基坑监测方案03948
基坑监测方案

基坑监测方案一、背景介绍随着城市建设的不断推进,基坑工程在城市发展中扮演着重要的角色。
然而,由于基坑工程施工所涉及的土地开挖、地下水位变动、邻近建筑物的安全等问题,必须对基坑进行监测和控制。
因此,制定一套行之有效、科学合理的基坑监测方案,对于确保基坑施工的安全和顺利进行至关重要。
二、监测内容1. 土体变形监测土体在开挖过程中会发生变形,因此需要监测基坑周边土体的变形情况。
监测内容包括土体的沉降、侧向位移和倾斜度等指标。
2. 地下水位监测基坑开挖过程中会涉及地下水位的变动,为了控制沉降和保证施工安全,需要对地下水位进行监测。
监测点布设应覆盖到基坑的各个不同位置。
3. 周边建筑物安全监测开挖基坑可能对周边建筑物的安全造成影响,因此需要对周边建筑物进行安全监测。
包括建筑物的沉降、裂缝情况等指标。
三、监测方法1. 土体变形监测方法(1)GPS监测:通过设置GPS监测站点,实时记录土体沉降、侧向位移和倾斜度等参数。
(2)倾斜仪监测:通过安装倾斜仪监测土体的倾斜变化情况,提供准确的变形数据。
2. 地下水位监测方法(1)水位计监测:在合适的位置安装水位计,实时监测地下水位的变化情况。
(2)井眼监测:通过设置监测井,在井眼内安装水位计,对地下水位进行定期监测和记录。
3. 周边建筑物安全监测方法(1)应力应变测量:通过安装应力应变测试设备,监测建筑物的变形情况,预警可能出现的安全风险。
(2)形变监测:通过安装形变传感器,监测建筑物的形变情况,及时发现问题并采取应对措施。
四、监测频率和数据处理1. 监测频率监测频率应根据基坑的工程特点和土体变化情况而定,一般为每日监测或定期监测。
2. 数据处理监测数据应及时进行整理和分析,通过对数据的处理和比对,判断基坑施工过程中的变化趋势和是否存在安全隐患,并及时采取相应的措施。
五、应对措施1. 对于土体变形问题,根据监测数据确定是否需要进行加固措施,如土钉墙、加固支护结构等。
2. 对于地下水位变动引起的安全问题,可采取降低地下水位的方法,如抽水排水等。
基坑监测方案

基坑监测方案概述在施工项目中,基坑作为建筑物地基工程的一部分,为建筑物提供了重要的支撑。
然而,由于基坑的深度较大,挖掘过程中存在许多潜在的危险和风险,例如地面塌陷、坑壁垮塌、地面沉降等。
为了确保基坑施工过程的安全顺利进行,需要对基坑进行监测和调查,及时发现和处理问题,在施工过程中及时采取措施避免风险。
基坑监测方案是指针对基坑工程的监测需求,制定出的一套系统的监测方案。
该方案主要包括监测目标、监测内容、监测方法、监测标准和监测周期等内容。
通过执行基坑监测方案,可以有效提高基坑施工的安全性和工程质量,同时也对施工质量的监控提供了有力的保障。
监测目标基坑监测方案的首要目的是保证基坑施工的安全和稳定。
在制定基坑监测方案时,需要明确监测的目标和要求,包括但不限于以下内容:•监测基坑周围地面和建筑物的沉降情况;•监测基坑周围地下水位的变化情况;•监测基坑周围土体的变形情况;•监测基坑内施工过程的变形情况;•监测基坑周围周边环境的变化情况;•监测基坑周围周边建筑物的变形情况。
这些监测目标都是基坑施工过程中需要重点关注的问题,一旦被发现,需要及时采取措施解决。
监测内容基坑监测方案的监测内容主要包括地面沉降、地下水位变化、土体变形、建筑物变形以及周边环境变化等方面。
需要对这些内容进行详细的说明和说明,以便监测过程中更加科学地分析和评估监测结果。
地面沉降地面沉降是基坑施工过程中最常见的问题之一。
在制定基坑监测方案时,需要明确监测的点位和周期。
监测点位应设置在基坑周围500米范围内,周期一般为7天。
通过对监测点位的定期测量和分析,可以精确的记录地面沉降的情况,并及时采取必要的处理措施。
地下水位变化地下水位的变化是基坑施工过程中十分重要的监测内容之一。
需要对监测井口进行设置和监测,监测的时间和频率需要根据施工进展情况予以调整。
在监测过程中,需要对地下水位的变化进行分析,判断是否存在基坑周围土体的液化以及变形等情况,及时采取措施避免风险。
