随机过程及其应用结课论文
随机过程结业论文

2 2 2 1 2 1 2
1 2
1 2
1 2
1 2
dBt dt (vt dt d t ) dt vt dt dt d t dt 0 dt dt 0
0
ˆ 积分表示定理的推广):设F L (, F , P ),则唯一的 定理4(Ito
2
u t L2 a,T ,使F= u t dBt
0
T
证:T是双射, F L2 (, F , P),唯一的u t L2 a,T , s.t. F= u t dBt
0 T
投影算子
2 2 设F L ( ,F,),条件期望E(F FT )是F在L ( ,FT,)中
i.e. T 1 y K y
满足Lipschitz条件,从而T 1连续
ˆ 积分表示定理)设F L2 (, FT , P),则唯一的u t L2 (Ito a,T , 使F=E(F)+ u t dBt
0 T 【[1] p116 定理 7】 T
由此定理我们知道令F-E(F)=F L2 (, FT , P ),F= u t dBt
随机过程结业论文
题目:有界线性算子理论在随机积分中的应用
院 班 学
系: 级: 号:
学生姓名: 指导老师: 联系方式 邮 箱:
2011 年 07 月 02 日
有界线性算子理论在随机积分中的应用
ˆ 随机积分定义了一个从 L2 ,T 空间到 L2(Ω,F, P)的等距映射, Ito 摘要: a
我们将它看成一个积分算子 T,研究该算子的性质从而得到随机积分 的一些性质并作相关的应用。容易知道积分算子 T 是有界线性的、连 续的、闭的,从而得到积分与极限可以交换。进一步,我们可以证明 该算子是一个双射,其逆算子存在且连续,所以 L2a ,T 空间和 L2(Ω,F, P) 空间同胚。由于这两个空间是 Hilbert 空间,由里斯定理或 Hilbert 空 间的对偶理论知道有界线性泛函的表示, 进而得到 Ito 公式相关结论。 在 Hilbert 空间中我们定义了投影算子得到了关于条件期望的两个公 式。最后,我们利用表示定理和强算子理论(一致有界性)探索用极 限处理随机积分的另一种途径。
随机过程的理论与应用分析

随机过程的理论与应用分析随机过程是一个非常复杂的数学模型,它可以被用于对许多自然和社会现象的建模和分析。
随机过程可以通过随机变量来描述,它的每一个值都代表了在某个随机时间点的一次观测结果。
在实际应用中,随机过程往往比单一随机变量更加适用,因为它可以描述随时间变化的随机现象,如机场的航班起降,股票价格的波动和地震的发生等。
在现代概率论中,随机过程被广泛应用于环境科学、金融学、计算机科学和生命科学等领域中。
本文将对随机过程的理论和应用进行探讨和分析,以期对读者更好地理解随机过程的概念和运用。
一、随机过程的简介随机过程是一类具有随机性质的时间序列,在数学上可以用随机变量的序列来描述。
随机过程可以用X(t)表示,其中t是时间参数。
当t取不同的值时,X(t)的值是随机的。
在每个t时刻,X(t)所取的值都称为随机变量。
在随机过程理论中,有时我们还需要引入另一个函数T(t),它是一个参数序列,用来描述时间的离散化方式。
当我们将t离散化时,T(t)就是一个单调的函数。
例如,如果我们将时间t分为每一秒一段,T(t)就是t除以1的商,表示时间的整数部分。
随机过程可以分为几类:离散时间离散状态(DTMC),连续时间离散状态(CTMC),离散时间连续状态(DTSC),连续时间连续状态(CTSC)。
其中,DTMC和CTMC是离散型随机过程,它们的状态空间是离散的,表示这些过程只有有限个状态。
DTSC 和CTSC是连续型随机过程,它们的状态空间是连续的,表示这些过程具有连续值。
当我们处理随机过程时,需要注意的是,我们往往只关心某个时间点或者一段时间内的随机变量值。
这种做法通常被称为“时域分析”。
但是随机过程的整体变化趋势也很重要,我们可以利用概率分布来描述它,这种方法通常被称为“频域分析”。
例如,我们可以使用功率谱密度来描述随机过程的变化趋势。
二、随机过程的应用随机过程在红外遥感技术、图像处理和金融投资等领域中得到了广泛应用。
《随机过程》论文

随机过程应用于无人飞行器的撞地概率摘要:在误差随机过程为平稳正态过程的假设下,研究了无人飞行器撞地概率的计算问题。
在已知地形数据的情况下,从理论上推导出无人飞行器只受到垂直干扰时的撞地概率的计算公式;并在仅利用地形特征参数的情况下,得到了较为简洁的计算公式,在进行无人飞行器航迹规划过程中可以实现撞地概率的实时计算。
