随机过程论文
随机过程结业论文

2 2 2 1 2 1 2
1 2
1 2
1 2
1 2
dBt dt (vt dt d t ) dt vt dt dt d t dt 0 dt dt 0
0
ˆ 积分表示定理的推广):设F L (, F , P ),则唯一的 定理4(Ito
2
u t L2 a,T ,使F= u t dBt
0
T
证:T是双射, F L2 (, F , P),唯一的u t L2 a,T , s.t. F= u t dBt
0 T
投影算子
2 2 设F L ( ,F,),条件期望E(F FT )是F在L ( ,FT,)中
i.e. T 1 y K y
满足Lipschitz条件,从而T 1连续
ˆ 积分表示定理)设F L2 (, FT , P),则唯一的u t L2 (Ito a,T , 使F=E(F)+ u t dBt
0 T 【[1] p116 定理 7】 T
由此定理我们知道令F-E(F)=F L2 (, FT , P ),F= u t dBt
随机过程结业论文
题目:有界线性算子理论在随机积分中的应用
院 班 学
系: 级: 号:
学生姓名: 指导老师: 联系方式 邮 箱:
2011 年 07 月 02 日
有界线性算子理论在随机积分中的应用
ˆ 随机积分定义了一个从 L2 ,T 空间到 L2(Ω,F, P)的等距映射, Ito 摘要: a
我们将它看成一个积分算子 T,研究该算子的性质从而得到随机积分 的一些性质并作相关的应用。容易知道积分算子 T 是有界线性的、连 续的、闭的,从而得到积分与极限可以交换。进一步,我们可以证明 该算子是一个双射,其逆算子存在且连续,所以 L2a ,T 空间和 L2(Ω,F, P) 空间同胚。由于这两个空间是 Hilbert 空间,由里斯定理或 Hilbert 空 间的对偶理论知道有界线性泛函的表示, 进而得到 Ito 公式相关结论。 在 Hilbert 空间中我们定义了投影算子得到了关于条件期望的两个公 式。最后,我们利用表示定理和强算子理论(一致有界性)探索用极 限处理随机积分的另一种途径。
《随机过程》论文

随机过程应用于无人飞行器的撞地概率摘要:在误差随机过程为平稳正态过程的假设下,研究了无人飞行器撞地概率的计算问题。
在已知地形数据的情况下,从理论上推导出无人飞行器只受到垂直干扰时的撞地概率的计算公式;并在仅利用地形特征参数的情况下,得到了较为简洁的计算公式,在进行无人飞行器航迹规划过程中可以实现撞地概率的实时计算。
给出了无人飞行器既受到垂直干扰又受到水平干扰时的撞地概率的计算公式,并对它们的计算作了简化,得到了一个近似计算公式。
讨论了撞地概率计算公式的应用问题,分析了误差随机过程的标准差、飞行器机动带宽及地形标准差对撞地概率的影响。
关键词:无人飞行器;误差随机过程;自相关函数;撞地概率无人飞行器(无人飞机、导弹等飞行器)有许多优点,在现代战争中发挥着愈来愈重要的作用,它们可以作超低空飞行突破敌人的防空阵地而不被敌方雷达发现,并对敌方阵地进行侦察或攻击。
但是无人飞行器在作超低空飞行时,撞地概率增大,无人飞行器的撞地概率是反映其性能的重要指标之一。
因此,在进行无人飞行器的航迹规划时需要考虑撞地概率。
国内外已有一些文献讨论过这一问题。
在考虑了地形随机输入和低空风随机干扰共同作用的情况下,针对导弹长时间超低空地形跟踪飞行这一特点,研究了撞地概率的计算方法,分析了导弹主要参数静稳定性动力系数a和高度反馈系数K h对撞地概率的影响。
撞地概率受到多种因素的影响,根据来源可以分为两类,一类是无人飞行器自身的控制系统及导航系统性能对航迹的影响,其次是自然因素如气候等对无人飞行器产生的干扰。
为简便起见,本文未考虑可以通过控制系统及导航系统能够修正的系统偏差,只考虑随机干扰,也不区分它们的来源,并且假设随机干扰为平稳正态随机过程,在此基础上,针对地形数据已知和只知地形特征两种情形下,从理论上推导出了无人飞行器仅受到垂直干扰及既受到垂直干扰又受到水平干扰时的撞地概率的计算公式,并对它们的计算作了简化。
撞地概率计算公式可看作是本文的一种特殊情形。
随机过程期末论文

马尔科夫链在企业人力资源需求方面的应用【摘要】:通过市场调查研究发现,很多现象是可以用随机过程来描述的。
比如说,企业在人力资源需求方面就是一个随着时间不断变化的随机过程。
本文试图将马尔科夫链引入,并运用其原理以及特性,对企业人力资源需求方面进行分析和预测,从而帮助企业明确未来人力需求趋势,做好人才储备工作。
【关键字】:马尔科夫链;人力资源;预测;需求一、马尔科夫链原理简介一个经济系统X(t)是随时间t 变化的随机变量。
人们可根据该经济系统在时刻0t 所处的状态推出它在任何一个较后时刻t(>0t )的状态。
由此原则,可得到这样一个基本方法:系统内X(t)在给定的时刻n t 的状态X(n t )=Xn ,可根据它在任何较早时刻1-n t (<n t )所处的状态X(1-n t )=Xn-1推出,而不依赖于系统在时刻以1-n t 前的历史状态。
满足这一条件的系统所观测结果的随机过程,就称之为马尔科夫过程。
而马尔科夫链是状态离散的一类特殊马尔可夫过程, 即过程的发展可看作是在某些值(称为过程的“状态”)之间一系列转移, 而且具有下面性质:一旦过程处于一给定状态, 则过程未来发展只依赖于这个状态, 而与它过去到达过的状态无关。