基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
基坑监测方案

基坑监测方案1. 简介本文档旨在介绍基坑监测的方案,以确保基坑施工过程中的安全性和稳定性。
基坑监测是在土木工程领域中非常重要的一项工作,通过实时监测基坑的变形和土体的应力变化,可以及时发现和解决潜在的问题,确保施工过程的顺利进行。
2. 监测目标基于基坑监测的目标主要包括:•监测基坑的变形情况,包括垂直变形和水平变形;•监测土体的应力变化,包括压力和摩擦力;•监测基坑周围的地下水位变化;•监测基坑边界围护结构的变形情况。
3. 监测方法针对不同的监测目标,我们采取不同的监测方法:3.1 基坑变形监测基坑的垂直变形和水平变形是基坑施工过程中需要重点监测的指标。
我们可以使用以下方法进行监测:•使用全站仪进行定点测量,记录并分析基坑边界围护结构、基坑底板和内部支撑体系等的变形情况;•安装倾斜仪,在基坑边界围护结构和基坑内部的关键位置进行倾斜监测;•使用测量引线法,通过测量特定的基准线和引线之间的变化来确定基坑的变形情况。
3.2 土体应力监测土体的应力变化可以反映基坑施工过程中的土体稳定性,我们采取以下方法进行监测:•安装应变片或者挠度计来测量土体的应力变化;•使用孔隙压力计来测量土体中的孔隙水压力变化,以及周围地下水位的变化;•定期采集土体样本,并进行室内试验,分析土体的力学特性变化。
3.3 地下水位监测基坑施工过程中的排水工作对于土体的稳定性非常重要,我们需要进行地下水位的监测:•安装水位计来实时监测地下水位的变化;•定期采集地下水样本,并进行化学分析,判断地下水质的变化。
3.4 围护结构变形监测基坑边界围护结构的稳定性对于整个施工过程的安全性至关重要,我们采取以下方法进行监测:•使用全站仪或者激光测距仪进行边界围护结构的变形测量;•安装应变片、位移计或者倾斜仪来监测边界围护结构的变形情况。
4. 监测频率和数据分析基坑监测的频率要根据具体的施工情况和监测目标来确定。
一般来说,开始施工前需要进行基础监测,然后根据施工的进展进行定期的监测。
基坑监测方案

基坑监测方案引言:基坑监测是建筑工程施工中非常重要的一项工作,通过对基坑的监测,可以及时了解施工过程中的变化,并采取相应的措施,确保工程的顺利进行。
本文将就基坑监测的目的、方法和实施步骤进行探讨,并提出一个完整的基坑监测方案。
一、目的基坑监测的目的是为了确保基坑施工的安全、稳定和顺利进行。
通过监测,可以及时掌握以下信息:1. 基坑的变形情况:包括沉降、变形速度、变形形态等。
2. 基坑周边土体的变化:包括土体的变形、应力状态等。
3. 基坑附近建筑物的变化:包括建筑物的沉降、倾斜等。
4. 应力和渗流场的分析:包括土体内部的应力分布和渗流的情况。
5. 施工过程中的安全隐患:包括土体失稳、支护结构失效、水位上升等。
二、方法基坑监测可以采用多种方法,常见的监测方法包括:1. GPS监测:通过安装GPS设备,测量基坑的位置和变形情况。
2. 激光测距仪:通过激光技术,测量基坑周边建筑物的沉降和倾斜情况。
3. 倾斜计:通过安装倾斜计,测量基坑和周边土体的倾斜角度。
4. 应变计:通过应变计,测量土体的应变状态,分析土体的变形情况。
5. 压力计:通过压力计,测量土体的应力状态,分析土体的稳定性。
三、实施步骤基坑监测的实施步骤通常包括以下几个阶段:1. 前期调查:在施工前,对基坑周边的环境进行调查,了解周边建筑物、地质情况和水文地质条件。
2. 监测点布设:根据调查结果,确定监测点的位置和数量,并进行布设。
监测点的布设应覆盖基坑及周边土体,以反映全面的变形情况。
3. 监测设备安装:根据监测点的要求,安装相应的监测设备,如GPS设备、激光测距仪、倾斜计等。
4. 数据采集和分析:定期进行数据采集,将监测点的数据导入计算机进行分析。
分析结果可以帮助判断基坑的变形情况和稳定性。
5. 报告编制和沟通:根据监测结果,及时编制监测报告,并与相关人员进行沟通。