给出了无人飞行器既受到垂直干扰又受到水平干扰时的撞地概率的计算公式,并对它们的计算作了简化,得到了一个近似计算公式。
讨论了撞地概率计算公式的应用问题,分析了误差随机过程的标准差、飞行器机动带宽及地形标准差对撞地概率的影响。
关键词:无人飞行器;误差随机过程;自相关函数;撞地概率无人飞行器(无人飞机、导弹等飞行器)有许多优点,在现代战争中发挥着愈来愈重要的作用,它们可以作超低空飞行突破敌人的防空阵地而不被敌方雷达发现,并对敌方阵地进行侦察或攻击。
但是无人飞行器在作超低空飞行时,撞地概率增大,无人飞行器的撞地概率是反映其性能的重要指标之一。
因此,在进行无人飞行器的航迹规划时需要考虑撞地概率。
国内外已有一些文献讨论过这一问题。
在考虑了地形随机输入和低空风随机干扰共同作用的情况下,针对导弹长时间超低空地形跟踪飞行这一特点,研究了撞地概率的计算方法,分析了导弹主要参数静稳定性动力系数a和高度反馈系数K h对撞地概率的影响。
撞地概率受到多种因素的影响,根据来源可以分为两类,一类是无人飞行器自身的控制系统及导航系统性能对航迹的影响,其次是自然因素如气候等对无人飞行器产生的干扰。
为简便起见,本文未考虑可以通过控制系统及导航系统能够修正的系统偏差,只考虑随机干扰,也不区分它们的来源,并且假设随机干扰为平稳正态随机过程,在此基础上,针对地形数据已知和只知地形特征两种情形下,从理论上推导出了无人飞行器仅受到垂直干扰及既受到垂直干扰又受到水平干扰时的撞地概率的计算公式,并对它们的计算作了简化。
撞地概率计算公式可看作是本文的一种特殊情形。
随机过程期末论文

马尔科夫链在企业人力资源需求方面的应用【摘要】:通过市场调查研究发现,很多现象是可以用随机过程来描述的。
比如说,企业在人力资源需求方面就是一个随着时间不断变化的随机过程。
本文试图将马尔科夫链引入,并运用其原理以及特性,对企业人力资源需求方面进行分析和预测,从而帮助企业明确未来人力需求趋势,做好人才储备工作。
【关键字】:马尔科夫链;人力资源;预测;需求一、马尔科夫链原理简介一个经济系统X(t)是随时间t 变化的随机变量。
人们可根据该经济系统在时刻0t 所处的状态推出它在任何一个较后时刻t(>0t )的状态。
由此原则,可得到这样一个基本方法:系统内X(t)在给定的时刻n t 的状态X(n t )=Xn ,可根据它在任何较早时刻1-n t (<n t )所处的状态X(1-n t )=Xn-1推出,而不依赖于系统在时刻以1-n t 前的历史状态。
满足这一条件的系统所观测结果的随机过程,就称之为马尔科夫过程。
而马尔科夫链是状态离散的一类特殊马尔可夫过程, 即过程的发展可看作是在某些值(称为过程的“状态”)之间一系列转移, 而且具有下面性质:一旦过程处于一给定状态, 则过程未来发展只依赖于这个状态, 而与它过去到达过的状态无关。
假设过程的时间参数集任意n 个时刻为t1<t2<......<tn,系统X(t)在时刻ti 处于状态Xi,即X(ti)=xi(i=1,2,...,n-1),则X (tn )的条件概率分布只依赖于X (tn-1)=xn-1最近的已知值,即:P{X(tn)≤xn|X(t1)=x1,...,X(tn-1)=xn-1}=P{X(tn)≤xn|X(tn-1)=xn-1} 可以直观地解释为当给定过程“现在”的条件下,它的“将来”与“过去”无关。
二、状态转移矩阵运用马尔科夫链进行预测的关键在于:建立状态转移概率矩阵(指系统在时刻t 所处状态,转变为时刻t+1所处状态时与之相对应的一个条件概率)。
随机过程课程总结范文

随着科技的飞速发展,随机过程作为一门重要的数学工具,在现代科技诸多领域,如物理、化学、生物、通信、机电、自动化、地震、海洋及经济等学科中均有广泛应用。
本学期,我有幸参加了随机过程这门课程的学习,通过这段时间的学习,我对随机过程有了更为深入的理解和认识,以下是我对这门课程的总结。
首先,随机过程课程为我们系统地介绍了随机过程的基本理论及其应用。
课程内容丰富,涵盖了概率论、数理统计、信号与系统、复变函数、常微分方程等多个领域的知识。
在学习过程中,我们学习了概率论与数理统计的基础知识,了解了随机过程的基本概念、研究方法和应用技巧。
课程中,我们重点学习了泊松过程、高斯过程、马尔可夫过程、平稳过程、正态过程和布朗运动等基本随机过程。
