一次函数难题汇编及答案解析

一次函数难题汇编及答案解析
一次函数难题汇编及答案解析

一次函数难题汇编及答案解析

一、选择题

1.一次函数y mx n =-+结果是( )

A .m

B .m -

C .2m n -

D .2m n -

【答案】D

【解析】

【分析】

根据题意可得﹣m <0,n <0,再进行化简即可.

【详解】

∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,

∴﹣m <0,n <0,

即m >0,n <0,

=|m ﹣n |+|n |

=m ﹣n ﹣n

=m ﹣2n ,

故选D .

【点睛】

本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.

2.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x

:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③

B .③④

C .②④

D .②③ 【答案】B

【解析】

【分析】

分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.

【详解】

解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x

,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣

5x

,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .

【点睛】

此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.

3.一次函数y=ax+b与反比例函数

a b

y

x

-

=,其中ab<0,a、b为常数,它们在同一坐标

系中的图象可以是()

A.B.

C.

D.

【答案】C

【解析】

【分析】

根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.

【详解】

A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,

满足ab<0,

∴a?b>0,

∴反比例函数y=a b

x

-

的图象过一、三象限,

所以此选项不正确;

B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,

∴a?b<0,

∴反比例函数y=a b

x

-

的图象过二、四象限,

所以此选项不正确;

C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,

满足ab<0,

∴a ?b>0,

∴反比例函数y=a b x

-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,

满足ab>0,与已知相矛盾

所以此选项不正确;

故选C.

【点睛】 此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小

4.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )

A .2

B 2

C 5

D 3【答案】D

【解析】

【分析】

【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:

当x=0时,y=﹣22,则A (0,2),

当y=0时,﹣2=0,解得2,则B (2,0),

所以△OAB 为等腰直角三角形,则2OA=4,OH=12

AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到

22OP OM -21OP -

当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=

【点睛】

本题考查切线的性质;一次函数图象上点的坐标特征.

5.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是

()

A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0

【答案】C

【解析】

【分析】根据一次函数的图象与系数的关系进行解答即可.

【详解】∵一次函数y=kx+b的图象经过一、二、四象限,

∴k<0,b>0,

故选C.

【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.

6.一次函数y=kx+b(k<0,b>0)的图象可能是()

A. B. C.

D.

【解析】

【分析】

根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限.

【详解】

∵k<0,

∴一次函数y=kx+b 的图象经过第二、四象限.

又∵b >0时,

∴一次函数y=kx+b 的图象与y 轴交与正半轴.

综上所述,该一次函数图象经过第一象限.

故答案为:C.

【点睛】

考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.

7.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )

A .123x x x <<

B .132x x x <<

C .213x x x <<

D .321x x x <<

【答案】D

【解析】

【分析】

根据一次函数的性质即可得答案.

【详解】

∵一次函数1y x =--中10k =-<,

∴y 随x 的增大而减小,

∵123y y y <<,

∴123x x x >>.

故选:D .

【点睛】

本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.

8.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )

A .24y x =+

B .24y x =-+

C .31y x =+

D .31y x -=-

【答案】B

【解析】

【分析】 设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.

【详解】

设一次函数关系式为y kx b =+,

∵图象经过点()1,2,

2k b ∴+=;

∵y 随x 增大而减小,

∴k 0<,

A.2>0,故该选项不符合题意,

B.-2<0,-2+4=2,故该选项符合题意,

C.3>0,故该选项不符合题意,

D.∵31y x -=-,

∴y=-3x+1,

-3+1=-2,故该选项不符合题意,

故选:B .

【点睛】

本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、

四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.

9.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )

A .–12

B .12

C .–2

D .2

【答案】A

【解析】

【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.

【详解】∵A(-2,0),B(0,1),

∴OA=2,OB=1,

∵四边形OACB 是矩形,

∴BC=OA=2,AC=OB=1,

∵点C 在第二象限,∴C 点坐标为(-2,1),

∵正比例函数y =kx 的图像经过点C ,

∴-2k=1,

∴k=-12

, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.