报告应简明扼要地介绍监测结果和分析结论,以便采取相应的措施。
结论:基坑监测是保障建筑工程施工安全的重要手段。
基坑监测方案

基坑监测方案
为保证基坑支护结构在开挖及基础施工期间的安全与稳定,确保建筑物的安全。
要进行土钉抗拔试验,土钉长度均为5米,直径100mm,杂填土及全风化岩中均设3根,施工14天后进行拔出破坏试验。
另外,在基坑边坡坡顶设置水平及沉降观测点观测建筑物的倾斜。
在每层开挖爆破均进行观测,同时注意基坑四周的裂缝观察。
(14)边坡变形观测方案
1)边坡位移
边坡位移采用全站仪进行监控:
①坐标法
首先在施工现场附近布置好测量控制网,每次都精密测出各位移观测点的坐标,根据每次测得的坐标差值求得位移值。
②方向观测法
根据该工程位移观测点基本处在同一直线的特点,在该直线附近或直线上埋一基准点,并标定好起始方向,精确测定各测点的方向值,然后,每次位移观测都精确放样出各位移观测点所在位置的方向,用钢尺量出偏离值,每次所量得的偏离值差值即为位移值。
2)测点及基准点布置
为了能准确、及时地反映边坡变形情况,测点布置在基坑顶周边,测点距离=1.5m×基坑深度。
3)沉降观测
利用已预埋好的测点,首先在施工现场稳定。
通视地段预埋好水准基点,采用自动安平水准仪进行施测,根据每次测得的高程差值求得沉降值。
基坑监测方案
基坑监测方案为了确保基坑施工过程的安全与有效进行,我们需要制定一套基坑监测方案。
本方案将综合考虑基坑施工的特点和需求,采用合适的监测技术与手段,以确保工程的安全性和顺利进行。
一、监测目标本次基坑监测的主要目标是:1. 确保基坑开挖过程中的地面稳定性,避免因挖土引起的地面沉降、塌陷等问题;2. 监测周边建筑物、结构物在基坑施工过程中的变形情况,避免对其产生不可逆的影响;3. 提前掌握基坑周边地下水位的变动情况,及时采取防水措施,避免水压过大造成基坑失稳;4. 监测基坑支护体系的变形情况,确保其稳定性;5. 及时发现和预防基坑施工过程中可能出现的安全隐患,保障工人的人身安全。
二、监测方法与手段1. 地面沉降监测:采用精密水准仪和全站仪对监测点进行测量,并结合GNSS(全球导航卫星系统)技术,实现地面沉降的快速、准确测量。
监测点布设应遵循等距离、等密度的原则,包括基坑四周、周边建筑物、支护体系中。
2. 变形监测:通过安装测斜孔或倾斜计等仪器,监测周边建筑物、结构物及支护体系的变形情况。
定期测量并记录数据,及时发现异常情况,并根据情况采取相应的处理和补强措施。
3. 地下水位监测:安装水位计或压力传感器等仪器,对基坑周边地下水位的变动进行自动化实时监测。
监测数据通过数据接收器传输到监测中心并进行分析,一旦超出设定的安全范围,及时采取相应的排水和防水措施。
4. 基坑支护体系监测:利用应变计和位移计等仪器,对基坑支护体系的变形情况进行监测。
监测包括支撑结构的变形、地下连续墙的变形等。
通过定期测量和数据分析,以确保支护系统的稳定性和安全性。
5. 安全隐患监测:通过定期巡视和现场检查,及时发现和处理基坑施工过程中可能存在的安全隐患。
对现场工人的安全进行严格管理,确保施工过程的安全性。
三、监测频率与报告1. 监测频率:对于地面沉降、变形和地下水位的监测,建议在基坑开挖过程中每周进行一次监测,以及在特定施工环节进行重点监测。
基坑监测方案
基坑监测方案一、工程概况基坑安全等级为一级。
周边环境较复杂。
二、编制依据1.监测平面布置图及设计图纸2、《建筑基坑工程技术规程》三、监测目的对基坑施工阶段围护结构和周边环境进行监测,全面反映基坑支护结构、基坑边坡以及周边环境的变形情况和趋势,及时预报基坑施工中出现的问题,并提出处理措施,以求事先掌握基坑开挖的影响情况,为连接通道顺利施工提供指导,进行〃信息化〃施工。
四、监测内容及监测点的布设根据业主的委托要求,结合设计文件及相关规范要求,本项目共进行以下监测项目。
五、各监测方法及精度(一)深层侧向位移(测斜管)1.采用的仪器项目拟投入CX—901E型活动式垂直测斜仪,由金坛市华兴测试仪器厂生产,仪器是一种可精确测量沿垂直方向土层或围护结构内部水平位移的工程测量仪器。