通过对这些典型随机过程的学习,我们掌握了它们的特性、性质以及在实际应用中的体现。
例如,泊松过程在通信、排队论等领域有着广泛的应用;马尔可夫过程在经济学、生物学、社会学等领域有着重要的应用。
其次,随机过程课程强调应用性,着重于揭示随机过程基本概念的来源及背景,典型随机模型的提炼方法、特性刻画、应用背景及发展踪迹。
在课程中,我们学习了随机信号的功率谱分析、以随机信号作为输入的线性系统分析、以及窄带随机信号等应用问题。
这些知识为我们今后在相关领域的工作奠定了基础。
在学习过程中,我深刻体会到随机过程课程具有很强的实践性。
教师通过丰富的实例,引导我们分析实际问题,让我们在实际应用中体会随机过程的价值。
此外,课程还安排了大量的习题和实验,让我们在实践中巩固所学知识,提高解题能力。
最后,随机过程课程的教学方法值得我们借鉴。
教师注重启发式教学,鼓励我们积极思考、勇于探索。
在教学过程中,教师善于将抽象的理论与实际问题相结合,使我们在理解理论的同时,也能将所学知识应用到实际中。
总之,通过学习随机过程课程,我对随机过程有了更为全面的认识。
这门课程不仅提高了我的数学素养,还让我了解了随机过程在各个领域的应用。
随机过程论文

湖南大学应用随机过程课程论文题目:马尔科夫过程的发展和应用学院名称:金融与统计学院专业班级:11级统计二班学生姓名:任瑞雪201119032011.随机过程发展简述在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。
一些特殊的随机过程早已引起注意,例如1907年前后,A.A.马尔科夫研究过一列有特定相依性的随机变量,后人称之为马尔科夫链(见马尔科夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。
虽然如此,随机过程一般理论的研究通常认为开始于30年代。
1931年,A.H.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,A.R.辛钦发表了《平稳过程的相关理论》。
这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。
稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。
1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。
1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。
60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。
2.马尔科夫过程发展2.1马尔科夫过程简介马尔科夫过程(MarKov Process)是一个典型的随机过程。
设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t)所处的状态与过程在t时刻之前的状态无关,这个特性成为无后效性。
随机过程课程期末论文总结

随机过程课程期末论文总结随机过程是概率论和统计学中的一个重要概念,用于描述随机现象的演变规律。
随机过程理论广泛应用于信号处理、金融工程、电气工程等领域,并在实践中取得了很多重要的成果。
本期末论文将对随机过程的基本概念、性质、应用以及未来发展进行总结和展望。
一、随机过程的基本概念和性质1. 随机过程的定义及基本性质随机过程是一组随机变量的集合,其演变满足一定的随机性和连续性条件。
随机过程可以用概率分布、自相关函数和谱函数等来描述其随机性和统计特性。
其基本性质包括平稳性、马尔可夫性、连续性等。
2. 常见的随机过程模型常见的随机过程模型包括白噪声过程、马尔可夫过程、泊松过程、高斯过程等。
每种模型适用于不同的应用场景,有些模型可以用于描述连续时间下的随机过程,有些则适用于离散时间下的随机过程。
二、随机过程的应用1. 信号处理中的应用随机过程在信号处理领域有着广泛的应用。
通过对信号的随机过程分析,可以研究信号的平均功率、自相关函数、谱函数等统计特性,从而实现信号识别、滤波、压缩等技术。
2. 金融工程中的应用随机过程在金融工程中的应用主要用于描述金融资产价格、利率等随机变量的演变规律,从而进行金融风险的度量和管理。
基于随机过程的衍生品定价模型和风险度量模型是金融工程中的重要研究内容。
