沪科版-数学-九年级上册-九上23.2 相似三角形的判定(一)教案

合集下载

沪科版-数学-九年级上册-22.2 相似三角形的判定教案

沪科版-数学-九年级上册-22.2 相似三角形的判定教案

22.2 相似三角形的判定第1课时相似三角形及相似三角形的判定1┃教学过程设计┃5.怎样判定两个三角形相似?问题2:如图,在△ABC中,D为AB上任意一点,作DE∥BC,交边AC于E,△ADE与△ABC相似吗?思考:若DE平行于BC,那么△ABC与△AED相似吗?提问学生怎样判定两个三角形相似.1.什么样的两个三角形相似?2.怎样说明对应角相等?对应边长度的比相等?可指导学生通过度量,判断对应角是否相等,对应边长度的比是否相等.归纳:平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.问题3:观察一下,如图△ABC与△EDF相似吗?为什么?这两个三角形相似,已知条件与边有关吗?教师引导学生思考,并让学生合作讨论.学生讨论,得出:(1)只满足一对角相等不能判定两个三角形相似;(2)如果两个三角形中有两对角对应相等,那么这两个三角形相似.用实验的方法得到结论.相似三角形的判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.探索三角形相似的条件.三、运用新知,解决问题(1)有一个锐角对应相等的两个直角三角形是否相似?为什么?(2)顶角相等的两个等腰三角形是否相似?为什么?进一步巩固所学知识.四、课堂小结,提炼观点本节课你学到了什么?(1)相似三角形的有关概念.(2)平行线截三角形相似.(3)相似三角形的判定定理1.加强教学反思,帮助学生系统整理知识.五、布置作业,巩固提升(1)教材78页和79页练习.(2)写出图中的相似三角形.加深认识,深化提高.┃教学小结┃【板书设计】相似三角形及相似三角形的判定1相似三角形:平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似判定1:两角分别相等的两个三角形相似.┃教学整体设计┃第2课时相似三角形的判定2、3【教学目标】1.会说出识别两个三角形相似的方法:两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似.2.能依据条件,灵活运用三种识别方法正确判断两个三角形相似.【重点难点】重点:用相似三角形的判定定理判定两个三角形相似.难点:综合应用相似三角形的判定定理解决有关相似的问题.┃教学过程设计┃教学过程设计意图一、复习回顾,导入新课1.现在要判断两个三角形相似有哪几种方法?有两种方法:(1)根据定义;(2)两角分别相等的两个三角形相似.2.上节学的“两角分别相等的两个三角形相似”的判定定理是怎样得出的?二、师生互动,探究新知两边成比例且夹角相等的两个三角形相似吗?(1)如图,△ABC中,D、E分别是AB、AC上的三等分点(即AD=13AB,AE=13AC),那么△ADE与△ABC相似吗?你用的是哪一种方法?(2)思考:通过量角或量线段计算之后,可以得出:△ADE∽△ABC.从已知条件看,△ADE与△ABC有一对对应角相等,即∠A=∠A(是公共角),而另一个条件是AD=13AB,AE=13AC,即ADAB=13,AEAC=13,因此ADAB=AEAC.如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似吗?(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简单地说:两边成比例且夹角相等的两个三角形相似.教师归纳强调:对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似.(4)判定定理3:三边成比例的两个三角形相似.学生在作业本上证明,教师适时给予指导.三、运用新知,解决问题如图,△ABC中,D、E是AB、AC上的点,AB=7.8,AD=3,AC=6,CE=2.1,试判断△ADE与△ABC是否相似,小张同学的判断理由是是这样的:解:因为AC=AE+CE,而AC=6,CE=2.1,故AE=6-2.1=3.9.由于ADAB≠AEAC,所以△ADE与△ABC不相似.你同意小张同学的判断吗?请你说说理由.四、课堂小结,提炼观点本节课你有什么收获?五、布置作业,巩固提升教材第82页练习第2、3、4题.┃教学小结┃【板书设计】相似三角形的判定2、3判定定理2:两边成比例且夹角相等的两个三角形相似.判定定理3:三边成比例的两个三角形相似.┃教学整体设计┃第3课时直角三角形的相似【教学目标】1.使学生了解直角三角形相似定理的证2.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.【重点难点】┃教学过程设计┃相似.三、运用新知,解决问题(1)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若BD=3.6 cm,BC∶AC=3∶4,则BC长为()A.4 cmB.5.6 cmC.6 cmD.7.2 cm(2)如图,已知:△ABC内接正方形DGFE,AH⊥BC于H,AH=5 cm,AD∶BD=2∶3.求BC的长.通过练习进一步加深对定理的理解,同时培养了学生的应用意识和能力.四、课堂小结,提炼观点(1)通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师、同学听听.(2)教师与同学聆听部分同学的收获.加强教学反思,帮助学生养成系统整理知识的习惯.五、布置作业,巩固提升教材第84页练习1、2、3、4题.加深认识,深化提高.┃教学小结┃【板书设计】直角三角形的相似定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.。