在监测前先将有四个相互垂直导槽的测斜管埋入被测土体中。
测量时,将活动式测头放入测斜管,使测头上的导向滚轮卡在测斜管内壁的导槽中,沿槽滚动,活动式测头可连续地测定沿测斜管整个深度的水平位移变化。
2、测斜管的埋设测斜管采用江苏金坛土木工程仪器厂生产的CXG-76型ABS高精度测斜管测斜管,规格为①70mm,双向导槽。
安装或埋设过程中注意事项如下:(1)在被测土体内钻孔,然后将测斜管逐节组装井放入钻孔内,测斜管底部装有底盖,管内注满清水,下入钻孔内预定深度后,即向测斜管与孔壁之间的间隙由下而上用瓜子片填实,固定测斜管。
(2)安装或埋设时,应及时检查测斜管内的一对导槽,其指向是否与欲测量的位移方向一致,并应及时修正。
(3)测斜管固定完毕或浇注混凝土后,用清水将测斜管内冲洗干净。
3、测试技术要求测点间距为0∙5m,双向观测。
监测一律从孔底开始自下而上逐点完成。
综合测量误差为:±4mm∕15m0(二)地下水位监测测孔用钻机成孔,并用滤水PVC管护壁。
测试用水位计完成,水位深度统一换算成相对标高。
1.水位监测管的埋设(1)在选定的观测地段按要求的孔径和深度钻孔,孔径为90mm;(2)钻孔完成后,冲洗钻孔,检查钻孔深度及钻孔的通畅情况;(3)埋设水位管时,底部2m长范围内的测管每隔20cm打一小孔,共三排,便于地下水进出管中;同时用沙布包裹该段管子以免管外土粒进入管中;(4)水位管逐根下放测孔内并进行对接,密封水位管底端;(5)将中粗砂沿水位管外侧下放进行封孔工作。
基坑监测方案
基坑监测方案随着建筑业的发展和城市化进程的加快,高楼大厦的建设已经成为常态化,基坑开挖也是建筑工程中不可或缺的一部分。
而基坑开挖过程中的基坑监测方案则显得尤为重要,其不仅能保障施工现场的安全,还能有效地保护周围的环境资源。
一、基坑监测的目的:基坑监测的目的是为了及时了解开挖过程中的变形和沉降情况,对施工现场的安全进行有效控制,提高基坑开挖的施工质量。
同时基坑监测能帮助我们掌握施工过程中的数据,提供参考依据,为后续的工程建设提供技术支持和数据支持。
二、基坑监测的内容:1.地下水位监测:在基坑开挖过程中,地下水是一个较为敏感的指标。
地下水位监测能够及时掌握基坑内外的水位变化情况,准确预测可能出现的影响,并采取有效的应对措施。
2.地表沉降监测:地表沉降是一个较为复杂的问题,一旦达到一定程度就会对房屋的稳固造成较大的影响。
基坑开挖对地表沉降的影响都极大,特别是在邻近密集的房屋区域,应进行实时监测,依据监测结果调整施工方案,解决出现的问题。
3.基坑周边建筑物和构筑物的变形监测:当基坑开挖过程中出现周边建筑物和构筑物的变形时,应及时采取合理的补救措施。
监测监测数据能及时反映监测点的变形情况,补救措施应在监测数据所反映的实际情况下进行。
4.基坑支护结构的变形监测:基坑支护结构是整个基坑工程的关键部分,在开挖的同时也要保证其完整性和安全性。
监测基坑支护结构的变形情况,及时采取预防措施,可以有效地保护支护结构,减少事故风险。
5.基坑周边管道变形监测:在开挖基坑的过程中,周边的管道会因基坑沉降和地表沉降而产生变形。
这些管道是城市中的关键设施,变形对其正常运行会有很大影响。
对管道进行监测能够及时发现问题,采取及时的解决办法,保证管道运行的发安全。
三、基坑监测方案的实施:1.在基坑监测的前期,应制定监测方案,并明确监测的内容、监测周期、监测点位置、数据采集方式。
2.选取合适的监测仪器和设备,确保监测仪器的准确度和稳定性。
基坑监测方案
基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。
本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。
一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。
