数据结构--线性表的基本运算及多项式的算术运算

合集下载

南邮数据结构上机实验一线性表的基本运算和多项式的基本运算资料

南邮数据结构上机实验一线性表的基本运算和多项式的基本运算资料

实验报告(2015 / 2016学年第二学期)课程名称数据结构A实验名称线性表的基本运算和多项式的基本运算实验时间2016 年 3 月10 日指导单位计算机科学与技术系指导教师骆健学生姓名班级学号学院(系) 管理学院专业信息管理与信息系统实习题名:线性表的基本运算班级姓名学号日期2016.03.10一、问题描述深入理解线性表数据结构,熟练掌握顺序表的各种基本操作。

在顺序表类SeqList 中增加成员函数void Reverse(),实现顺序表的逆置;在顺序表类SeqList中增加成员函数bool DeleteX(const T &x),删除表中所有元素值等于x元素。

若表中存在这样的元素,则删除之,且函数返回true,否则函数返回false。

二、概要设计文件Inverse.cpp中定义了Linearlist类, SeqList类继承Linearlist类。

在顺序表类SeqList中通过函数void Reverse()实现顺序表的逆置,通过函数boolDeleteX(const T &x),删除表中所有元素值等于x元素。

三、详细设计1.类和类的层次设计程序使用了两个类, 线性表Linearlist类和顺序表SeqList类和一个主函数mian。

Linearlist类里包括常见的线性表运算,在类SeqList里面新增成员函数void Reverse()和bool DeleteX(const T &x)。

TLinearlist#int n+virtual bool IsEmpty() const = 0;+virtual int Length() const = 0;+virtual bool Find(int i,T& x) const = 0;+virtual int Search(T x) const = 0;+virtual bool Insert(int i,T x) = 0;+virtual bool Delete(int i) = 0;+virtual bool Update(int i,T x) = 0;+virtual void Output(ostream& out) const = 0;TSeqList-int maxLength;-T *elements;+IsEmpty() const;+Length() const;+Find(int i,T& x) const;+Search(T x) const;+Insert(int i,T x);+Delete(int i);+Update(int i,T x);+Output(ostream& out) const;+Reverse();+DeleteX(const T& x);2.核心算法顺序表SeqList类中,私有段封装了两个私有数据成员maxLength和elements,公有段封装了构造、析构、查找、删除、逆置等函数。

《数据结构与算法(C++语言版)》第2章 线性表

《数据结构与算法(C++语言版)》第2章 线性表
• 以下是一个使用类LinearList的C++程序,它假定之前的程 序均存储在LinearList.h之中,且异常类定义位于文件 exception.h之中。该示例完成以下操作:创建一个大小为5 的整数线性表L;输出该表的长度(为0);在第0个元素之 后插入2;在第一个元素之后插入6和8(至此,线性表为2, 6,8);寻找并输出第一个元素(为2);输出当前表的长 度(为3);删除并输出第一个元素。
数据结构与算法 (C++语言版)
第2章 线性表
线性表的类型定义
• 基本概念 • 线性表是由n(n≥0)个类型相同的数据元素组成的有限序 列,通常表示为L=(a1, …, ai–1, ai, ai+1, …, an)。其中,L为线 性表名称,ai为组成该线性表的数据元素,ai–1领先于ai,ai 领先于ai+1,称ai–1是ai的直接前驱元素,ai+1是ai的直接后继 元素。当i=1, 2, …, n–1时,ai有且仅有一个直接后继;当 i=2, 3, …, n时,ai有且仅有一个直接前驱。 • 线性表的长度就是线性表中元素的个数n(n≥0)。当n=0时, 称为空表。在非空表中的每个数据元素都有一个确定的位 置,如a1是第一个数据元素,an是最后一个数据元素,ai是 第i个数据元素。称i为数据元素ai在线性表中的位序。
线性表的类型定义
Prev_Elem(L, cur_e, &pre_e) //返回当前元素的前一个元素值 输入:线性表L。 输出:若cur_e是线性表L的数据元素,且不是第一个,则用 pre_e返回它的直接前驱元 素;否则操作失败,pre_e无定义。 Next_Elem(L, cur_e, &next_e) //返回当前元素的后一个元素值 输入:线性表L。 输出:若cur_e是线性表L的数据元素,且不是最后一个,则用 next_e返回它的直接后继元素;否则操作失败,next_e无定 义。