假设过程的时间参数集任意n 个时刻为t1<t2<......<tn,系统X(t)在时刻ti 处于状态Xi,即X(ti)=xi(i=1,2,...,n-1),则X (tn )的条件概率分布只依赖于X (tn-1)=xn-1最近的已知值,即:P{X(tn)≤xn|X(t1)=x1,...,X(tn-1)=xn-1}=P{X(tn)≤xn|X(tn-1)=xn-1} 可以直观地解释为当给定过程“现在”的条件下,它的“将来”与“过去”无关。
二、状态转移矩阵运用马尔科夫链进行预测的关键在于:建立状态转移概率矩阵(指系统在时刻t 所处状态,转变为时刻t+1所处状态时与之相对应的一个条件概率)。
随机过程课程期末论文总结

随机过程课程期末论文总结随机过程是概率论和统计学中的一个重要概念,用于描述随机现象的演变规律。
随机过程理论广泛应用于信号处理、金融工程、电气工程等领域,并在实践中取得了很多重要的成果。
本期末论文将对随机过程的基本概念、性质、应用以及未来发展进行总结和展望。
一、随机过程的基本概念和性质1. 随机过程的定义及基本性质随机过程是一组随机变量的集合,其演变满足一定的随机性和连续性条件。
随机过程可以用概率分布、自相关函数和谱函数等来描述其随机性和统计特性。
其基本性质包括平稳性、马尔可夫性、连续性等。
2. 常见的随机过程模型常见的随机过程模型包括白噪声过程、马尔可夫过程、泊松过程、高斯过程等。
每种模型适用于不同的应用场景,有些模型可以用于描述连续时间下的随机过程,有些则适用于离散时间下的随机过程。
二、随机过程的应用1. 信号处理中的应用随机过程在信号处理领域有着广泛的应用。
通过对信号的随机过程分析,可以研究信号的平均功率、自相关函数、谱函数等统计特性,从而实现信号识别、滤波、压缩等技术。
2. 金融工程中的应用随机过程在金融工程中的应用主要用于描述金融资产价格、利率等随机变量的演变规律,从而进行金融风险的度量和管理。
基于随机过程的衍生品定价模型和风险度量模型是金融工程中的重要研究内容。
3. 电气工程中的应用随机过程在电气工程中的应用主要体现在电力系统的输电过程中。
通过对输电线路上的随机过程分析,可以对线路的带宽容量、干扰噪声等进行优化和改进,提高电力传输的效率和可靠性。
三、随机过程的发展趋势1. 随机过程在人工智能领域的应用随机过程可以用于描述许多自然或人造系统中的状态演变,而人工智能系统的学习和决策往往依赖于对状态的模型化和预测。
因此,随机过程的理论和方法在人工智能领域有着潜在的应用前景。
2. 非平稳随机过程的研究传统的随机过程理论通常假设随机现象具有平稳性质,即在整个时间域上具有相同的统计特性。
然而,许多现实中的随机现象往往是非平稳的。
应用随机过程论文

应用随机过程论文题目:马尔科夫发展与应用班级:2012级统计1班姓名:***学号: ***********摘要现实生活中,人脸识别以及股市走势预测等实际问题都具有马尔科夫性,即未来的走势和演变仅仅与当前的状态有关而不受过去状态的影响。
本文介绍马尔科夫过程及马尔科夫链的发展过程与应用,运用其性质建立了以下几个问题的马尔科夫预测模型并做出了预测分析。
关键字马尔科夫过程马尔科夫链人脸识别股市预测目录前言 (1)一.随机过程发展简述 (2)二.马尔科夫过程发展简述 (2)2.1马尔科夫过程简介 (2)2.2 马尔科夫过程的发展 (3)三.马尔科夫过程的应用举例 (5)3.1、股票市场走势预测 (5)3.2、人脸识别模型 (6)四.马尔科夫链的定义和性质 (8)五.马尔科夫链的应用背景 (9)六.马尔科夫链在各个领域的应用 (9)6.1马尔科夫链在教育领域的应用 (9)6.2马尔科夫链在经济领域的应用 (10)6.3马尔科夫链理论在医学卫生领域的应用 (11)6.4马尔科夫链在遗传学领域中的应用举例 (12)七.总结 (13)八.参考文献 (14)前言马尔科夫链预测法是应用概率论中马尔科夫链的理论与方法,来研究分析某些动态系统的发展变化过程,并预测其发展变化趋势的一种预测方法,它是现代预测方法中的一种,具有较高的科学性,准确性和适应性,在现代预测方法中占有重要的地位。
在国外,它不仅广泛应用在自然科学领域,还应用在经济领域。
在我国,它主要应用于水文,气象,地震等自然科学技术的预测,近年在产品市场占有率预测和经济决策中也有所应用。
为了有效的利用这个工具,解析一下它的基本原理,研究它的应用,这对深入理解,推广应用马尔科夫链预测法,提高预测质量,发挥该预测法的效力将是有益的。
本文拟从最原始的数学定义出发,逐步讨论它的转移概率矩阵。
我们采用马尔科夫链的建模方法,就马尔科夫模型在股市预测、人脸识别等几个方面的应用进行探讨。
随机过程英文论文

姓名:李范佩专业:031041202 学号:031041202Random Signal Analysischief contents1. Introduction of the random process2. Definition of the random process3. The digital characteristic of the random process4. Stationary random process and ergodic property5. The normal random process6. Markov chain7. Spectrum analysis of the stationary random process8. Analysis of the random signal through the linear system9. Analysis of the random signal through the nonlinear systemIntroductiona. Random process which is