具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。
二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。
2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。
3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。
4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。
三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。
具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。
2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。
四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。
一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。
1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。
2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。
总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXXXXX地块基坑围护监测方案XXXXX勘察院二0一八年一月XXXXXXX地块基坑围护监测方案项目负责:校对:审核:监测单位:XXXXXX勘察院监测资质:工程勘察综合类甲级单位地址:XXXXXXX2018年1月8日目录一、项目概述 (4)二、监测目的 (5)三、监测执行规范和依据 (5)四、监测项目及内容 (6)五、监测点的布设 (6)1.深层土体水平位移监测 (6)2.地下水位观观测点 (7)3.坑顶沉降及水平位移监测点 (8)4.冠梁水平位移监测点 (8)5.立柱沉降观测点 (9)6.支撑轴力监测点 (9)7.周边管线、桥梁、建筑物沉降观测点 (9)8.坑外地面沉降监测点 (9)六、监测项目的实施 (10)1、监测控制网的布设 (10)2、深层土体位移(测斜)监测 (11)3、地下水位监测 (13)4、竖向位移观测 (13)5、水平位移观测 (15)6、钢支撑轴力监测 (15)七、监测周期、频率 (16)八、监测控制指标(报警值) (17)九、监测设备 (17)十、本工程监测人员的配备 (18)十一、监测成果反馈 (18)十二、质量及安全保证措施 (18)附: 1、单位资质证书2、监测人员职称证书3、监测点平面布置图一、项目概述本项目拟建的XXXXX地块位于XXXXXXX东侧、XXXXXX西侧、XXXXXX南侧。
总用地面积XXXXXX平方米,建筑面积XXXXXX平方米。
本项目主要拟建物包括XXXXXX住宅(18F)、XXXXXX地下室及其他配套设施。
本基坑开挖深度为3.51米-4.61米,坑中坑二次开挖0.59-1.81米。
基坑围护方法:本基坑采用SMW工法桩+钢支撑的围护方式。
基坑西侧开挖边界距离用地红线最近约2.5米,基坑南侧开挖边界距离用地红线最近约2.3米,西侧的用地红线为肛肠医院已建围墙。
基坑东侧开挖边界距离用地红线最近约4米,东侧紧贴用地红线有自来水管线及电力管线,基坑开挖边界距离管线最近约6米。
基坑北侧开挖边界距离用地红线最近约14米左右,红线外有电力、电信等市政管线。
按照有关规范,本基坑安全等级为二级。
二、监测目的通过监测工作,可以达到以下目的:①、及时发现不稳定因素由于土体成分和结构的不均匀性、各向异性及不连续性决定了土体力学性质的复杂性,加上自然环境因素的不可控影响,必须借助监测手段进行必要的补充,以便及时采取补救措施,确保基坑稳定安全,减少和避免不必要的损失。