算法与数据结构实验报告实验一 完成多项式的相加运算

算法与数据结构实验报告实验一 完成多项式的相加运算

实验一:完成多项式的相加运算(验证性、4学时)一、实验目的完成多项式的相加、相乘运算。

(1)掌握线性表的插入、删除、查找等基本操作设计与实现(2)学习利用线性表提供的接口去求解实际问题(3)熟悉线性表的的存储方法二、实验内容设计一个一元多项式的简单计算程序,其基本功能有:(1)输入并建立多项式;(2)输出多项式;(3)多项式的相加运算。

利用单链表实现。

三、算法描述及实验步骤1描述1、创建两个单链表A、B,分别调用CreatePolyn();2、输出多项式,分别调用PrintPolyn();3、多项式相加运算AddPolyn()。

2算法流程图4 65inputA-B inputA-B inputA-B end3代码(注释)#include<stdio.h>#include<malloc.h>#include<math.h>typedef struct Polynomial{float coef;//系数变量int exp;//指数变量struct Polynomial *next;//定义next指针}*Polyn,Polynomial; //Polyn为结点指针类型void Insert(Polyn p,Polyn h) //插入新的结点p{if(p->coef==0) free(p); //系数为0的话释放结点else{Polyn q1,q2;q1=h;q2=h->next;while(q2&&p->exp<q2->exp) //查找插入位置{q1=q2;q2=q2->next;}if(q2&&p->exp==q2->exp) //将指数相同相合并{q2->coef+=p->coef;free(p);if(!q2->coef) //系数为0的话释放结点{q1->next=q2->next;free(q2);}}else //指数为新时将结点插入{p->next=q2;q1->next=p;}}}//Insertint f(float x)//判断输入是否为整形{float a;a=x-(long int)x;if(a==0&&x==fabs(x))return 1;elsereturn 0;}Polyn CreatePolyn(Polyn head,int m) //建立一个头指针为head、项数为m的一元多项式{int i;Polyn p;p=head=(Polyn)malloc(sizeof(struct Polynomial));head->next=NULL;for(i=0;i<m;i++){p=(Polyn)malloc(sizeof(struct Polynomial));//建立新结点以接收数据printf("please input NO.%d coef and exp:",i+1);scanf("%f %d",&p->coef,&p->exp);while(!f(p->coef)&&!f(p->exp)){printf("输入有错,请重新输入: ");scanf("%f %d",&p->coef,&p->exp);}Insert(p,head); //调用Insert函数插入结点}return head;}//CreatePolynvoid DestroyPolyn(Polyn p) //销毁多项式p{Polyn q1,q2;q1=p->next;q2=q1->next;while(q1->next){free(q1);q1=q2;//指针后移q2=q2->next;}}void PrintPolyn(Polyn P)//输出多项式{Polyn q=P->next;int flag=1; //项数计数器if(!q) //若多项式为空,输出0{putchar('0');printf("\n");return;}while (q){if(q->coef>0&&flag!=1) putchar('+'); //系数大于0且不是第一项if(q->coef!=1&&q->coef!=-1) //系数非1或-1的普通情况{printf("%g",q->coef);if(q->exp==1) putchar('X');else if(q->exp) printf("X^%d",q->exp);}else{if(q->coef==1){if(!q->exp) putchar('1');else if(q->exp==1) putchar('X');else printf("X^%d",q->exp);}if(q->coef==-1){if(!q->exp) printf("-1");else if(q->exp==1) printf("-X");else printf("-X^%d",q->exp);}}q=q->next;flag++;}//whileprintf("\n");}//PrintPolynint compare(Polyn a,Polyn b){if(a&&b){if(!b||a->exp>b->exp) return 1;else if(!a||a->exp<b->exp) return -1;else return 0;}else if(!a&&b) return -1;//A多项式已空,但B多项式非空else return 1;//B多项式已空,但A多项式非空}//comparePolyn AddPolyn(Polyn pa,Polyn pb)//求解并建立多项式A+B,返回其头指针{Polyn qa=pa->next;Polyn qb=pb->next;Polyn headc,hc,qc;hc=(Polyn)malloc(sizeof(struct Polynomial)); //建立头结点hc->next=NULL;headc=hc;while(qa||qb){qc=(Polyn)malloc(sizeof(struct Polynomial));switch(compare(qa,qb)) //功能选择{ case 1:{qc->coef=qa->coef;qc->exp=qa->exp;qa=qa->next;break;}case 0:{qc->coef=qa->coef+qb->coef;qc->exp=qa->exp;qa=qa->next;qb=qb->next;break;}case -1:{qc->coef=qb->coef;qc->exp=qb->exp;qb=qb->next;break;}}//switchif(qc->coef!