3. 电气工程中的应用随机过程在电气工程中的应用主要体现在电力系统的输电过程中。
通过对输电线路上的随机过程分析,可以对线路的带宽容量、干扰噪声等进行优化和改进,提高电力传输的效率和可靠性。
三、随机过程的发展趋势1. 随机过程在人工智能领域的应用随机过程可以用于描述许多自然或人造系统中的状态演变,而人工智能系统的学习和决策往往依赖于对状态的模型化和预测。
因此,随机过程的理论和方法在人工智能领域有着潜在的应用前景。
2. 非平稳随机过程的研究传统的随机过程理论通常假设随机现象具有平稳性质,即在整个时间域上具有相同的统计特性。
然而,许多现实中的随机现象往往是非平稳的。
应用随机过程论文

应用随机过程论文题目:马尔科夫发展与应用班级:2012级统计1班姓名:***学号: ***********摘要现实生活中,人脸识别以及股市走势预测等实际问题都具有马尔科夫性,即未来的走势和演变仅仅与当前的状态有关而不受过去状态的影响。
本文介绍马尔科夫过程及马尔科夫链的发展过程与应用,运用其性质建立了以下几个问题的马尔科夫预测模型并做出了预测分析。
关键字马尔科夫过程马尔科夫链人脸识别股市预测目录前言 (1)一.随机过程发展简述 (2)二.马尔科夫过程发展简述 (2)2.1马尔科夫过程简介 (2)2.2 马尔科夫过程的发展 (3)三.马尔科夫过程的应用举例 (5)3.1、股票市场走势预测 (5)3.2、人脸识别模型 (6)四.马尔科夫链的定义和性质 (8)五.马尔科夫链的应用背景 (9)六.马尔科夫链在各个领域的应用 (9)6.1马尔科夫链在教育领域的应用 (9)6.2马尔科夫链在经济领域的应用 (10)6.3马尔科夫链理论在医学卫生领域的应用 (11)6.4马尔科夫链在遗传学领域中的应用举例 (12)七.总结 (13)八.参考文献 (14)前言马尔科夫链预测法是应用概率论中马尔科夫链的理论与方法,来研究分析某些动态系统的发展变化过程,并预测其发展变化趋势的一种预测方法,它是现代预测方法中的一种,具有较高的科学性,准确性和适应性,在现代预测方法中占有重要的地位。
在国外,它不仅广泛应用在自然科学领域,还应用在经济领域。
在我国,它主要应用于水文,气象,地震等自然科学技术的预测,近年在产品市场占有率预测和经济决策中也有所应用。
为了有效的利用这个工具,解析一下它的基本原理,研究它的应用,这对深入理解,推广应用马尔科夫链预测法,提高预测质量,发挥该预测法的效力将是有益的。
本文拟从最原始的数学定义出发,逐步讨论它的转移概率矩阵。
我们采用马尔科夫链的建模方法,就马尔科夫模型在股市预测、人脸识别等几个方面的应用进行探讨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硕士研究生课程结课论文《随机过程》姓名:xxxx学号:xxxx年级:14 级学科(领域):数学培养单位:理学院日期:2014年11月12日教师评定:综合评定成绩:任课教师签字:目录1 引言 (2)1.1 研究背景 (2)1.2 研究意义 (2)1.3 选题依据 (2)2 时间序列分析的理论 (3)2.1 时间序列分析的问题 (3)2.2 确定与随机性时间序列分析 (3)2.3 时间序列的概念及性质 (3)2.3.1 平稳性 (3)2.3.2 平稳时间序列 (3)2.3.3 平稳时间序列的统计性质 (4)2.3.4 平稳性的检验 (4)2.3.5 纯随机性检验 (4)3 平稳时间序列分析 (5)3.1 ARMA 模型 (5)3.1.1 AR 模型 (5)3.1.2 MA模型 (5)4 非平稳序列分析 (8)4.1 确定性成分 (8)4.1.1 趋势成分 (8)4.1.2 季节效应分析 (8)4.2 非平稳序列的随机分析 (9)4.2.1 差分 (9)4.2.2 ARIMA 模型 (9)4.2.3 ARIMA 模型建模 (9)4.2.4 异方差及方差齐性变换 (10)4.2.5 条件异方差模型 (10)5 基于时间序列分析的股票预测模型的实证分析 (11)5.1 关于样本数据的描述与调整 (11)5.2 结论 (15)参考文献 (16)基于时间序列分析的股票预测模型研究摘要:在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。
时间序列数据因为接受到许多偶然因素的影响,会常常表现出随机性,在统计学上称之为序列的依赖关系。