沪科版九年级数学上册24.2《相似三角形的判定》教案.doc

沪科版九年级数学上册24.2《相似三角形的判定》教案.doc

24.2相似三角形的判定(一)一、教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理” 解决简单的问题.二、重点、难点1.重点:相似三角形的定义与三角形相似的预备定理.2.难点:三角形相似的预备定理的应用.三、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ ABC 与△ A ′ B′ C′中,如果∠ A= ∠A ′ , ∠ B= ∠B ′ , ∠ C=∠ C′ , 且ABBC CA k .A B B C C A我们就说△ ABC 与△ A ′B ′ C′相似,记作△ ABC ∽△ A ′B ′ C′, k 就是它们的相似比.反之如果△ ABC ∽△ A ′ B′ C′,则有∠ A= ∠A ′ , ∠ B= ∠B ′ , ∠ C=∠ C′ , 且ABBC CA .A B B C C A( 3)问题:如果k=1 ,这两个三角形有怎样的关系?2.教材 P63 的思考,并引导学生探索与证明.3.【归纳】三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.四、例题讲解例 1 (补充)如图△ABC ∽△ DCA , AD ∥ BC ,∠B= ∠DCA .(1)写出对应边的比例式;(2)写出所有相等的角;(3)若 AB=10,BC=12,CA=6 .求 AD 、 DC 的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD 与 DC 的长.解:略(AD=3 ,DC=5 )例 2(补充)如图,在△ABC 中, DE∥ BC ,AD=EC ,DB=1cm ,AE=4cm , BC=5cm ,求 DE 的长.分析:由 DE ∥ BC ,可得△ ADE ∽△ ABC ,再由相似三角形的性质,有AD AE ,又AB AC由 AD=EC 可求出 AD 的长,再根据DE AD求出 DE 的长.BCAB解:略( DE 10 ).3六、课堂练习1.(选择)下列各组三角形一定相似的是()A .两个直角三角形B .两个钝角三角形C .两个等腰三角形D .两个等边三角形2.(选择) 如图, DE ∥ BC ,EF ∥ AB ,则图中相似三角形一共有 ()A . 1 对B . 2 对C . 3 对D . 4 对3.如图,在□ ABCD 中,EF ∥ AB ,DE : EA=2 : 3,EF=4 ,求 CD 的长.( CD=10)七、课后练习1.如图,△ ABC ∽△ AED, 其中 DE ∥ BC ,写出对应边的比例式.2.如图,△ ABC ∽△ AED ,其中∠ ADE= ∠ B ,写出对应边的比例式.3.如图, DE ∥BC ,( 1)如果 AD=2 , DB=3 ,求 DE : BC 的值;( 2)如果 AD=8 , DB=12 , AC=15 , DE=7 ,求 AE 和 BC 的长.教学反思24.2 相似三角形的判定(二)一、教学目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程, 体验用类比、 实验操作、 分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.2.难点:( 1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.三、课堂引入1.复习提问:(1)两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法? AA'(3)全等三角形与相似三角形有怎样的关系?(4)如图,如果要判定△ ABC 与△ A’ B’相C’似,是不是一定需要一一验证所有的对应角和对应边的关系?有我们前面学过的预备定理知道:B C B'C'三角形相似的判定方法 1 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