=0){qc->next=hc->next;hc->next=qc;hc=qc;}else free(qc);//当相加系数为0时,释放该结点}//whilereturn headc;}//AddPolynPolyn SubtractPolyn(Polyn pa,Polyn pb){//求解并建立多项式A-B,返回其头指针Polyn h=pb;Polyn p=pb->next;Polyn pd;while(p){ //将pb的系数取反p->coef*=-1;p=p->next;}pd=AddPolyn(pa,h);for(p=h->next;p;p=p->next) //恢复pb的系数p->coef*=-1;return pd;}//SubtractPolynPolyn MultiplyPolyn(Polyn pa,Polyn pb){//求解并建立多项式A*B,返回其头指针Polyn hf,pf;Polyn qa=pa->next;Polyn qb=pb->next;hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点hf->next=NULL;for(;qa;qa=qa->next){for(qb=pb->next;qb;qb=qb->next){pf=(Polyn)malloc(sizeof(struct Polynomial));pf->coef=qa->coef*qb->coef;pf->exp=qa->exp+qb->exp;Insert(pf,hf);//调用Insert函数以合并指数相同的项}}return hf;}//MultiplyPolynvoid DevicePolyn(Polyn pa,Polyn pb){//求解并建立多项式A/B,返回其头指针Polyn hf,pf,af,temp1,temp2,q;Polyn qa=pa->next;Polyn qb=pb->next;hf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储商hf->next=NULL;pf=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点,存储余数pf->next=NULL;temp1=(Polyn)malloc(sizeof(struct Polynomial));temp1->next=NULL;temp2=(Polyn)malloc(sizeof(struct Polynomial));temp2->next=NULL;temp1=AddPolyn(temp1,pa);while(qa!=NULL&&qa->exp>=qb->exp){temp2->next=(Polyn)malloc(sizeof(struct Polynomial));temp2->next->coef=(qa->coef)/(qb->coef);temp2->next->exp=(qa->exp)-(qb->exp);Insert(temp2->next,hf);pa=SubtractPolyn(pa,MultiplyPolyn(pb,temp2));qa=pa->next;temp2->next=NULL;}pf=SubtractPolyn(temp1,MultiplyPolyn(hf,pb));pb=temp1;printf("the quotient is :");PrintPolyn(hf);printf("the remainder is :");PrintPolyn(pf);}//DevicePolynint main(){int m,n,flag=0;float x;Polyn pa=0,pb=0,pc,pd,pe,pf;//定义各式的头指针,pa与pb在使用前付初值NULL printf("please input A number:");scanf("%d",&m);pa=CreatePolyn(pa,m);//建立多项式Aprintf("please input B number:");scanf("%d",&n);pb=CreatePolyn(pb,n);//建立多项式B//输出菜单printf("**********************************************\n");printf("choise:\n\t1.Output A and B\n\t2.CreatePolyn A+B\n");printf("\t3.CreatePolyn A-B\n\t4.CreatePolyn A*B\n");printf("\t5.CreatePolynA/B\n\t6.Return\n**********************************************\n");for(;;flag=0){printf("choise");scanf("%d",&flag);if(flag==1){printf("多项式A:");PrintPolyn(pa);printf("多项式B:");PrintPolyn(pb);continue;}if(flag==2){pc=AddPolyn(pa,pb);printf("多项式A+B:");PrintPolyn(pc);DestroyPolyn(pc);continue;}if(flag==3){pd=SubtractPolyn(pa,pb);printf("多项式A-B:");PrintPolyn(pd);DestroyPolyn(pd);continue;}if(flag==4){pf=MultiplyPolyn(pa,pb);printf("多项式a*b:");PrintPolyn(pf);DestroyPolyn(pf);continue;}if(flag==5){DevicePolyn(pa,pb);continue;}if(flag==6) break;if(flag<1||flag>6) printf("Error\n");continue;}//forDestroyPolyn(pa);DestroyPolyn(pb);return 0;}一、调试过程一次调试二次调试二、实验结果测试数据(1)多项式A:3x^4+11x^3+21x^2多项式B:2x^5+11x^4+12x^3+7x实验结果(1)多项式A+B=2x^5+14x^4+23x^3+21x^2+7x多项式A-B=-2x^5-8^4-x^3+21x^2-7x多项式A*B=6x^9+55x^8+199x^7+363x^6+273x^5+77x^4+147x^3多项式A/B=0实验截图(1)测试数据(2):多项式A:2x^3+5x^-3多项式B:9x^2+6x^-2+11x^-3实验结果(2):多项式A+B=2x^3+9x^2+6x^-2+16x^-3多项式A-B=2x^3-9x^2-6x^(-2)=16x^(-3)多项式A*B=18x^5+12x+22+45x^(-1)+30x^(-5)+55x^(-6)多项式A/B=0.222222x实验截图(2):测试数据(3)多项式A:-x^7+3x^5多项式B:x^7-4x6%+7x^3实验结果(3)多项式A+B=-x^5+7x^3多项式A-B=-2x^7+7x^5-7x^3多项式A*B=-x^14+7x^12-19x^10+21x^8多项式A/B=-1实验截图(3):三、总结1.在熟悉VC6.0环境的同时,对单链表的存储格式有了深刻的理解;2.复习C++语法的同时,对刚学的线性表进行综合性理解和表达,与之前所学融合。