10.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )

A .+1y x =

B .4455y x =-

C .1y x =-

D .33y x =-

【答案】C

【解析】

【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.

【详解】

∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),

设直线l 的函数解析式为y kx b =+,

则320k b k b +=??+=?,解得11

k b =??=-?,所以直线l 的解析式为1y x =-. 故选:C .

【点睛】

本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.

11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

【答案】A

【解析】

【分析】

根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.

【详解】

解:一次函数y=kx+b 过一、二、四象限,

则函数值y 随x 的增大而减小,因而k <0;

图象与y 轴的正半轴相交则b >0,

因而一次函数y=-bx+k 的一次项系数-b <0,

y 随x 的增大而减小,经过二四象限,

常数项k <0,则函数与y 轴负半轴相交,

因而一定经过二三四象限,

因而函数不经过第一象限.

故选:A .

【点睛】

本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小?k <0;函数值y 随x 的增大而增大?k >0;

一次函数y=kx+b 图象与y 轴的正半轴相交?b >0,一次函数y=kx+b 图象与y 轴的负半轴相交?b <0,一次函数y=kx+b 图象过原点?b=0.

12.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )

A .2k <

B .2k >

C .0k >

D .k 0<

【答案】B

【解析】

【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.

【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,

∴k-2>0,

∴k >2,

故选B.

【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.

13.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )

A .-1

B .3

C .1

D .- 1 或 3

【答案】B

【解析】

【分析】 先根据函数的增减性判断出m 的符号,再把点(0,2)代入求出m 的值即可.

【详解】

∵一次函数y=mx+|m-1|中y 随x 的增大而增大,

∴m >0.

∵一次函数y=mx+|m-1|的图象过点(0,2),

∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去).

故选B .

【点睛】

本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

14.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点n B 的坐标为( )

A .(2n ,2n-1)

B .(12n -,2n )

C .(2n+1,2n )

D .(2n ,12n +)

【答案】B

【解析】

【分析】 先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标.

【详解】

∵1(1,0)A

∴11OA =

∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B

∴()11,2B

∵2(2,0)A

∴22OA =

∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B

∴()12,4B

∵点3A 与点O 关于直线22A B 对称

∴()()334,0,4,8A B

以此类推便可求得点A n 的坐标为()12

,0n -,点B n 的坐标为()12,2n n - 故答案为:B .

【点睛】

本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.

15.生物活动小组的同学们观察某植物生长,得到该植物高度y (单位:cm )与观察时间x (单位:天)的关系,并画出如图所示的图象(//CD x 轴),该植物最高的高度是( )

A .50cm

B .20cm

C .16cm

D .12cm

【答案】C

【解析】

【分析】 设直线AC 的解析式为()0y kx b k =+≠,然后利用待定系数法求出直线AC 的解析式,再把50x =代入进行计算即可得解.

【详解】

解:设直线AC 的解析式为()0y kx b k =+≠

∵()0,6A ,()30,12B

∴61230b k b =??=+?

∴1

56

k b ?=???=? ∴165

y x =+ ∴当50x =时,16y =

∴该植物最高的高度是16cm .

故选:C

【点睛】

本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.

16.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )

A .1.5cm

B .1.2cm

C .1.8cm

D .2cm

【答案】B

【解析】

【分析】

【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,

∵点P 的运动速度是每秒1cm ,

∴AC=3,BC=4.

∵在Rt △ABC 中,∠ACB=90°,

∴根据勾股定理得:AB=5.

如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .

∴CH AC BC AB =,即AC BC 3412CH CH AB 55

??=?==. ∴如图,点E (3,

125

),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b

=+=+, 解得:3k 5{21b 5

=-=. ∴直线EF 的解析式为321y x 55

=-+. ∴当x 5=时,()3

216PD y 5 1.2cm 555==-?+

==. 故选B .

17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限

B .第二、三、四象限

C .第一、二、四象限

D .第一、二、三象限 【答案】B

【解析】

【分析】

根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.