aim at the dynamical phenomenon that varies with the time, is the quantitative description for the relationship of the series of random events.b. Application: Atmosphere field, communication engineering,computer science and so on.c. Target: To find the inherent law from the events which is seeming external disorderThe definition of the random processWe suppose the sample space of the random expriment is S= {ξ},if there exists a corresponding function X(ξ,t),t ∈T for each ξ ,thus we can get gens function {X(ξ,t),t ∈T} about ‘t ’ for all the ξ,these function famlily about ‘t ’ are called random process,and recorded X(ξ,t).The random process can be redfined as follow:If X(ξ, ti) is random variable for each preset ti of the time (i = 1,2,3, …),then X(ξ,t) is called random process.Individual comprehension:Random process can be taken for the extension in the time –domain of the random variable. It is the combination of the random variable which is continuous and varying with timeProbability Distribution of Random ProcessThe definition of the probability distributionIf we suppose {X(t),t T } is random process,for arbitrary fixed t1,t2, …,tn ∈T,and real number x1, x2 , …,xn ∈ R,then we mark Fx(x1,x2 , …,xn ,t1,t2, …,tn ) = P{X(t1) ≤ x1, X(t2) ≤x2 , … X(tn) ≤ xn } as the n-dimensional distribution function of the random process {X(t),t ∈ T } .n-dimensional probability density functionfx(x1, x2 , …,xn , t1,t2, …,tn)= is called the n-dimensional distribution function of the random process {X(t),t 121212(,,,;,,,)X n n nF x x x t t t x x x ∂∂∂∂∈ T } .Finite dimensional distribution gens functions or n-dimensional probability density functions can fully determine the whole statistical property of the random process.The Digital Characteristics of The Random ProcessIn practical application we cannot fully determine the finte dimensional distribution gens functions to analyse it.Thus we just exploit the digitalcharacteristics to describe the random process.The digital characteristics includes mathematical expectation, variance, correlation function.a. Mathematical expectation The random process {X(t),t ∈ T }b. mx(t) = E[X(t)] = ,mx(t) shows the average of sample function value in the time t.b. Squared value is called squared value it shows the power of the random signalc. Variance The variance shows the rate of deviation of sample function value related to mx(t) Correlation FunctionIf x ,y obey the same distribution ,then it is called the autocorrelation function,otherwise called cross-correlation.