沪科版-数学-九年级上册- 相似三角形的判定(第1课时) 名师教案

沪科版-数学-九年级上册- 相似三角形的判定(第1课时) 名师教案

相似三角形的判定定理(第1课时)学习目标1.掌握平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.2.会运用相似三角形的判定方法判定两个三角形相似.学习重难点对“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”这一定理的两种情形的理解与掌握.学习过程导入新课导语:我们在判断两个三角形全等时,使用了哪些方法?判断三角形相似是否有类似的方法呢?一、合作探究【问题1】如图,△ABC与△A′B′C′相似,如何用数学语言表示?让学生自学课本,了解相似三角形的表示方法.在△ABC和△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA′B′=BCB′C′=ACA′C′=k,我们就说△ABC与△A′B′C′相似,k是它们的相似比.表示方法:△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′.想一想:k=1时,这两个三角形关系怎样?【问题2】如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,△ADE与△ABC 有什么关系?探究:猜想(也能直观看出)△ADE∽△ABC.(1)确定对应角相等:∠A=∠A.因为DE ∥BC ,所以∠ADE =∠ABC ,∠AED =∠ACB .(2)确定对应边成比例:过E 作EF ∥AB ,交BC 于F .∵DE ∥BC ,EF ∥AB ,∴AD AB =AE AC ,BF BC =AE AC(平行线分线段成比例定理). 由作图知,四边形DEFB 是平行四边形,所以DE =BF .∴DE BC =AE AC .∴AD AB =AE AC =DE BC,即三组对应边成比例. 结果:△ADE ∽△ABC .归纳结论:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.【问题3】 改变点D 在AB 上的位置,如图,先让学生猜想△ADE 与△ABC 是否相似再归纳,同上面的问题.二、巩固提高【例】如图所示,D ,E 分别是△ABC 边AB ,AC 上的点,DE ∥BC .(1)图中有哪些相等的角?(2)找出图中的相似三角形,并说明理由;(3)写出成比例的线段.学生利用所学知识解决,然后师生共同纠正.想一想,在上面例题的条件下,AB AD =AC AE 吗?BD AD =CE AE吗? 学生可由平行线分线段成比例解决.三、随堂训练1.图中DE ∥FG ∥BC ,找出图中所有的相似三角形.2.图中AB∥CD∥EF,找出图中所有的相似三角形.本课小结1.△ABC与△A′B′C′相似,可记为△ABC∽△A′B′C′.2.相似三角形的判定方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.。

沪科版九年级数学上册教案《相似三角形的判定》

沪科版九年级数学上册教案《相似三角形的判定》

沪科版九年级数学上册教案《相似三角形的判定》《相似三角形的判定》教科书分析本节是上海科技版义务教育教科书《数学》九年级上册第二十二章《相似形》的第2节《相似三角形的判定》的教学内容,主要研究相似三角形的判定方法.本节内容是在学生学习了相似形和相关的线段比例性质之后在三角形相似中的判定.首先由生活中的图像讨论引出相似三角形的证明的,在此基础上进一步探究其他证明方法;接着证明直角三角形的相似的判定;最后解答,解决一些生活中的问题.本部分研究了三角形相似性的判定,体现了从特殊到一般的证明思想教学目标【知识和能力目标】理解相似三角形的判断方法【过程和方法】以问题的形式,创设一个有利于学生动手和探究的情境,达到学会本节课所学的相似三角形的判定方法.。

【情感态度与价值观】培养学生积极思考、动手和观察的能力,使学生意识到几何知识在生活中的价值教学重难点[教学要点]会应用相似三角形的两个判定方法。

怎样选择合格的判定方法来判定两个三角形相似。

【教学难点】掌握判断方法的条件,通过对已知条件的分析掌握图形的结构特征。

课前准备多媒体课件、教具等教学过程问题(1)相似形的定义与性质?(2)相似比的定义,如何判断相似性?【设计意图】:回忆相似形的相关概念和性质,为后面学习判定知识做铺垫。