【详解】

解:Q 函数()312y m x =+-中,y 随x 的增大而增大,

310m ∴+>,则13

m >- 10m ∴--<,

∴直线()12y m x =---经过第二、三、四象限.

故选:B .

【点睛】

本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.

18.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )

A .1a =

B .2a =

C .1a =-

D .2a =-

【答案】A

【解析】

【分析】

将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.

【详解】

解:Q 函数12y x =-过点(),2A m , 22m ∴-=,

解得:1m =-,

()1,2A ∴-,

Q 函数23y ax =+的图象过点A ,

32a ∴-+=,

解得:1a =.

故选:A .

【点睛】

本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.

19.已知一次函数21,y x =-+当0x ≤时, y 的取值范围为( )

A .1y ≤

B .0y ≥

C .0y ≤

D .1y ≥

【答案】D

【解析】

【分析】

根据不等式的性质进行计算可以求得y 的取值范围.

【详解】

解:∵0x ≤

∴2x -0≥ 21x -+1≥

故选:D.

【点睛】

此题主要考查一次函数的图象与性质,既可以根据函数的图象与性质,也可以根据不等式的性质求解,灵活选择简便方法是解题关键.

20.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为

( ).

A .1x >-

B .2x <-

C .1x <-

D .无法确定

【答案】C

【解析】

【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.

【详解】

解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.

故选:C .

【点睛】

本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

最新高一培优专题:数列选择题填空题简答题难题汇编(含解析)

高一培优专题:数列 一.选择题(共8小题) 1.已知数列{a n}、{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n ∈N*,都有,则=() A.81 B.9 C.729 D.730 2.在正项数列{a n}中,若a1=1,且对所有n∈N*满足na n+1﹣(n+1)a n=0,则a2017=() A.1013 B.1014 C.2016 D.2017 3.已知数列{a n}满足a1=﹣1,a n=1﹣(n>1),a2016=() A.2 B.1 C.D.﹣1 4.设各项均为正数的数列{a n}的前n项之积为T n,若,则的最 小值为() A.7 B.8 C.D. 5.设等差数列{a n}满足:=1,公差d∈(﹣1,0).若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1取值范围是() A.(,)B.(,)C.[,]D.[,] 6.设数列{a n}满足,a n+1=a n2+a n(n∈N*),记, 则S10的整数部分为() A.1 B.2 C.3 D.4

7.若函数,, ,,在等差数列{a n}中,a1=0, a2019=1,b n=|g k(a n+1)﹣g k(a n)|(k=1,2,3,4),用p k表示数列{b n}的前2018项的和,则() A.P4<1=P1=P2<P3=2 B.P4<1=P1=P2<P3<2 C.P4=1=P1=P2<P3=2 D.P4<1=P1<P2<P3=2 8.数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前64项和为()A.4290 B.4160 C.2145 D.2080 二.填空题(共9小题) 9.已知数列{a n}满足则{a n}的通项公式. 10.在数列{a n}中,a1=2,2a n+1=a n2+1,n∈N*,设b n=,若数列{b n}的前 2018项和S2018>t,则整数t的最大值为. 11.已知数列{a n}满足a1=﹣1,|a n﹣a n﹣1|=2n﹣1(n∈N,n≥2),且{a2n﹣1}是递减数列,{a2n}是递增数列,则a2018=. 12.数列{a n}中,a n=3n﹣1,现将{a n}的各项依原顺序按第k组有2k项的要求进行分组:(2,5),(8,11,14,17),(20,23,26,29,32,35),…,则第n 组中各数的和为. 13.已知数列{a n}的前n项和是S n,,4S n S n﹣1+S n=S n﹣1(n≥2),则S n=.