(;)x xf x t dx ∞-∞⎰222()[()](;)x x t E X t x f x t dx ψ∞-∞==⎰22()[()][(()())]x x t D X t E X t m t σ==-12{(),}{(),} are the random process.For arbitray fixed t ,X t t T and Y t t T t T ∈∈∈121212(,)[()()](,;,)xy xy R t t E X t Y t x yf x y t t dxdy∞∞-∞-∞==⎰⎰Correlation function shows the degree of correlation of the sample value in the different time .For t1 = t2,Thus we can conclude that mx(t) and correlation function are the basic digital characteristics.Stationary Random Process and Ergodic PropertyIf the probability property of the random process is independent of the time shifting ,then we remember this random process as stationa ry random process. a. Stationnary random process is also classified into two types,the one is called sensu stricto random process, the other is called generalized random process. b. For the random process X(t),if it ’s n-dimensional probability density function is independent of the time start, just meet the following equation:this random process is called sensu stricto random process.c. For the random process X(t), if it meets these properties:⑴ (constant)2212(,)(,)[(()())][()]()x x x x K t t K t t E X t m t D X t t σ==-==12121212(,,,;,,,)(,,,;,,,)x n n x n n f x x x t t t f x x x t t t τττ=+++ (())()x E X t m t =。
随机过程——精选推荐

随机过程《随机过程》论⽂平稳的随机过程学号:11404111姓名:郭冬冬班级:11级1班指导教师:王颖俐专业:数学与应⽤数学系别:数学系完成时间:2015年1⽉摘要:本⽂主要通过⾃⼰的调研,结合本学期所学的课程《随机过程》总结出⼀些随机过程在通信中的具体应⽤。
随着科学的发展,随机过程与通信系统的关系越来越紧密,并且应⽤场合越来越多,如何在通信系统中正确应⽤随机过程的知识也越来越重要,随机过程中的⼀些概念在通信系统中应⽤中都具有⼀定的物理意义,掌握其物理意义对于更好地理解随机过程有很⼤的帮助作⽤。
接着结合⾃⼰的研究⽅向,进⼀步列举了⼀些随机过程在通信系统中的具体应⽤。
有许在随机过程的分类有许多的体现。
按照随机过程的参数集和状态空间是连续还是离散可以分为四类:⼀是参数离散、状态离散的随机过程,或叫做离散随机过程。
如贝努⼒过程等;⼆是参数离散、状态连续的随机过程,或(连续)随机序列。
如DAC(数模变换)过程中对随机信号进⾏采样;三是参数连续、状态离散的随机过程。
如程控设备转接语⾳电话的次数,跳频设备在通信过程中改变频率的次数等;四是参数连续、状态连续的随机过程。
如扫频仪的扫频信号进⾏扫频,各类信号中的纹波电压等。
多随机过程的数字特征的应⽤,⽐如随机过程的数学期望、⽅差、⾃协⽅差与⾃相关函数、互协⽅差与互相关函数等,如测量两条光纤信道的质量⾼低,我们可以通过OTDR多次发送光信号,在接收端来检测其损耗值,通过求损耗值的数学期望来选择质量好的光纤信道;如测试两种稳压芯⽚的性能,我们会多次记录对同⼀电压的采样值,通过求其采样值的⽅差,我们就可以简单的做出判断,因为⽅差函数描述了采样电压在各个时刻对其均值的偏离程度。
关键词:随机过程,平稳过程1.平稳过程平稳随机过程是⼀类应⽤⾮常⼴泛的随机过程,它在研究中有着极其重要的意义。
定义:若⼀个随机过程X(t)发热任意有限维分布函数与时间的起点⽆关,即对于任意的正整数n和所有的实数△,有fn(x1,x2, …,xn;t1,t2,…,tn) =fn(x1,x2,…,xn;t1+△,t2+△,…,tn+△)则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。
随机过程与随机信号处理课程论文