在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理方提供决策依据。
本文主要介绍了时间序列分析方法的概念,特点及时间序列模型,包括建模时对数据时间序列的预处理、及模型预测等。
并通过对时间序列分析的实证研究分析,建立时间序列模型,其中包括 ARIMA 等模型,进行误差分析,说明时间序列分析的方法对于股票价格的预测趋势有一定的参考价值。
关键词:股票,预测,时间序列分析,ARIMA 模型Study on prediction model of time series analysis based on the stockBian Xiaofei(HeiLongJiang University of science and technology,Harbin City)Abstract:In the modern financial wave, more and more people join the stock market to invest, expecting to get rich return, which has gr eatly promoted the stock market’s prosperity.The so-called stock forecast is defined: with the help of the stock’s recent condition, we’ll predict the future stock’s development, including its later development directions and fluctuations. Time-series data often show some kinds of randomness and dependence between each other because of the influence of various accidental factors.Time series analysis is often used to predict the stock price, which provides decision-making basis for investors and the stock market managers.This thesis mainly introduces time series analysis theory, including its notion, character as well as the expression and description of some models derived from it ,including method of data simulation, method of parameter estimation and method of testing degree of fitting and arrange them by the numbers. Therefore we can establish some models, including ARIMA model and so on. While through this empirical research analysis, we could prove that the method has some value for predicting t he stock’s trend by means of model fitting effect and error analysis.Keywords: stock, predict, time series analysis, ARIMA model1 引言1 引言股票是股份公司(包括有限公司和无限公司)在筹集资本时向出资人发行的股份凭证,代表着其持有者(即股东)对股份公司的所有权。
股票市场是已经发行的股票按时价进行转让、买卖和流通的市场,包括交易所市场和场外交易市场两部分。
由于它是建立在发行市场基础上的,因此又称作二级市场。
相比而言,股票流通市场的结构和交易活动比发行市场更为复杂,其作用和影响也更大。
自从股票市场出现之后,一些投资者就积极研究其发展规律和发展趋势,并希望从中获得巨大的经济利益。