②、验证设计、指导施工通过监测可以了解周边土体的实际变形和应力分布,用于验证设计与实际符合程度,并根据变形和应力分布情况为施工提供有价值的指导性意见。
③、保障业主及相关社会利益通过对周边环境监测数据的分析,调整施工参数、施工工序、重车进出以及停靠位置,确保地下管线的正常运行,有利于保障业主及相关方的利益。
④、积累地区性基础工程施工经验通过对围护结构、周边环境等监测数据的分析和整理,了解施工期间各监测对象的实际变形情况及所受的影响程度,分析基坑施工特征,为地区性类似的工程积累经验。
三、监测执行规范和依据①、《工程测量规范》(GB50026-2007)②、《建筑基坑工程监测技术规范》(GB50497-2009)③、《建筑变形测量规范》(JGJ8-2007)④、《建筑基坑支护技术规程》(JGJ120-2012)⑤、《建筑基坑工程技术规程》(DB33/T1008-2000)⑥、《建筑地基基础设计规范》(DB33/1001-2003);⑦、《建筑地基基础工程施工质量验收规范》(GB50202-2002);⑧、本工程地质勘察报告、基坑围护设计方案;⑨、本工程基坑监测合同。
四、监测项目及内容根据本基坑围护设计方案结合周边环境情况,依据基坑监测相关规范要求,确定本基坑监测内容及数量如下:①、深层土体水平位移监测(测斜孔)19个;②、地下水位监测孔19个;③、冠梁水平位移监测点19个;④、坑顶沉降及水平位移监测点19个;⑤、立柱沉降观测点25个;⑥、支撑轴力监测点32个;⑦、周边管线、桥梁、建筑物沉降观测点27个;⑧、坑外地表沉降观测点6组。
五、监测点的布设依据设计要求及基坑周边环境情况,布设各种监测点如下:1.深层土体水平位移监测本工程设置深层土体水平位移监测19个,编号从CX1-CX19。
设计孔深20.0m。
①监测的内容监测围护结构的土体位移情况。
②测点的布设与保护测斜管的埋设流程为:定位放样→钻机成孔→埋放测斜管→校准测斜管方位→中粗砂封孔→做孔口保护→测读初始值。
首先在围护桩(或连续墙、土层)上钻孔,钻机成孔的直径为110mm以上;然后将在地面连接好的测斜管放入孔内,校准测斜管方位,保证有一对凹槽与基坑边缘垂直;测斜管与钻孔之间的空隙回填细砂或水泥与膨润土拌合的灰浆;孔口周围采用水泥抹平,砖砌回形围档。
并用红漆醒目标示出其位置及编号。
测斜现场布设图2.地下水位观观测点在基坑四周及基坑为布设19个地下水位观测孔,编号为W1~W19。
1)监测的内容监测基坑周边地下水位变化情况。
2)测点的布设与保护地下水位管的埋设遵循以下步骤:②、成孔:在预布设的位置钻孔,钻头的直径为Φ130;②、水位管加工:水位管的原材料为内径Φ50的PVC管。
为保证PVC管的透水性,在PVC管底部端3m范围内的测管每隔20cm打一小孔,便于地下水进入管中,同时用土工布滤网包裹该段管子以免管外土粒进入管中。
水位管的长度设置为8米。
③、水位管放置:成孔后,经校验孔深无误后吊放已经加工好的水位管,确保有滤孔端向下,水位观测孔应高出地面0.5m。
④、封孔:在地下水位观测孔井管吊入孔后,立即在水位孔管的外围以中粗砂封孔,地表下2m长范围内管外孔隙用粘性土封堵,避免地表水流入管中。
⑤、洗井:在下管、封孔结束后,应及时采用清水进行洗井。
洗井的质量应符合现行行业标准《供水水文地质钻探与凿井操作规程》(CJJ13)的有关规定。
并做好洗井记录。
(见水位管埋设图、水位孔效果图)水位管埋设图3.坑顶沉降及水平位移监测点基坑开挖施工场地变形观测的目的是通过对设置在场地的观测点进行周期性的测量,求得各观测点坐标变化量和高程变化量,为支护结构和地基土的稳定性评价提供技术数据。
按照设计要求本次沿基坑顶部设置坑顶沉降及水平位移监测点监测点,具体做法是在基坑坑顶的相应位置用膨胀螺丝打入指定位置,用红漆做好记号,并做好明显标志,便于寻找和观测,同时也防止被破坏。
共设点19个,编号为S1~S19。
监测点埋设避开基坑护栏、防水墙,在防水墙或者地面上设立明显标记,必要时加盖子保护。