1B1,那么,如果已知ab‖A1B1,这两只风筝的形状相似。

观察和思考:敢于猜测,a 能得到吗△ 基础知识≓? a1b1c1【设计意图】:具体生活中实际图片,为后面做铺垫,引出证明相似思考:已知,de//bc,且d是边ab的中点,de交ac于e,猜想:△ade与△abc有什么关系?并证明。

相似证据:≓德//公元前∠ 1 = ∠ B∠ 2 = ∠ C和∠ a=∠ A.∴△ade与△abc的对应角相等过e作ef//ab交bc于f,又∵de//bc四边形dbfe是平行四边形,∴de=bf,db=ef又∵ad=db,∴ad=ef∵∠a=∠3,∠2=∠c△ade≌△efc∴de=fc=bf,ae=ecae1de1adaede1?,,acbc2ac2bc2ab∴△a de与△abc的对应边成比例∴△ade∽△abc由三角形中线切割的三角形与原始三角形相似【设计意图】:特殊案例,体会从特殊到一般的证明思路,由易到难,当D点位于AB上的任意点时,上述结论仍然有效吗?已知:De//BC,两者之间的关系是什么△ 艾德和△ ABC?猜想:两者之间的关系是什么△ 艾德和△ ABC?aBdec平行于三角形一侧的定理是相似的。

最新沪科版九年级数学上册《相似三角形的判定1》教学设计(精品教案)

最新沪科版九年级数学上册《相似三角形的判定1》教学设计(精品教案)

相似三角形的判定一. 教学要求1. 了解相似多边形的含义,经历相似多边形概念所形成的过程,探索相似多边形的本质特征。

2. 理解相似三角形的概念,深化对相似三角形的理解和认识。

3. 掌握两个三角形相似的判定条件,能够运用三角形的相似条件解决简单的问题。

二. 重点及难点重点:1、了解相似多边形的含义,正确理解概念的应用方法。

2、理解相似三角形的概念,掌握相似三角形的本质特征。

3、识别相似三角形,掌握相似三角形的判定条件,并运用三角形的相似条件解决简单的问题。

难点:1、多边形边角关系的理解。

2、深化对相似三角形的理解和认识。

3、运用相似三角形条件解决一些实际问题。

三. 课堂教学[知识要点]知识点1、相似多边形的概念:对应角相等,且对应边成比例的两个多边形叫做相似多边形。

例如:四边形ABCD 与四边形A B C D ''''说明:相似多边形的定义要注意一定要满足两个条件:对应角相等,对应边成比例,这两个条件缺一不可。

知识点2、相似比:相似多边形对应边的比叫作相似比。

说明:(1)两个全等的多边形一定是相似多边形,其相似比等于1。

(2)相似比大于零,因为两个多边形的边长都是正数,所以对应边的比,即相似比也必是正数。

如△ABC ∽△A’B’C’的相似比AB k A B ='',则△A’B’C’ ∽△ABC 的相似比是1A B AB k ''=。

知识点3、相似多边形定义的逆向思维:如果两个多边形相似,那么对应角相等,对应边成比例,如相似四边形ABCD ∽四边形A’B’C’D’则,,,A A B B C C D D ''''∠=∠∠=∠∠=∠∠=∠,AB BC CD DA A B B C C D D A ===''''''''。