高一函数经典难题讲解

高一经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a-1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》难题汇编及答案

【高中数学】单元《三角函数与解三角形》知识点归纳 一、选择题 1.若,2παπ??∈ ??? ,2cos2sin 4παα?? =- ???,则sin 2α的值为( ) A .7 8 - B . 78 C .18 - D . 18 【答案】A 【解析】 【分析】 利用二倍角公式及两角差的正弦公式化简得到cos sin αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】 解:因为2cos2sin 4παα?? =- ??? 所以( ) 22 2cos sin sin cos cos sin 4 4 π π αααα-=- 所以()())2cos sin cos sin cos sin 2 αααααα-+= - ,cos sin 02παπαα??∈-≠ ??? Q , 所以cos sin 4 αα+= 所以()2 1cos sin 8αα+=,即22 1cos 2cos sin sin 8αααα++=,11sin 28 α+= 所以7sin 28 α=- 故选:A 【点睛】 本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题; 2.已知ABC V 的三条边的边长分别为2米、3米、4米,将三边都增加x 米后,仍组成一个钝角三角形,则x 的取值范围是( ) A .102 x << B . 1 12 x << C .12x << D .01x << 【答案】D 【解析】 【分析】

根据余弦定理和三角形三边关系可求得x 的取值范围. 【详解】 将ABC V 的三条边的边长均增加x 米形成A B C '''V , 设A B C '''V 的最大角为A '∠,则A '∠所对的边的长为()4x +米,且A '∠为钝角,则 cos 0A '∠<, 所以()()()()()2222342340x x x x x x x ?+++<+? +++>+??>? ,解得01x <<. 故选:D. 【点睛】 本题考查利用余弦定理和三角形三边关系求参数的取值范围,灵活利用余弦定理是解本题的关键,考查计算能力,属于中等题. 3.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40?的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70?方向的C 处,且A 与C 的距离为15 3千米,若此时,小赵以每小时52千米的速度开车直线到达C 处接小王,则小赵到达C 处所用的时间大约为( ) ( ) 7 2.6≈ A .10分钟 B .15分钟 C .20分钟 D .25分钟 【答案】B 【解析】 【分析】 首先根据题中所给的条件,得到30BAC ∠=?,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】 根据条件可得30BAC ∠=?,20AB =,153AC =, 由余弦定理可得2222cos30175BC AB AC AB AC ?=+-??=, 则5713BC =≈(千米),

高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解 1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为 [a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a -1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间 (2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

高一数学函数经典题目及答案

1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高考数学压轴专题2020-2021备战高考《数列》难题汇编附答案

【高中数学】高中数学《数列》期末考知识点 一、选择题 1.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88 【答案】C 【解析】 【分析】 设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】 设等比数列{a n }的公比为q ,由a 2=1,a 10=16, 得810 2 16a q a = =,得q 2=2. ∴4 624a a q ==,即a 6=b 6=4, 又S n 为等差数列{b n }的前n 项和, ∴()111116 1111442 b b S b +?= ==. 故选:C. 【点睛】 本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题. 2.已知数列{}n a 的通项公式是2 21sin 2n n a n π+?? = ??? ,则12312a a a a +++???+=( ) A .0 B .55 C .66 D .78 【答案】D 【解析】 【分析】 先分n 为奇数和偶数两种情况计算出21sin 2n π+?? ??? 的值,可进一步得到数列{}n a 的通项公式,然后代入12312a a a a +++???+转化计算,再根据等差数列求和公式计算出结果. 【详解】 解:由题意得,当n 为奇数时, 213sin sin sin sin 12222n n ππππππ+????? ?=+=+==- ? ? ?????? ?,

