式化简的函数有: simplify(S) 应用函数规则对S进行化简。 simple(S) 调用MATLAB的其他函数对表达
%求(4)。z对y的偏导数
f=x^2+y^2+z^2-a^2;
zx=-diff(f,x)/diff(f,z)
%求(5)。按隐函数求导公式求z对x的偏导数
zy=-diff(f,y)/diff(f,z)
%求(5)。按隐函数求导公式求z对y的偏导数
例2.12在曲线y=x3+3x-2上哪一点的切线与直线y=4x-1平 行。
第2章 MATLAB符号计算
2.1 符号计算基础 2.2 微分运算 2.3 积分运算 2.4 泰勒级数 2.5 求解方程 2.6 积分变换
2.1 符号计算基础
2.1.1 符号对象
1. 建立符号变量和符号常数
(1)sym函数 S=sym(A)
sym函数用来建立单个符号变量,例如,a=sym(‘a’)建 立符号变量a,此后,用户可以在表达式中使用变量a 进行各种运算。
%求极限(3)
f=(sqrt(x)-sqrt(a)-sqrt(x-a))/sqrt(x*x-a*a);
limit(f,x,a,'right')
%求极限(4)
2.2.2 符号函数求导及其应用 MATLAB中的求导的函数为: diff(f,x,n)
diff函数求函数f对变量x的n阶导数。参数x的 用法同求极限函数limit,可以缺省,缺省 值与limit相同,n的缺省值是1。
式进行综合化简,并显示化简过程。
例2.9化简
命令如下:
syms x y;
s=(x^2+y^2)^2+(x^2-y^2)^2;
simplify(s)
%应用函数规则对s进行化简。
(5) 符号表达式中变量的确定
MATLAB中的符号可以表示符号变量和符号常数。 findsym可以帮助用户查找一个符号表达式中的符 号变量。该函数的调用格式为:
例2.11 求函数的导数。
命令如下:
syms a b t x y z;
f=sqrt(1+exp(x));
diff(f)
%求(1)。未指定求导变量和阶数,按缺省规则处理
f=x*cos(x);
diff(f,x,2)
%求(2)。求f对x的二阶导数
diff(f,x,3)
%求(2)。求f对x的三阶导数
f1=a*cos(t);f2=b*sin(t);
命令如下:
syms a b x y;
A=[2*a^2*b^3*x^2-4*a*b^4*x^3+10*a*b^6*x^4,3*x*y5*x^2;4,a^3-b^3];
factor(A)
%对A的每个元素分解因式
例2.8 计算表达式S的值。
命令如下:
syms x y;
s=sym((-7*x^2-8*y^2)*(-x^2+3*y^2));
dsolve 参数说明
(1)Eqn
微分方程输入方法:D
d dx
Dn
dn dx n
例:
d 2 y dy 2 3y 0
dx2 dx
Dy dy dx
D2y d 2 y dx 2
命令:Y=dsolve(‘D2y-2*Dy-3*y=0’,’x’) (2)condition 初始条件 y(a)=b;Dy(a)=c;D2y(a)=d; 最多可接受12个输入参量
例2.18 求微分方程的通解。 命令如下: y=dsolve('Dy-(x^2+y^2)/x^2/2','x')
端为0时可以不写 y=dsolve('Dy*x^2+2*x*y-exp(x)','x') y=dsolve('Dy-x/y/sqrt(1-x^2)','x')
%解(1)。方程的右
%解(2) %解(3)
命令如下:
x=sym('x');
y=x^3+3*x-2; %定义曲线函数
f=diff(y);
%对曲线求导数
g=f-4;
solve(g) 数为4
%求方程f-4=0的根,即求曲线何处的导
2.3 积分运算
2.3.1 不定积分 在MATLAB中,求不定积分的函数是int,其调用格式为: int(f,x) int函数求函数f对变量x的不定积分。参数x可以缺省,
% 计算数值表达式值
区别
数值数字并不能保证被完全准确存储,运算时 也会引进截断误差;
符号类数字总是被准确记录和计算。
(2)syms函数
1.用于定义多个符号变量。
syms函数的一般调用格式为:
syms var1 var2 … varn 函数定义符号变量var1,var2,…,varn等。
用这种格式定义符号变量时不要在变量名上加 字符分界符(‘),变量间用空格而不要用逗号分 隔。
➢ Numeric,eval:将符号常数转换为数字或计算表达式的 函数;
➢ Sym2poly:将符号多项式变换为等价系数向量。 ➢ Poly2sym:要求用户指定用于表达式的变量(x,y等) 例2.6 f=sym(‘2*x^2+7*x+9’) n=sym2poly(f) f1=poly2sym(n,y)
定义符号常量
如pi=sym(pi)
a=sym(3/4)
例2.1考察符号变量和数值变量的差别。
在 MATLAB命令窗口,输入命令:
a=sym('a');b=sym('b');c=sym('c');d=sym('d'); %定义4个符号变量
w=10;x=5;y=-8;z=11; %定义4个数值变量
积分(2) int(4*t*x,x,2,sin(t)) f=x^3/(x-1)^100; I=int(f,2,3)
%求定积分(1)
%负无穷到正无穷求定 %求定积分(3)
%用符号积分的方法求 定积分(4)
例2.15 轴的长度为10米,若该轴的线性密度计算公式是 f距离),求轴的质量。
(3)因式分解与展开
factor(S) 对S分解因式,S是符号表达式或符号矩阵。 expand(S) 对S进行展开,S是符号表达式或符号矩阵。 collect(S) 对S合并同类项,S是符号表达式或符号矩阵。 collect(S,v) 对S按变量v合并同类项,S是符号表达式或
符号矩阵。
例2.7 对符号矩阵A的每个元素分解因式。
缺省原则与diff函数相同。
例2.13求不定积分。
命令如下:
x=sym('x');
f=(3-x^2)^3;
int(f)
%求不定积分(1)
f=sqrt(x^3+x^4);
f1=int(f)
%求不定积分(2)
g=simple(f1)
%调用simple函数对结果化简
2.3.2 定积分
定积分在实际工作中有广泛的应用。在MATLAB中, 定积分的计算使用函数:
A=[a,b;c,d]
%建立符号矩阵A
B=[w,x;y,z]
%建立数值矩阵B
det(A)
%计算符号矩阵A的行列式
det(B)
%计算数值矩阵B的行列式
例2.2 比较符号常数与数值变量在代数运算时 的差别。
在 MATLAB命令窗口,输入命令:
pi1=sym(‘pi’);k1=sym(‘8’);k2=sym(‘2’);k3=sym(‘3’); % 定义符号常数
常微分方程(补充)
微分方程:凡是表示未知函数、未知函数的导 数与自变量之间的关系的方程叫做微分方程。
常微分方程:未知函数是一元函数的,叫做常 微分方程。
微分方程的阶:微分方程中出现的未知函数的 最高阶导数即是微分方程的阶。
一般地,n阶微分方程的形式是:
其中F是n+2个变量的函数,且 是必须出现 的,而小于n阶导数的变量不一定要出现。
syms a m x;
f=(x^(1/m)-a^(1/m))/(x-a);
limit(f,x,a)
%求极限(1)
f=(sin(a+x)-sin(a-x))/x;
limit(f)
%求极限(2)
limit(f,inf)