知识点4、相似三角形的定义:三个角对应相等,且三边对应成比例的两个三角形叫做相似三角形。

新沪科版九年级数学上册第1课时相似三角形的判定(1)沪上教学设计

新沪科版九年级数学上册第1课时相似三角形的判定(1)沪上教学设计

22.2 相似三角形的判定第1课时相似三角形的判定(1)【学习目标】1.学会用平行于三角形一边的直线判定三角形相似.2.经历定理的证明过程,培养分析问题、解决问题的能力.【学习重点】三角形相似的判定定理及应用.【学习难点】三角形相似的判定定理及应用.情景导入生成问题旧知回顾:什么叫相似多边形?满足什么条件的两个三角形相似?解:对应角相等,对应边的比相等,这两个多边形叫做相似多边形.对于△ABC和△A′B′C′,当∠A=∠A′,∠B=∠B′,∠C=∠C′且ABA′B′=ACA′C′=BCB′C′,则△ABC∽△A′B′C′.自学互研生成能力知识模块一相似三角形的基本概念阅读教材P76页的内容,回答以下问题:1.什么是相似三角形?它有何性质?解:形状相同的两个三角形叫相似三角形.相似三角形对应角相等,对应边成比例.2.△ABC与△A′B′C′相似比记为k1,△A′B′C′与△ABC相似比记为k2,k1与k2有何关系?当k1=k2时,这两个三角形全等吗?解:k1=1k2,当k1=k2=1时,两个三角形全等.范例:如图所示,若△ABC∽△ADE,且∠ADE=∠B,则下列比例式正确的是( D )A.AEBE=ADDCB.AEEB=ADACC.ADAC=DEBCD.AEAC=DEBC解:由对应关系可知D正确.仿例:已知有两个三角形相似,一个边长分别为2,3,4,另一个对应边长分别为x,y,12,则x,y的值分别为6,9或8,16或18,24.解:分三类情况:2x=3y=412或2x=4y=312或3x=4y=212,可得x、y的值分别为6,9或8,16或18,24.知识模块二用平行于三角形一边的直线判定三角形相似阅读教材P77页的内容,回答以下问题:在△在ABC中,D为AB上任意一点,过D作BC的平行线DE,交AC于点E,那么△ADE与△ABC相似吗?【分析】要判定两个三角形相似,我们可以从相似的定义来判定,即对应边成比例、对应角相等.解:过D作AC的平行线交BC于F点.∵DE∥BC,DF∥AC,∴ADAB=AEAC,FCBC=ADAB.∵四边形DFCE是平行四边形,∴DE=FC,即DEBC=ADAB.∴ADAB=AEAC=DEBC,又∵∠A=∠A,∠B=∠ADE,∠C=∠AED,∴△ADE∽△ABC.通过上面的证明,你能得到什么结论?【归纳结论】平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.范例1:如图,在△ABC中,DE∥BC,若ADDB=13,DE=3cm,求BC的长.解:∵AD∶DB=1∶3,∴AD∶AB=1∶4.∵DE∥BC,∴△ADE∽△ABC,∴AD∶AB=DE∶BC.∵DE=3cm,∴BC=12cm.范例2:如图所示,已知在?ABCD中,E为AB延长线上的一点,DE与BC相交于F,请找出图中各对相似三角形.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.范例3:在△ABC中,DE∥BC,M为DE中点,CM交AB于N,若AD∶AB=2∶3,求ND∶BD.解:∵DE∥BC,∴△ADE∽△ABC,∴DEBC=ADAB=23.∵M为DE的中点,∴DMBC=13,∵DM∥BC,∴△NDM∽△NBC,∴NDNB=DMBC=13,∴ND∶DB=1∶2.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形的基本概念知识模块二用平行于三角形一边的直线判定三角形相似检测反馈达成目标1.(·岳阳中考)如图所示,已知点E、F分别是△ABC的边AC,AB的中点,BE与CF相交于点G,FG=2,则CF的长是( D )A.4B.4.5C.5D.62.如图,AB⊥AE,DC⊥AE,EF⊥AE,垂足分别为A、C、E,求证:ABEF=ACCE.证明:∵AB⊥AE,DC⊥AE,EF⊥AE,∴AB∥CD∥EF,∴△ABD∽△FED,∴ABEF=ADDF.又∵DC∥FE,∴ADDF=ACCE.∴ABEF=ACCE.3.如图,DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,试求线段BF的长.解:∵DE∥BC,∴ADAB=DEBC,∴44+8=5BC,∴BC=15.∵DE∥BC,DF∥EC,∴四边形DECF是平行四边形,∴DE=FC=5,∴BF=15-5=10cm.课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。

沪科版数学九年级上册22.2《相似三角形的判定》(第1课时)教学设计

沪科版数学九年级上册22.2《相似三角形的判定》(第1课时)教学设计

沪科版数学九年级上册22.2《相似三角形的判定》(第1课时)教学设计一. 教材分析《相似三角形的判定》是沪科版数学九年级上册第22章第2节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的性质、三角形的全等、三角形的相似等知识的基础上进行学习的。