(完整)高一函数经典难题讲解.docx

1.已知函数 f(x)=(x+1-a)/(a-x),x ∈ R 且 x≠a,当 f(x) 的定义域为 [a-1,a-1/2] 时,求 f(x) 值解:由题知,已知函数 f(x)=(x+1-a)/(a-x), 所以, f(x)= -1+1/(a-x), 当f(x) 的定义域为 [a-1,a-1/2] 时 x∈ [a-1,a-1/2] (a-x) ∈ [1/2,1] 1/(a-x) ∈ [1,2] f(x)=-1+1/(a-x) ∈ [0,1] 2.设 a 为非负数 ,函数 f(x)=x|x-a|-a. (1) 当 a=2 时,求函数的单调区间 (2)讨论函数 y=f(x) 的零点个数 解析: (1)∵函数 f(x)=x|x-2|-2 当 x<2 时, f(x)=-x^2+2x-2 ,为开口向下抛物线,对称轴为x=1 当 x>=2 时, f(x)=x^2-2x-2 ,为开口向上抛物线,对称轴为x=1 ∴当 x∈ (-∞,1)时, f(x) 单调增;当x∈ [1,2] 时, f(x) 单调减;当x∈ (2,+ ∞)时, f(x) 单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0 时 x=0,零点个数为1; a>0 时 x>0,由①, x>=a,x^2-ax- a=0,x1=[a+ √ (a^2+4a)]/2; 04 时,②无实根,零点个数为1。 a<0 时, x<0,由①, x>=a>-4,x^2-ax-a=0 ③ ,x1,2=[a 土√ (a^2+4a)]/2; x4 时零点个数为1; a=土 4 时,零点个数为2; -41, 6/(x-3)>6 所以t(x)=1+[6/(x-3)]>7 那么 ,原函数在( 3,4)上值域是( log3 (7) ,正无穷) 3、先求函数定义域 (x+3)/(x-3)>0 且 x≠ 3解得x>3 或 x<-3 (1)当 x>3 时, 因为 t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x)单调递减。 (2)当 x<-3 时,因为t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x) 4.已知函数 f ( x ) =log4 ( 4^x+1 ) +kx 是偶函数 . (1) 求 k 的值 (2) 设 f ( x ) =log4(a2^x-4/3a)有且只有一个实数根,求实数的取值范围. 解:( 1)f(x)=log4 ( 4^x+1)+kx ( K ∈ R)是偶函数, ∴f(-x)=f(x), 即log<4>[4^(-x)+1]+k(-x)=log<4>(4^x+1)+kx, ∴l og<4>{[4^(-x)+1]/(4^x+1)}=2kx, -x=2kx, k=-1/2.

2018高中数学(函数难题)

难点突破 一.选择题(共18小题) 1.已知奇函数f(x)是定义在R上的连续可导函数,其导函数是f'(x),当x >0时,f'(x)<2f(x)恒成立,则下列不等关系一定正确的是()A.e2f(1)>﹣f(2)B.e2f(﹣1)>﹣f(2) C.e2f(﹣1)<﹣f(2)D.f(﹣2)<﹣e2f(﹣1) 2.当x>0时,不等式恒成立,则a的取值范围是() A.[0,1)∪(1,+∞)B.(0,+∞) C.(﹣∞,0]∪(1,+∞) D.(﹣∞,1)∪(1,+∞) 3.设n∈N*,函数f1(x)=xe x,f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),曲线y=f n(x)的最低点为P n,△P n P n+1P n+2的面积为S n,则()A.{S n}是常数列B.{S n}不是单调数列 C.{S n}是递增数列D.{S n}是递减数列 4.中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种. 例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为() A.48 B.60 C.96 D.120 5.已知函数f(x)是定义在(0,+∞)上的可导函数,f'(x)是f(x)的导函数,若,且f'(2)=2,那么f(2)=()A.0 B.﹣2 C.﹣4 D.﹣6 6.函数f(x)=x﹣ln(x+2)+e x﹣a+4e a﹣x,其中e为自然对数的底数,若存在实数x0使f(x0)=3成立,则实数a的值为() A.ln2 B.ln2﹣1 C.﹣ln2 D.﹣ln2﹣1

最新成都高一数学期末考试难题汇编(含解析)超经典填空选择解答题(高一培优)