【数据结构】线性表的基本操作

【数据结构】线性表的基本操作

【数据结构】线性表的基本操作【数据结构】线性表的基本操作1:定义1.1 线性表的概念1.2 线性表的特点2:基本操作2.1 初始化操作2.1.1 空表的创建2.1.2 非空表的创建2.2 插入操作2.2.1 在指定位置插入元素2.2.2 在表头插入元素2.2.3 在表尾插入元素2.3 删除操作2.3.1 删除指定位置的元素2.3.2 删除表头的元素2.3.3 删除表尾的元素2.4 查找操作2.4.1 按值查找元素2.4.2 按位置查找元素2.5 修改操作2.5.1 修改指定位置的元素 2.5.2 修改指定值的元素3:综合操作3.1 反转线性表3.2 合并两个线性表3.3 排序线性表3.4 删除重复元素3.5 拆分线性表4:线性表的应用场景4.1 数组的应用4.2 链表的应用4.3 栈的应用4.4 队列的应用附件:无法律名词及注释:- 线性表:根据某种规则排列的一组元素的有限序列。

- 初始化操作:创建一个空的线性表,或者创建一个已经包含一定元素的线性表。

- 插入操作:在线性表的指定位置或者表头、表尾插入一个新元素。

- 删除操作:从线性表中删除掉指定位置或者表头、表尾的元素。

- 查找操作:在线性表中按照指定的元素值或者位置查找元素。

- 修改操作:更改线性表中指定位置或者值的元素。

- 反转线性表:将线性表中的元素顺序颠倒。

- 合并线性表:将两个线性表合并成一个新的线性表。

- 排序线性表:按照某种规则对线性表中的元素进行排序。

- 删除重复元素:将线性表中重复的元素删除,只保留一个。

- 拆分线性表:将一个线性表分成多个不重叠的子线性表。

02331自考数据结构 第二章 线性表

02331自考数据结构 第二章 线性表

return ;
}
if ( L -> length >= ListSize ){
printf (" overflow ");
return ;
}
for ( j - L -> length -1; j >= i -1; j --)
L ->data [ j +1]= L -> data [ j ]; //从最后一个元素开始逐一后移
线性表的基本运算
上述运算仅仅是线性表的基本运算,不是其全部运 算。因为对不同问题的线性表,所需要的运算可能不同。 因此,对于实际问题中涉及其他更为复杂的运算,可用 基本运算的组合来实现。
线性表的基本运算
【例2.1】假设有两个线性表 LA 和 LB 分别表示两个 集合 A 和 B ,现要求一个新集合 A = A∪B 。
线性表的逻辑定义
数据元素“一个接一个的排列”的关系叫做 线性关系,线性关系的特点是“一对一”,在计 算机领域用“线性表”来描述这种关系。另外, 在一个线性表中数据元素的类型是相同的,或者 说线性表是由同一类型的数据元素构成的,如学 生情况信息表是一个线性表,表中数据元素的类 型为学生类型;一个字符串也是一个线性表:表 中数据元素的类型为字符型等等。
,
a2
i
,…,
ai-1
,
a.aii++1.1 , .…,
an
)
an
线性表n的-1逻辑结an构和存储结构都发…生了相应的变化, 与插入运算相反,插…入是向后移动元素,而删除运算则
是向前移M动AX元-1 素,除非i=n 时直接删除终端元素,不需移
动元素。
删除前
删除后