本节课的主要内容是让学生掌握相似三角形的判定方法,并通过实例让学生学会如何应用这些方法解决实际问题。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。

但是,对于相似三角形的判定方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

三. 说教学目标1.知识与技能目标:让学生掌握相似三角形的判定方法,并能够运用这些方法解决实际问题。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.教学重点:相似三角形的判定方法。

2.教学难点:如何运用相似三角形的判定方法解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学。

六. 说教学过程1.导入:通过展示一些生活中的实例,如建筑物的设计、图案的绘制等,引出相似三角形的概念,激发学生的兴趣。

2.新课导入:介绍相似三角形的定义和性质,引导学生思考如何判断两个三角形是否相似。

3.判定方法的学习:通过具体的实例,引导学生探索相似三角形的判定方法,并进行总结。

4.练习与巩固:提供一些练习题,让学生应用所学的判定方法进行解答,巩固知识点。

5.应用拓展:提供一些实际问题,让学生运用相似三角形的判定方法进行解决,提高学生的应用能力。

6.总结与反思:让学生回顾本节课所学的知识,进行总结和反思,提高学生的思维能力。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。

沪科版数学九年级(上册)22.2相似三角形的判定-教案(1)

沪科版数学九年级(上册)22.2相似三角形的判定-教案(1)

相似三角形的判定【教学目标】1.理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角:2.掌握相似三角形判定定理的“预备定理”;3.能灵活运用三角形相似的判定定理证明和解决有关问题。

【教学重点】灵活运用三角形相似的判定定理证明和解决有关问题。

【教学难点】三角形相似的判定定理的探索与证明。

【课时安排】5课时。

【教学过程】【第一课时】三角形相似判定定理的“预备定理”。

一、复习旧知:前面我们学习了相似多边形及相似比的有关概念,下面请同学们思考以下几个问题:(一)辨析:1.四个角分别相等的两个四边形一定相似吗?2.四组对应边的比分别相等的两个四边形一定相似吗?3.什么样的两个多边形是相似多边形?4.什么是相似比(相似系数)?(二)简答:1.正方形和长方形或长宽之比不相等的两个矩形。