最新成都高一期末考试难题汇编(含解析)高一培优 第Ⅰ卷(选择题) 一.选择题(共16小题) 1.设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a的值是() A.B.3 C.D.2 2.已知函数y=sinx+1与y=在[﹣a,a](a∈Z,且a>2017)上有m个交点(x1,y1),(x2,y2),…,(x m,y m),则(x1+y1)+(x2+y2)+…+(x m+y m)=()A.0 B.m C.2m D.2017 3.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),且,记S n为数列{b n}的前n项和,则S30=() A.294 B.174 C.470 D.304 4.已知数列{a n}的前n项和为S n,对任意n∈N*,S n=(﹣1)n a n++2n﹣6,﹣p)(a n﹣p)<0恒成立,则实数p的取值范围是() 且(a n +1 A.(﹣,)B.(﹣∞,)C.(﹣,6)D.(﹣2,)5.已知函数,若,则=() A.1 B.0 C.﹣1 D.﹣2 6.已知平面向量,,满足,,且,则 的取值范围是() A.[0,2]B.[1,3]C.[2,4]D.[3,5]

7.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是() A.AC⊥BE B.EF∥平面ABCD C.三棱锥A﹣BEF的体积为定值 D.异面直线AE,BF所成的角为定值 8.设等差数列{a n}满足=1,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围() A.(,)B.[,]C.(,)D.[,] 9.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,(a+b+c)(a+c ﹣b)=,则cosA+sinC的取值范围为() A.B.C.D. 10.定义符号函数为sgn(x)=,则下列命题: ①|x|=x?sgn(x); ②关于x的方程lnx?sgn(lnx)=sinx?sgn(sinx)有5个实数根; ③若lna?sgn(lna)=lnb?sgn(lnb)(a>b),则a+b的取值范围是(2,+∞); ④设f(x)=(x2﹣1)?sgn(x2﹣1),若函数g(x)=f2(x)+af(x)+1有6个零点,则a<﹣2. 正确的有() A.0个 B.1个 C.2个 D.3个

高一数学函数经典题目及答案

精选 1函数解析式的特殊求法 例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式 例2 若x x x f 21 (+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x x f x f 3)1()(2=+,求)(x f 2函数值域的特殊求法 例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。 例2. 求函数 22 x 1x x 1y +++=的值域。 例3求函数y=(x+1)/(x+2)的值域 例4. 求函数1e 1e y x x +-=的值域。 例1下列各组中的两个函数是否为相同的函数? ①3 )5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f

精选 2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 例3 已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+- 0,()6a f a ><当时;(2)12f -=。 (1)求:(2)f 的值; (2)求证:()f x 是R 上的减函数; (3)若(2)(2)3f k f k -<-,求实数k 的取值范围。 例4已知{(,)|,,A x y x n y an b n ===+∈Z }, 2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得 (1)A B ≠?I ,(2)(,)a b C ∈同时成立. 证明题 1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2 f x f x +有不等实根,且必有一根属于区间(x 1,x 2).

高考数学压轴专题最新备战高考《三角函数与解三角形》难题汇编附答案

【高中数学】数学《三角函数与解三角形》高考知识点(1) 一、选择题 1.已知函数f (x )=sin 2x +sin 2(x 3 π +),则f (x )的最小值为( ) A . 12 B . 14 C . 3 D . 2 【答案】A 【解析】 【分析】 先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π? ?=-+ ?? ?,再求最值. 【详解】 已知函数f (x )=sin 2x +sin 2(x 3 π + ), =21cos 21cos 2322 x x π? ? -+ ?-?? + , =1cos 23sin 2111cos 22223x x x π??? ?--=-+ ? ? ????? , 因为[]cos 21,13x π?? + ∈- ?? ? , 所以f (x )的最小值为12 . 故选:A 【点睛】 本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题. 2.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( ) A . 2 π B . 3 π C . 4 π D . 6 π

【答案】C 【解析】 【分析】 设AE BF a ==,1 3 B EBF EBF V S B B '-'= ??V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角, 再利用余弦定理求解. 【详解】 设AE BF a ==,则()()2 3119333288B EBF a a V a a '-+-?? =???-?≤=???? ,当且仅当3a a =-,即3 2 a = 时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '= ,352AF =,2292 A F AA AF ''=+=,132 2EF AC = = , 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角, 由余弦定理得2 2 2 81945 2424cos 93222222 A F EF A E A FE A F EF +- ''+-'∠= =='????, ∴4 A FE π '∠=. 方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ?? ??? , ∴3,3,32A F ?? '=-- ??? u u u u r ,()3,3,0AC =-u u u r , 所以9922cos ,9322 A F AC A F AC A F AC +'?'==='??u u u u r u u u r u u u u r u u u r u u u u r u u u r

