生物化学:04章核苷酸和核酸3
核酸生物化学

核酸生物化学《核酸生物化学》嘿,同学们!今天咱们来聊聊核酸生物化学里的那些化学式相关的有趣知识。
一、核酸的基本组成单元:核苷酸咱们先来说说核苷酸,它就像一个小小的积木块,是构建核酸这个大城堡的基础材料。
核苷酸由三部分组成:磷酸、戊糖和含氮碱基。
这就好比一个小玩具,磷酸是它的一个小零件,戊糖是另一个零件,含氮碱基则是第三个零件,这三个零件组合在一起才构成了核苷酸这个完整的小玩具。
从化学式的角度看,磷酸基团有自己的化学结构,里面有磷原子(P)、氧原子(O)和氢原子(H),它们之间通过化学键连接在一起。
这里的化学键啊,就像小钩子一样。
比如说离子键,就像是带正电和带负电的原子像超强磁铁般吸在一起。
就好比你有两块磁铁,一块是正极,一块是负极,它们“啪”地一下就吸住了,这就是离子键的感觉。
而共价键呢,是原子共用小钩子连接,就像两个人共同拉着一个小绳子,这个小绳子就是它们共用的小钩子,这样原子就紧密地结合在一起了。
二、核酸分子的构建:聚合反应与化学平衡许多核苷酸要连接起来才能形成核酸,这个连接的过程就像是把一个个小积木块搭成一个长长的积木桥。
核苷酸之间的连接反应其实是一个化学平衡的过程,这就像拔河比赛一样。
反应物(单个的核苷酸)和生成物(连接起来的核酸链)就像两队人。
在反应开始的时候,可能有很多单个的核苷酸(反应物这边人多力量大),它们不断地连接起来形成核酸链(生成物这边的人慢慢变多)。
当达到正逆反应速率相等的时候,就像是拔河的两队人力量达到了平衡,这时候核酸链的长度和核苷酸的浓度都不再变化了,这就是化学平衡的状态。
三、核酸分子的极性:分子的极性类比核酸分子有一定的极性,这又是什么意思呢?咱们可以类比小磁针。
就像水分子是极性分子一样,水的氧一端像磁针南极带负电,氢一端像北极带正电。
核酸分子里的各个组成部分也有类似的电荷分布情况。
不过呢,有些分子是没有极性的,就像二氧化碳是直线对称的非极性分子。
想象一下,二氧化碳分子就像一个两边完全对称的哑铃,中间的碳原子和两边的氧原子排列得非常对称,所以它整体没有极性,就像一个完全平衡的东西,没有哪一端特别“带劲”(带电性)。
生物化学课件 第四章 核酸杂交

(三)影响Tm值的因素:
(1)碱基组成:Tm=69.3+0.41(G+C)%
(2)分子大小: (3)离子强度: (3)pH:5~9
主要用于基因组DNA的定性和定量分析(特定序列 定位),亦可分析重组质粒和噬菌体。
方法:利用琼脂糖凝胶电泳分离经限制 性内切酶消化的DNA片段,将胶上的 DNA变性并在原位将单链DNA片段转移 至尼龙膜或其他固相支持物上,经干烤 或者紫外线照射固定,再与相对应结构 的标记探针进行杂交,通过显色,检测 特定DNA分子的含量。
迹/Northern印迹的步骤及用途
印迹杂交的过程
探针的种类、常用的几种酶促标记方法
小测验
1. PCR的基本原理和步骤。 2. Southern blotting的基本原理、过 程和用途。
44
(in situ hybridization)
在细胞保持基本形态的情况下将探针 注入细胞内与DNA或RNA杂交,杂交反应在 载物片上的细胞内进行。
DNA 点阵
本章重点:
掌握以下概念: 核酸分子杂交;探针;印迹;
核酸的变性/复性;Tm;增色效应/减色效应
掌握核酸杂交的基本原理
熟悉常用的核酸分子杂交技术及Southern 印
核酸分子杂交
复性
RNA
DNA
第二节
核 酸 探 针
探针的概念 探针的种类和选择
生物化学4 核酸

核酸核酸通论DNA双螺旋结构模型的主要依据是:1.已知核酸的化学结构知识;2.发现了DNA碱基组成规律3.得到了DNAX射线的衍射结果中心法则:遗传信息从DNA传到RNA,再传到蛋白质,一旦传到蛋白质就不再转移蛋白质组是细胞内基因表达的所有蛋白质核酸的种类和分布核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。
所有的生物细胞都含有这两类核酸。
生物体的遗传信息以密码形式编码在核酸分子上,表现为特定的核苷酸序列DNA是主要的遗传物质,通过复制将遗传信息由亲代传给子代。
RNA与遗传信息在子代的表达有关DNA通常为双链结构,含有D-2-脱氧核糖,以胸腺嘧啶取代RNA中的尿嘧啶,使DNA 分子稳定并便于复制。
RNA为单链结构,含有D-核糖和尿嘧啶(另外三种碱基二者相同),与其遗传信息表达和信息加工的机制有关,DNA原核DNA集中在核区。
真核细胞DNA分布在核内,组成染色体(染色质)。
线粒体、叶绿体等细胞器也含有DNA.病毒只含DNA或RNA,从未发现两者兼有的病毒。
原核生物染色体DNA、质粒DNA、真核生物细胞器DNA都是环状双链DNA所谓质粒是指染色体外基因,它们能够自主复制,并给出附加的性状。
真核生物染色体是线型双链DNA,末端具有高度重复序列形成的端粒结构病毒必须依赖宿主细胞才能生存,因此只能看作一些游离的基因,而且种类很多哦。
RNA参与合成蛋白质的RNA有三类:转移RNA(tRNA),核糖体RNA(rRNA),信使RNA(mRNA),无论是原核生物还是真核生物都与这三类。
原核生物与真核生物tRNA的大小和结构基本相同,rRNA和mRNA却有明显的差异原核生物的mRNA结构简单,由功能相近的基因组成操纵子作为一个转录单位,产生多顺反子mRNA真核生物mRNA结构复杂,有5'端帽子,3’poly(A)尾巴,以及非翻译区调控序列,但功能相关的基因不形成操纵子,不产生多顺反子mRNA,真核生物细胞器有自身的tRNA,rRNA,mRNA核酸的生物功能DNA和RNA都是细胞重要的组成物质,前者可引起遗传性状的转化,后者可能参与蛋白质的生物合成DNA分布在细胞核内,是染色体的主要成分,而染色体已知是基因的载体。
生物化学第四章 核酸化学知识点归纳