2.正方形和不是正方形的菱形或两组内角均不相等的菱形。

3.两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形。

4.相似多边形对应边长度的比叫做相似比或相似系数。

二、概念讲解:概念:如图1,AAB(2与八AB。

相似。

记作“△ABCs/XABt,”,读作“Z\ABC相似于左ABC,”。

注意:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角。

, 、ZA=ZA\ZB=ZB;ZC=ZC;△ABCs/XABC,V〉AB BC CA明确:对于,根据相似三角形的定义,应有……(引导学生明白定义的双重性。

)问题:将左ABC与左ABC,相似比记为ki,△ABC与8ABC相似比记为k?,那么幻与灯有什么关系?ki=k2能成立吗?说明:三角形全等是三角形相似的特例。

(一)类比猜想:1.两个三角形全等的判定有哪几种方法?2.全等是不是需要所有的对应边和对应角都相等?3.猜想:两个三角形相似是不是也需要所有的对应边?和对应角都相等?有没有简便的方法?(二)简析:1.两个三角形全等的判定方法有:SAS,ASA、SSS,AAS,直角三角形还有HL。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.2 相似三角形的判定(一)本节内容是上科版《新时代数学》九上第24章《相似形》第二节《相似三角形判定》的第一节课.是在学习了第一节相似多边形的概念、比例线段的有关概念及性质,并具备了有关三角形中位线和平行四边形知识后,研究三角形一边的平行线的判定定理.一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以有时也把它叫做相似三角形判定定理的“预备定理”.通过本节课的学习,还可培养学生实验、猜想、证明、探索等能力,对掌握分析、比较、类比、转化等思想有重要作用.因此,这节课在本章中有着举足轻重的地位.知识与技能目标:(1)、理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角.(2)、掌握相似三角形判定定理的“预备定理”.过程与方法目标:(1)、通过探索相似三角形判定定理的“预备定理”的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法.(2)、利用相似三角形的判定定理的“预备定理”进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力.情感与态度目标:(1)、通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷.(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦.相似三角形判定定理的预备定理的探索相似三角形判定定理的预备定理的有关证明探究法多媒体课件直尺、三角板一、课前准备1、全等三角形的基础知识2、三角形中位线定理及其证明方法3、平行四边形的判定和性质4、相似多边形的定义5、比例的性质二、复习引入(一)复习1、相似图形指的是什么?2、什么叫做相似三角形?(二)引入如图1,△ABC与△A’B’C’相似.图1记作“△ABC ∽△A ’B ’C ’”, 读作“△ABC 相似于△A ’B ’C ’”.:两个三角形相似,用字母表示时,与全等一样,应把表示对应顶点的字母写在对应位置上,这样便于找出相似三角形的对应边和对应边角.对于△ABC ∽△A ’B ’C ’,根据相似形的定义,应有∠A =∠A ’, ∠B =∠B ’ , ∠C =∠C ’, ''B A AB =''C B BC =''A C CA . :将△ABC 与△A ’B ’C ’相似比记为k 1,△A ’B ’C ’与△ABC 相似比记为k 2,那么k 1 与k 2有什么关系? k 1= k 2能成立吗?三、探索交流(一)[探究]1、在△ABC 中,D 为AB 的中点,如图2,过D 点作DB ∥BC 交AC 于点E ,那么△ADE 与△ABC 相似吗?(1)“角” ∠BAC =∠DAE .∵DB ∥BC, ∴∠ADE =∠B, ∠AED =∠C .(2)“边” 要证明对应边的比相等,有哪些方法?Ⅰ、直接运用三角形中位线定理及其逆定理∵DB ∥BC ,D 为AB 的中点,∴E 为AC 的中点,即DE 是△A BC 的中位线. 图2(三角形中位线定理的逆定理)∴DE =21BC .(三角形中位线定理) ∴AB AD =AC AE =BC DE =21. ∴△ADE ∽△ABC .Ⅱ、利用全等三角形和平行四边形知识过点D 作DF ∥AC 交BC 于点F ,如图3.则△ADE ≌△ABC ,(ASA )且四边形DFCE 为平行四边形.(两组对边分别平行的四边形是平行四边形) 图3∴DE =BF =FC.∴AB AD =AC AE =BC DE =21. ∴△ADE ∽△ABC .2、当D 1、D 2为AB 的三等分点,如图4.过点D 1、D 2分别作 BC 的平行线,交AC 于点E 1、E 2,那么△AD 1E 1、△AD 2E 2与△ABC 相似吗?由(1)知△AD 1E 1∽△AD 2E 2,下面只要证明△AD 1E 1与△ABC 相似,关键是证对应边的比相等.过点D 1、D 2分别作AC 的平行线,交BC 于点F 1、F 2,设D 1F 1与D 2F 2相交于G 点.则△AD 1E 1≌△D 1D 2G ≌D 2BF 2,(ASA )且四边形D 1F 1CE 1、D 2F 2CE 2、D 1GE 2E 1、D 2F 2F 1G 为平行四边形.(两组对边分别平行的四边形是平行四边形)图4∴D 1E 1=BF 2=F 2F 1=F 1C , ∴AE 1=E 1E 2=E 2C ,∴ AB AD 1=AC AE 1=BC E D 11=31. ∴△AD 1E 1∽△ABC . ∴△AD 1E 1∽△AD 2E 2∽△ABC .:上述证明过程较复杂,有较简单的证明方法吗?过点D 2分别作AC 的平行线,交BC 于点F 2,如图5.则四边形D 2F 2CE 2为平行四边形,且△AD 1E 1≌D 2BF 2,(ASA ) ∴D 2E 2=F 2C ,D 1E 1=BF 2.由(1)知,D 1E 1=21D 2E 2,AE 1=21AE 2, 图5∴D 1E 1=31BC ,AE 1=31AC . ∴AB AD 1=AC AE 1=BC E D 11=31. ∴△AD 1E 1∽△ABC . ∴△AD 1E 1∽△AD 2E 2∽△ABC .(二)[猜想]3、通过上面两个特例,可以猜测:当D 为AB 上任一点时,如图6,过D 点作DE ∥BC 交AC 于点E ,都有△ADE 与△ABC .图6(三)[归纳]定理 平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.这个定理可以证明,这里从略.四、应用迁移:课本第53~54页练习1、3练习1、如图案,点D 在△ABC 的边AB 上,DB ∥BC 交AC 于点E .写出所有可能成立的比例式.练习3、在第1题中,如果DB AD =23,AC =8cm .求AE 长. 五、整理反思(一)小结 内容总结 思想归纳图7(二)反思六、布置作业课本第53~54页 练习2.《基础训练》第41~42页 练习2、3.思考题:如图8、过△ABC 的边AB 上任意一点D ,作DE ∥BC 交AC 于点E , 那么 DB AD =ECAE .相似三角形记号 读法注意24.2 相似三角形的判定 探究1、在△ABC 中,D 为A B 的中点 课本第53~54页 练习1 定理 平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似.探究2、当D 1、D 2为AB 的三等分点 猜想 练习3 小结 作业新课程提出,学习目标应由“关注知识”转向“关注学生”,课堂设计应由“给出知识”转向“引起活动”得到“经历、体验”。