2018年高考数学真题较难题汇编

2018年普通高等学校招生全国统一考试 1. 已知四棱锥SABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1, SE 与平面ABCD 所成的角为θ2,二面角SABC 的平面角为θ3,则( ) A . θ1≤θ2≤θ3 B . θ3≤θ2≤θ1 C . θ1≤θ3≤θ2 D . θ2≤θ3≤θ1 2. 已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为,向量b 满足b 24eb +3=0,则|ab |的最 小值是( ) A . 1 B . +1 C . 2 D . 2 3. 已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( ) A . a 1a 3,a 2a 4 D . a 1>a 3,a 2>a 4 4. 已知λ∈R ,函数f (x )= ,当λ=2时,不等式f (x )<0的解集是_____________________,若函数f (x ) 恰有2个零点,则λ的取值范围是________________________ 5. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成______________________ 个没有重复数字的四位数(用数字作答) 6. 已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足 =2,则当m =____________________时,点B 横坐标 的绝对值最大 7. (15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中 点均在C 上 (1) 设AB 中点为M ,证明:PM 垂直于y 轴 (2) 若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取 值范围 8. (15分)已知函数f (x )= lnx (1) 若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>88ln 2 (2) 若a ≤34ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点 2018年普通高等学校招生全国统一考试(江苏卷) P M B A O y x

高一函数经典难题讲解.

1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值 解:由题知,已知函数f(x)=(x+1-a)/(a-x), 所以,f(x)= -1+1/(a-x), 当f(x)的定义域为[a-1,a-1/2]时 x∈[a-1,a-1/2] (a-x)∈[1/2,1] 1/(a-x)∈[1,2] f(x)=-1+1/(a-x)∈[0,1] 2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数 解析:(1)∵函数f(x)=x|x-2|-2 当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1 当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增; (2).f(x)=x|x-a|-a=0, x|x-a|=a,① a=0时x=0,零点个数为1; a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2; 04时,②无实根,零点个数为1。 a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2; x4时零点个数为1; a=土4时,零点个数为2; -4

函数的最值、极值问题专题训练

函数的最值、极值问题专题训练 【复习指导】 本讲复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决.复习中要注意等价转化、分类讨论等数学思想的应用. 双基自测 考点一 极值问题 【例1】设函数f (x )=ax 2+e x (a ∈R )有且仅有两个极值点x 1,x 2(x 1

=0,故 f (x 1)=12 1 +e x ax =1 11e e 2 x x x -=231e x ,故1 1231e 1e e 02x x x --=.记 R (x )=2 3 12 x x e e e x --(00,(1)f '<0, (2)f '>0,而 x 1=2 3 ∈(0,1),故当 a =233e 4-时,f (x )极大=f (x 1)=2 32 e 3 . 【练习1 】设函数()ln ln (0,0f x a x x a =+>>且a 为常数). ⑴.当1k =时,判断函数()y f x =的单调性,并加以证明; ⑵.当0k =时,求证:()0f x >对一切0x >恒成立; ⑶.若0k <,且k 为常数,求证:()y f x =的极小值是一个与a 无关的常数. 【解】⑴.当1k = 时,1 12 2()ln ln ln ln x f x a x a x -=+=-+ ,则 2 ' ()0f x =≤,故函数()y f x =在(0,)+∞上是单调减函数. ⑵.当0k = 时,12 ()ln ln f x a x - =-+ ,则()f x =.令'()0f x =得, 4a x = .当04a x <<时,' ()0f x <,()y f x =是单调减函数;当4 a x >时,'()0f x >, ()f x 是单调增函数;故当4 a x =时,()y f x =有最小值 ()2l n 22l n 104 a f e =->-=>,即()0f x >对一切0x >恒成立. ⑶.1122()ln ln f x x a x -=-+, 故'()f x =.令'()0f x = 得,00kx a -= (1k = (舍) k =,故