1.1 研究背景股票价格的预测技术历史悠久,近年来有越来越多的学者假如到这个行列,所以又出现了很多的新方法与新理论。
尽管有很多的理论与技术出现,但总的来说,分为基本分析理论和技术分析理论两大类。
基本分析的宗旨是对于现行的股票的价格是否合理作出假设并由此描述出长期的发展趋势,而技术分析对于投资者来说是为了把握时间上的合理度,即分析投资者何时可以买进何时可以卖出,为投资者提供决策分析。
1.2 研究意义美国有最发达的股票市场,大规模,多层次,以机构投资者为主,与实体经济发展息息相关,以及监管严格,投机性小等特点。
基于以上市场成熟性的特点,并且由于时间序列分析在研究金融市场的一些显著优势,使得我们利用此理论预测金融市场有了非常大的必要。
而相对于美国发达的股票市场和严格的监管制度,我国的证券市场还不成熟,所以时间序列分析理论对分析研究我国金融市场就显得更加重要。
1.3 选题依据本论文之所以采用时间序列的分析方法,其考虑有以下几点,时间序列分析理论的模型比较多,其中的模型不但可以描述平稳时间序列也可以描述非平稳序列,可选择性较强;第二,拟合的精度也比较高,它把拟合模型产生的误差也计算入内;第三,模型很好地反映了序列值之间的关系。
时间系列的分析方法对于股票价格的预测在实际应用中确实有很好的应用价值。
采用各类时间序列统计模型的主要目的就是较大限度地综合利用股票的历史数据信息,尽可能提高预测精度,尤其在经济、管理和统计研究领域,已成为改进和提高预报精度的重要途径。
2 时间序列分析的理论2.1 时间序列分析的问题作者阐述时间序列的特点主要有以下几点:第一,时间序列中的序列值按照时间的先后顺序排列,但有可能不是关于时间的函数;第二,序列的取值有一定的随机性,不太可能用以前的数据精确预测;第三,相邻时刻有一定的相关性,即在系统学上称之为动态规律性;第四,序列从整体上看一般出现某种趋势或周期性变化的现象。
作者阐述时间序列分析的基本思想是能够利用序列中的观察数据,建立数学模型,可以比较准确地呈现出数据之间的动态依存关系,并以此来预测。
2.2 确定与随机性时间序列分析时间序列依据其特征,有以下几种表现形式,并产生与之相适应的分析方法:(1)长期趋势变化:受某种基本因素的影响,数据依时间变化时表现为一种确定倾向,它按某种规则稳步地增长或下降。
使用的分析方法有:移动平均法、指数平滑法、模型拟和法等;(2)季节性周期变化:受季节更替等因素影响,序列依一固定周期规则性的变化,又称商业循环。
采用的方法:季节指数;(3)循环变化:周期不固定的波动变化;(4)随机性变化:由许多不确定因素引起的序列变化。
它所使用的分析方法就是时间序列的分析方法。
2.3 时间序列的概念及性质2.3.1 平稳性定义 设{}T t t X ∈),(,对任给的Z t t t n ∈,,,21 , n 维随机变量()n t t t X X X ,,,21 的联合分布函数: {}n t n n x X x X x X p x x x t t t F n <<<=1,,,),,,;,,,(212121下面简单介绍一下几个常用的特征统计量:(1) 均值函数:⎰+∞∞-∈==Z t x t xdF X E t m t ),,()(ˆ)(;(2) 方差函数:[][]Z t t m t X E X D t D t ∈-==,)()(ˆ)(2;(3) 自协方差函数:))((),(s s t t X X E s t μμγ--=;(4) 自相关系数:s t DX DX s t s t ⋅=),(),(γρ2.3.2 平稳时间序列定义: 设{}t X 为一时间序列,对任意正整数 m ,任取T t t t n ∈,,,21 ,对任意整数τ ,有),,,(),,,(21,,,21,,,2121n t t t m t t t x x x F x x x F n n τττ+++=,则称序列{}t X 为严平稳时间序列。
定义: 如果{}t X 满足如下三个条件: Z t X E t ∈∀+∞<对,)1(2;,)()2(Z t m X E t ∈∀=对Z t s r t s t r s r x x ∈∀++=,,),(),()3(对γγ 则称{}t X 为宽平稳时间序列。
2.3.3 平稳时间序列的统计性质定义: 对于平稳时间序列{}T t X t ∈,,任取)(T k t t ∈+,定义)(k γ为时间序列{}t X 的延迟 k 自协方差函数:),()(k t t k +=γγ。