在课堂中,教师也积极地创设出有利于学生主动参与的教学情境,激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题.这节课是教学公开课,课前让学生允分的预习。

在这种前提下,感觉教学过程进行非常顺利,学生学习也达到目标。

这样使我感觉到:“先学后教”对学生自学能力的培养无疑有促进作用,教师在课堂教学中把引导学生学会学习放到教学的首位,教师在引导自学和发现、帮助学生克服学习困难上下工夫,这种先学后教的教学要求有效地制约了习惯于“满堂灌”的教师,这对贯彻“以学生为主体”的教学理念是十分重要的。

这节课在要培养学生的数学探索能力方面做了有益的尝试,探索的过程实质上是一个不断提出设想、验证设想、修正和发展设想的过程。

在数学中,它表现在提出数学问题,探求数学结论,探索解决途径,寻找解题规律等一系列有意义的发现活动中,而数学探索能力就集中表现为提出设想和进行转换的本领。

教学中,激发学生的学习兴趣,使学生处于探索未知世界的主动地位;在具体教学中要善于引导学生推敲关键性的词句,使学生学会“引申”所学的知识.课堂教学要充分张扬教师、学生的教学个性。

教学要有统一的要求,但无须也不该要统一的方法。

教育的最高境界应该是教无定法,学无定法。

绚丽多姿的课堂需要个性飞扬的教师,教学管理者应鼓励教师在教学方法、教学技巧、教学手段上标新立异。

图8附: 平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的三角形与原三角形相似 简析:该定理的证明分为两步:先证“思考题”,再证该定理(以直线DE ∥BC 交AB 、AC 于点D 、E 为例).Ⅰ、如图8、过△ABC 的边AB 上任意一点D ,作DE ∥BC 交AC 于点E ,那么 DB AD =ECAE .图8 图9证明:如图9,连接BE ,过点E 作边AB 的垂线段h .∵S △ADE =21AD ·h ,S △BDE =21DB ·h .∴BDE ADES S ∆∆=h BD h AD ⋅⋅2121=DB AD . 同理可证CED AED S S ∆∆=EC AE . ∵DE ∥BC , ∴S △BDE =S △CED .∴BDE ADE S S ∆∆=CED AED S S ∆∆,DB AD =EC AE .∴AB AD =ACAE . Ⅱ、如图10,直线DE ∥BC 交AB 、AC 于点D 、E ,则△ADE ∽△ABC .(1)“角” ∠BAC =∠DAE .∵DB ∥B C, ∴∠A DE =∠B, ∠AED =∠C.(2)“边” ∵DB ∥BC,AB AD =ACAE . 过D 点作DF ∥AC 交BC 于点F .∴BC FC =ABAD . 又∵四边形DFCE 是平行四边形,∴ FC =DE , 图10∴ BC DE =AB AD .∴ AB AD =AC AE =BCDE . ∴ △ADE ∽△ABC .。

相关文档
最新文档