高一数学函数试题及答案

函数与基本初等函数 一、选择题 1.(2009·汕头金山中学月考)下列函数中,在其定义域内既是奇函数又是减函数的是 ( ) A .y =-x 3,x ∈R B .y =sin x ,x ∈R C .y =x ,x ∈R D .y =(1 2)x ,x ∈R 2.(2009·广东卷文)若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )= ( ) A .log 2x B.1 2 x C .log 12 x D .2x - 2 3.已知函数f (x )=ax 3+bx 2+c 是奇函数,则 ( ) A .b =c =0 B .a =0 C .b =0,a ≠0 D .c =0 4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1, 则x >1时,f (x )的解析式为 ( ) A .f (x )=x 2-4x +4 B .f (x )=x 2-4x +5 C .f (x )=x 2-4x -5 D .f (x )=x 2+4x +5 5.函数f (x )=3x 2 1-x +lg(3x +1)的定义域是 ( ) A .(-13,+∞) B .(-1 3,1) C .(-13,13) D .(-∞,-13) 6.(2008·重庆)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是 ( ) A .f (x )为奇函数 B .f (x )为偶函数 C .f (x )+1为奇函数 D .f (x )+1为偶函数 7.(2008·全国Ⅰ)设奇函数f (x )在(0,+∞)内为增函数,且f (1)=0,则不等式 f (x )-f (-x ) x <0的解集为 ( ) A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 8.设a ,b ,c 均为正数,且2a =log 12a ,(12)b =log 12 b ,(1 2)c =log 2c ,则 ( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c 二、填空题

最新高一数学必修一函数选择填空难题突破练习(含解析)期末函数压轴题汇编

最新高一数学必修一函数选择填空难题突破练习 一.选择题(共16小题) 1.已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个 零点,则a的取值范围是() A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞) 2.函数的零点个数为() A.0 B.1 C.2 D.3 3.偶函数f(x)和奇函数g(x)的图象如图所示,若关于x的方程f(g(x))=1,g(f(x))=2的实根个数分别为m、n,则m+n=() A.16 B.14 C.12 D.10 4.已知函数f(x)=,若始终存在实数b,使得函数g(x) =f(x)﹣b的零点不唯一,则a的取值范围是() A.[2,3) B.(﹣∞,2)C.(﹣∞,3)D.(﹣∞,3] 5.若函数f(x)=4x﹣m?2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为() A.(﹣2,2)B.(6,+∞)C.(2,6) D.(2,+∞) 6.若函数f(x)=ae x﹣x﹣2a有两个零点,则实数a的取值范围()A.(﹣)B.(0,)C.(﹣∞,o)D.(0,+∞)

7.已知函数y=g(x)满足g(x+2)=﹣g(x),若y=f(x)在(﹣2,0)∪(0,2)上为偶函数,且其解析式为,则g(﹣2017)的值为() A.﹣1 B.0 C.D. 8.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1 9.已知函数f(x)=﹣mx有两个零点,则实数m的取值范围是()A.(0,)B.(0,)C.()D.() 10.已知函数的值域是(m,n),则f(m+n)=() A.22018B. C.2 D.0 11.已知函数f(x)是定义域在(﹣∞,0)∪(0,+∞)上的偶函数,当x >0时,f(x)=,则函数g(x)=f(x)﹣2的零点个数为() A.2 B.4 C.6 D.8 12.已知函数f(x)=log a(x2﹣2ax)在[4,5]上为增函数,则a的取值范围是() A.(1,4) B.(1,4]C.(1,2) D.(1,2] 13.已知a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1?a2?…?a n为整数的数n 叫做“劣数”,则在n∈(1,2018)内的所有“劣数”的和为()A.1016 B.2018 C.2024 D.2026 14.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,则实数a的取值范围是() A.B.C.D.

相关文档
最新文档