中国科学技术大学随机过程与随机信号处理课程论文姓名王誉都专业 23系信号与信息处理单位中科院上海技术物理研究所时间 2015.1.5摘要随机信号理论在它形成的初期,便在通信、雷达、导航以及密码学等领域中获得了广泛的应用。
近年来,随着对随机信号理论研究的进一步深入,人们对随机信号有了更多的认识,随机信号的实际应用也越来越多。
其应用范围从上述领域扩展到自动控制、计算机、声学和光学测量、数字式跟踪和测距系统以及数字网络系统的故障检测等方面。
在这些应用中,随机信号(或序列)的产生是至关重要的,而产生随机信号的性能也对其在实际应用中的效果有着很大的影响。
论文首先对一些随机信号的产生方法进行了介绍,以及随机信号的应用实例。
接下来讨论了随机数发生机制,包括均匀分布、高斯分布和指数分布的随机数的实现方法。
在文章的最后对非平稳随进信号进行了介绍。
关键字:随机信号,随机过程,随机数,非平稳随机过程目录摘要第一章绪论1.1随机信号概述.....................................................................................................................................................................1.2随机信号的应用................................................................................................................................................................1.2.1在蒙特卡罗(Monte Carlo)方法中的应用 .....................................................................................................1.2.2在扩频通信中的应用 ..................................................................................................................................................1.2.3在密码学中的应用 .......................................................................................................................................................1.2.4在随机信号雷达中的应用.........................................................................................................................................1.3数字随机信号的产生 ......................................................................................................................................................第二章随机数发生机制2.1均匀分布的随机数实现方法 .......................................................................................................................................2.2高斯分布的随机数实现方法 .......................................................................................................................................2.3指数分布的随机数实现方法 .......................................................................................................................................第三章非平稳随机信号简介3.1非平稳随机信号的分析、处理与应用....................................................................................................................3.1.1语音信号处理 .................................................................................................................................................................3.1.2雷达与声呐信号处理 ..................................................................................................................................................3.1.3非平稳随机振动分析 ..................................................................................................................................................3.2非平稳随机信号参数模型法简介..............................................................................................................................参考文献第一章绪论1.1随机信号概述随机信号是指没有确定的变化形式,变化的过程不可能用一个或几个时间的确定函数来描述的信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程在通信中的应用
学院:电气学院
班级:通信11-1
姓名:于敏
学号:201102041009
随机过程在通信中的应用
随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。
其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。
通信就是互通信息。
从这个意义上说,通信在远古时代就已经存在。
人之间的对话是通信,用手势表达情绪也可以算通信。
以后用烽火传递战事情报是通信,快马与驿站传送文件也是通信。
但是现在的通信一般指的是电信,国际上称为远程通信(telecommunication),即通过电信号或者光信号传送信息从信息论的角度来说,通信的过程就是不确定度减小的过程。
而不确定性就是过程的随机性,所以从这个角度来说通信过程的研究可以归结到对于随机过程特性的研究过程过去对随机现象的研究只是用一两个随机变量来描述,然而现在在工程技术中必须研究动态系统中的随机现象,这需要研究随时间变化的无穷不可数的一族随机变量,即随机过程。
通信系统中存在各种干扰和噪声这些干扰和噪声的波形更是随机的、不可预测的,我们称之为随机干扰和随机噪声。
当然,尽管随机信号和随机噪声是不可预测的、随机的,但它们还是具有一定的统计规律性。
研究随机信号和随机噪声统计规律性恶数学工具是随机过程理论,随机过程是随机信号和随机噪声的数学模型。
随机过程是与时间有关的随机变量,在确定的时刻它是随机变量。
随机过程的具体取值称作其实现(样函数),是时间函数,所有实现构成的集合称作随机过程的样函数空间(Ω),所有样函数及其统计特性即构成了随机过程,以大写字母X(t),Y(t)等表示随机过程,以对应的小写字母x(t),y(t)等表示随机过程的样本函数。
在实际的通信过程中,不仅我们用到的信号与噪声是随机信号,而且当我们为无线信道进行数学建模时也必须用到随机过程。
所以说只有学好随机过程这一学科,才能为将来从事无线事业打下基础,才能在实际的研究以及工作中,将具体知识应用到实际中,从而获得一定的成果甚至有所创新。
在通信系统中,编码过程分为信源编码和信道编码两种,信源编码是为了压缩信息之间的相关性,最大限度提高传信率,目的在于提高通信效率;而信道编
码则相反,通过引入相关性,使信息具有一定的纠错和检错的能力从而提高传输信息的可靠性。
对于信源编码,实现降低相关性有两种途径,一种是信源概率分布均匀化,另一种是信源独立化。
从概率论和随机过程的角度来说,概率分布均匀化就是每个事件发生的概率大致相同,这样就会使每个信源携带的信息量基本相同,那么不确定性就达到最大,即传输过程中产生的信息量就最大;类似的信源独立化是通过对信源进行扩展达到的,通过信源的高次扩展,是扩展信源中每个符号出现的概率大致相同,这样也实现信息量最大化。
对于信道编码,由于信道中存在随机噪声,或者随机干扰,使得经过信道传输后所接收到的码元与发送码元之间存在差异,这种差异就是传输产生的差错。
一般,信道噪声,干扰越大,码元产生差错的概率也就越大。
所以信道编码的任务就是构造出以最小冗余度代价换取最大抗干扰性能的码字组合。
从信道编码的构造方法看,其基本思路是根据一定的规律在待发送的信息码中加入一些人为多余的码字。
这些码字的引入时信息之间具有相关性,虽然降低了信息所能携带的信息量,但是通过相关性可以克服由于随机噪声引入的误码情况。
随机过程是一类随时间作随机变化的量不能用确切的时间函数描述。
随机过程的分布函数分为一维分布函数、二维分布函数及二维以上的分布函数。
随机过程的各种数字特征分别从各个侧面间接的反映了随机过程的概率分布特性,不同的维的分布的数字特征具有不同的物理含义。
随机过程在通信中用许多的具体应用,下面以马尔可夫过程为例说明一下随机过程在通信系统中的应用。
马尔可夫随机过程的发展史说明了理论与实际之间的密切关系。
许多研究方向的提出,归根到底是有其实际背景的。
反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。
下面简略介绍一下马尔可夫随机过程本身在各方面的应用情况。
在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了-光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概。