南邮数据结构实验一

南邮数据结构实验一

实验报告
( 2016 / 2017 学年第一学期)
课程名称数据结构A
实验名称线性表的基本运算及多项式的算术运算实验时间2017 年 3 月22 日指导单位计算机学院计算机科学与技术系
指导教师邹志强
学生姓名吴爱天班级学号B15040916 学院(系) 计算机学院专业信息安全
实验报告
实验报告
度为O(n)级别。

2、在顺序表类SeqList 中增加成员函数bool DeleteX (const T &x), 删除表中所有元素值等于x 的元素.若表中存在这样的元素, 则删除之, 且函数返回true, 否则函数返回false.
删除所有值为X的元素
注释:主要思路为,依次查找SeqList内的元素,每次都与X的值进行依次对比,如果相同则删除,不同则继续向下扫描,知道SeqList末尾,最后用Search()来检验是否删除干净,复杂度也为O(n).
如图,原数据为 7 49 73 58 30 72,逆转过后为72 30 58 73 49 7,符合预期。

DeleteX()
如图,原数据中有3个0,输出结果中已经没有0,已经删除干净,符合预期。

实验报告
如图,分别检测6X^6+3X^5+4X^2与2X^2+3X相加和相乘运算,得到
6X^6+3X^5+4X^2+2X^2+3X+2X^2+3X和12X^8+18X^7+6X^7+9X^6+8X^4+12X^3,
符合预期。

现代计算机常用数据结构和算法

现代计算机常用数据结构和算法

现代计算机常用数据结构和算法现代计算机科学中常用的数据结构和算法非常多,下面是一些核心且广泛应用于软件开发、数据库系统、操作系统、编译器设计、网络编程、机器学习以及其他计算密集型任务中的数据结构与算法:常用数据结构:1. 数组:线性存储结构,通过索引访问元素,支持随机访问。