4.冠梁水平位移监测点按照基坑围护设计的要求在基坑四周冠梁上每隔30米左右设置一冠梁水平位移观测点,共设置冠梁水平位移监测点19个,编号为:B1~B19。
具体做法是在基坑冠梁的相应位置用膨胀螺丝打入指定位置,用红漆做好记号,并做好明显标志,便于寻找和观测,同时也防止被破坏。
5.立柱沉降观测点依据基坑围护设计要求,本基坑共设置立柱沉降观测点25个,编号为L1-L25。
在立柱顶焊接φ22的钢筋,在立柱桩点位的边上用油漆编上号码。
监测点埋设避开基坑护栏、防水墙,在防水墙或者地面上设立明显标记,必要时加盖子保护。
在监测点周围由施工单位建围栏以保护监测人员的安全。
6.支撑轴力监测点在钢支撑指定位置布设轴力监测点,本基坑共布设钢支撑轴力监测点32个,编号为Z1~Z32。
在钢支撑安装好之后,在指定位置焊接表面应变计托架,待托架冷却后按照表面应变计,安装完成后将应变计电缆引出至基坑边固定的地方,便于监测。
每个断面的钢支撑轴力监测埋好原件后要及时将电缆引出,接入专用的接线7.周边管线、桥梁、建筑物沉降观测点基坑北侧、东侧有电力、电信、自来水等多种市政管线通过。
沿管线每隔25~30米设置观测沉降观测点共12个;场地西侧肛肠医院已有的门诊大楼等建筑物距离基坑开挖边界最近约15米,在这两幢已有建筑上布设沉降观测点12个;基坑东侧已建的高架桥距离基坑开挖边界最近约24米,沿高架桥指定位置布设沉降观测点3个。
共设置管线、桥梁、建筑物沉降观测点27个,编号为F1~F27。
8.坑外地面沉降监测点基坑开挖施工场地变形观测的目的是通过对设置在场地的观测点进行周期性的测量,求得各观测点高程变化量,为支护结构和地基土的稳定性评价提供技术数据。
本次总共布置6组地表沉降观测点。
编号为D1~D6。
坑外地面沉降观测点,每组设置5点,间距为3m、3m、5m、5m。
每组观测点连线垂直与基坑开挖边界。
各监测点布设具体位置见《监测点平面布置图》。
六、监测项目的实施1、监测控制网的布设监测控制网主要用于地下管线、建筑物沉降、围护体顶部的位移、基坑周边地表沉降、地下水位、围护墙体深层位移监测、深层土体测斜等方面的监测。
监测控制网分两部分:1、平面控制网:用于各水平位移监测项目平面控制基准;2、水准控制网:用于各垂直位移监测项目(即沉降监测)的高程控制基准。
平面控制点计划布设4个,编号为P1~P4,控制区域为整个监测区。
为使测距、测角误差在横、纵坐标上均匀分布,网形为闭合导线网,引测外方向为施工用平面控制网。
点位设在稳定、安全的地方,有条件可采用固定观测墩;通常在地面埋设钢钉点,顶上刻划“+”字。
水准控制点计划布设3个,编号为BM1~BM3。
建立闭合环与施工高程控制点,以后每个月应进行一次联测以校核它的稳定性。
(1)、仪器设备选用平面控制点测量用Leica TS06全站仪,其标称精度为:测距±(2+2ppm*D)mm,测角±2˝。
图1 Leica TS06全站仪水准测量用Trimble DINI03电子水准仪配合精密铟钢水准尺进行观测,其标称精度为:±0.3mm/km。
图2 Trimble DINI03电子水准仪(2)、控制测量精度要求水准控制网按国家二等水准要求进行,各项技术指标如下:等级读数基附差测站附合差路线闭合差备注二等水准0.3mm0.5mm±2L mm L为公里数平面控制网采用二级城市导线,其各项技术指标如下:等级测角中误差边长中误差点位中误差备注二级导线±21/10000±1 mm测量过程中应遵守“五固定”原则:固定观测人员;固定观测仪器;固定观测水准尺;固定观测路线;固定观测方法,尽可能减少系统误差的影响。
测量成果经内业检查合格后,通过平差方法求得各点的最终结果。
2、深层土体位移(测斜)监测①监测的内容监测围护结构的土体位移情况。
②监测的原理与方法当土体产生位移时,埋人土体中的测斜管随土体同步位移,测斜管的位移量即为土体的位移量。
当测斜管埋设的足够深时,管底可以认为是位移不动点,放入测斜管内的活动测头,测出各个不同分段点上测斜管的倾角变化,则管口的水平位移值就是各分段位移增量的总和。