2. 链表:包括单向链表、双向链表和循环链表,通过指针链接元素,插入删除操作灵活但不支持随机访问。

3. 栈(Stack):后进先出(LIFO)的数据结构,常用于函数调用栈、表达式求值等。

4. 队列(Queue):先进先出(FIFO)的数据结构,适用于处理任务排队、广度优先搜索等问题。

5. 哈希表(Hash Table):基于散列函数实现快速查找,用于实现关联数组、缓存、唯一性检查等功能。

6. 树:如二叉树(包括二叉查找树、AVL树、红黑树)、B树、B+树、Trie树等,用于搜索、排序、文件系统索引等。

7. 图(Graphs):表示节点集合以及节点之间的关系,常见于社交网络分析、路径规划等领域。

8. 堆(Heap):一种特殊的树形数据结构,分为最大堆和最小堆,用于优先队列、堆排序等。

9. 集合与映射(Set & Map):无序不重复元素的集合和键值对结构,提供高效查找、插入和删除操作。

常用算法:1. 排序算法:快速排序、归并排序、冒泡排序、选择排序、插入排序、堆排序等。

2. 搜索算法:线性搜索、二分查找、插值搜索、哈希查找、深度优先搜索(DFS)、广度优先搜索(BFS)等。

3. 图算法:最短路径算法(Dijkstra、Bellman-Ford、Floyd-Warshall),拓扑排序,最小生成树算法(Prim、Kruskal)等。

4. 动态规划:解决具有重叠子问题和最优子结构的问题,如背包问题、最长公共子序列(LCS)等。

5. 贪心算法:在每一步都采取当前看来最优的选择,如霍夫曼编码、活动选择问题等。

6. 回溯算法和分支限界法:用于解决组合优化问题,如八皇后问题、旅行商问题等。

数据结构线性表ppt课件

数据结构线性表ppt课件

01
02
03
04
插入操作
在链表的指定位置插入一个新 节点,需要修改相邻节点的指
针。
删除操作
删除链表的指定节点,需要修 改相邻节点的指针。
查找操作
从链表的头节点开始,顺序遍 历链表,直到找到目标元素或
遍历到链表末尾。
遍历操作
从链表的头节点开始,顺序访 问每个节点,直到遍历到链表
末尾。
04 线性表应用举例 与问题分析
多项式表示与计算问题
01
02
03
多项式表示方法
数组表示法和链表表示法 。
数组表示法
将多项式的系数按次序存 放在一个数组中,通过下 标表示对应的幂次。
链表表示法
每个节点包含系数和指数 两个数据域,以及一个指 向下一个节点的指针域。
一元多项式相加算法设计
• 算法思想:将两个多项式中的同类项系数相加,得到新的 多项式。
删除操作
删除指定位置i的元素,需要将i之后的元素都向前移动 一个位置。
03 链式存储结构及 其实现
链式存储结构原理及特点
链式存储结构原理
使用一组任意的存储单元存储线 性表的数据元素(这组存储单元 可以是连续的,也可以是不连续 的)。
链式存储结构特点
逻辑上相邻的元素在物理位置上 不一定相邻,元素之间的逻辑关 系是通过指针链接来表示的。
...,an组成的有序序列。
性质
集合中必存在唯一的一个“第一元素 ”。
集合中必存在唯一的一个“最后元素 ”。
除最后元素之外,均有唯一的后继。
除第一元素之外,均有唯一的前驱。
线性表与数组关系
数组是线性表的一种表现和实现形式。
线性表更侧重于逻辑概念,而数组则是这种逻辑概念在计算机中的一种存储方式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构:线性表的基本运算及多项式的算术运算
一、实验目的和要求
实现顺序表和单链表的基本运算,多项式的加法和乘法算术运算。

要求:
能够正确演示线性表的查找、插入、删除运算。

实现多项式的加法和乘法运算操作。

二、实验环境(实验设备)
X64架构计算机一台,Windows 7操作系统,
IDE: Dev C++ 5.11
编译器: gcc 4.9.2 64bit
二、实验原理及内容
程序一:实现顺序表和单链表的实现
本程序包含了四个文件,分别是LinearListMain.cpp,linearlist.h,seqlist.h,singlelist.h。

分别是主程序,线性表抽象类,顺序储存线性表的实现,链表储存顺序表的实现。

文件之间的关系图:
本程序一共包含了三个类:分别是LinearList(线性表抽象类),SeqList(顺序储存的线性表),SingleList(链表储存的线性表)。

类与类之间的关系图如下:
其实,抽象类LinearList规定了公共接口。

分别派生了SeqList类和SingleList。

SingleList类与SingleList类分别实现了LinearList类中的所有接口。

程序代码以及分析:
Linearlist类:
#include <iostream>
using namespace std;
template <class T>
class LinearList
{
protected:
int n; //线性表的长度
public:
virtual bool IsEmpty() const=0; //判读是否是空线性表
virtual int Length() const=0; //返回长度
virtual bool Find(int i,T& x) const=0; //将下标为i的元素储存在x中,成功返回true,否则返回false
virtual int Search(T x) const=0; //寻找值是x的元素,找到返回true,否则返回false
virtual bool Insert(int i,T x)=0; //在下标为i的元素后面插入x
virtual bool Delete(int i)=0; //删除下标为i的元素
virtual bool Update(int i,T x)=0;//将下标为i的元素更新为x virtual void Output(ostream& out)const=0; //将线性表送至输出流
};
包含了一个保护数据成员n,和8种运算,具体说明见注释。

算法分析:
Search函数功能是查找值是x的元素,返回下标,不存在返回-1;本程序采用从第一个元素依次遍历的方法,时间复杂度为O(n)。

算法分析:
首先判断链表是否是空链表,再判断下标是否越界。

符合条件后,从i+1的
算法分析:
首先判断下标是不是越界,然后定义临时变量j用来计数,标记当前遍历位置的下标,到达下标i是停止,并赋值给x。

时间复杂度是O
代码:
算法分析:
首先定义指针p和标记位置下标的j。

然后从first依次遍历,每次遍历j加1,以此来标记当前位置的下标,一旦遍历到了x,则返回下标。

如果到尾节
算法分析:
首先判断是否是空链表,在判断下边是否越界。

然后分两种情况进行删除,第一种情况是删除第一个元素,需要修改first指针,第二种情况是删除下
程序包含两个类,项结点类和多项式类,二者为组合关系。

其中,多项
算法分析:
整体思路:首先定义一个临时多项式对象tmp,用来存相乘之后的结果。

实验报告。

相关文档
最新文档