生物化学第四章核酸化学核酸是生物体内的重要生物大分子;核酸不仅与正常的生命活动如生长繁殖等有着密切关系,而且与生命的异常活动如人体肿瘤发生、辐射损伤等也息息相关。
核酸的研究是分子生物学的重要领域。
一、核酸的概述二、核酸的化学组成目录三、核酸的分子结构四、核酸及核苷酸的性质五、核酸的分离提取和纯化一、核酸的发展史二、核酸的分类和分布三、核酸的生物学功能概述I一、核酸的发展史●1869 年,瑞士生物学家Miescher首先从外科手术绷带上脓细胞的细胞核中分离出白色微酸性的含磷有机物质-称为核质(nuclein)。
Miescher ●1889年,Altmann 制备了不含蛋白的核酸制品,提出核酸(nucleic acid);了肺炎双球菌的转化现象肺炎双球菌肺炎双球菌(Diplococcus pneumoniae)是一种病原菌,存在着光滑型(Smooth简称S型)和粗糙型(Rough简称R型)两种不同类型。
肺炎双球菌的种类S型肺炎双球菌R型肺炎双球菌菌落(肉眼观察)菌落光滑菌落粗糙菌体(显微镜观察)有多糖类荚膜无多糖类荚膜毒性(动物实验)有毒无毒致病情况使人患肺炎,使老鼠患败血症死亡不使人和老鼠患病实验证实:SⅢ型死菌体内有转化因子能引起RⅡ型活菌转化产生SⅢ型活菌,这种转化因子是遗传物质。
1944年,美国的O.Avery、C. Macleod及M.Mccarty等人在Griffith工作的基础上,利用体外转化实验对肺炎双球菌的转化本质进行了深入的研究。
实验:从SⅢ型活菌体内提取DNA、蛋白质和荚膜多糖,将它们分别和RⅡ型活菌混合均匀后,注射入小白鼠体内。
结果:只有注射SⅢ型菌DNA和RⅡ型活菌的混合液的小白鼠才死亡O.Avery实验证实:DNA是遗传物质光滑型细胞(有毒)粗糙型细胞(无毒)破碎细胞DNAase降解后的DNA 粗糙型细胞接受光滑型DNA只有粗糙型SS R RR DNA +1952年,Hershey和Chase的T2噬菌体的感染实验。
生物化学课后答案3核酸

3 核酸1.①电泳分离四种核苷酸时,通常将缓冲液调到什么pH?此时它们是向哪极移动?移动的快慢顺序如何? ②将四种核苷酸吸附于阴离子交换柱上时,应将溶液调到什么pH?③如果用逐渐降低pH的洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离,其洗脱顺序如何?为什么?解答:①电泳分离4种核苷酸时应取pH3.5 的缓冲液,在该pH时,这4种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:UMP>GMP>AMP>CMP;②应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。
虽然pH 11.4时核苷酸带有更多的负电荷,但pH过高对分离不利。
③当不考虑树脂的非极性吸附时,根据核苷酸负电荷的多少来决定洗脱速度,则洗脱顺序为CMP>AMP> GMP > UMP,但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。
静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP> AMP > UMP >GMP。
2.为什么DNA不易被碱水解,而RNA容易被碱水解?解答:因为RNA的核糖上有2'-OH基,在碱作用下形成2',3'-环磷酸酯,继续水解产生2'-核苷酸和3'-核苷酸。
DNA的脱氧核糖上无2'-OH基,不能形成碱水解的中间产物,故对碱有一定抗性。
3.一个双螺旋DNA分子中有一条链的成分[A] = 0.30,[G] = 0.24,①请推测这一条链上的[T]和[C]的情况。
②互补链的[A],[G],[T]和[C]的情况。
解答:①[T] + [C] = 1–0.30–0.24 = 0.46;②[T] = 0.30,[C] = 0.24,[A] + [G] = 0.46。
4.对双链DNA而言,①若一条链中(A + G)/(T + C)= 0.7,则互补链中和整个DNA分子中(A+G)/(T+C)分别等于多少?②若一条链中(A + T)/(G + C)= 0.7,则互补链中和整个DNA分子中(A + T)/(G + C)分别等于多少?解答:①设DNA的两条链分别为α和β则:Aα= Tβ,Tα= Aβ,Gα= Cβ,Cα= Gβ,因为:(Aα+ Gα)/(Tα+ Cα)= (Tβ+ Cβ)/(Aβ+ Gβ)= 0.7,所以互补链中(Aβ+ Gβ)/(Tβ+ Cβ)= 1/0.7 =1.43;在整个DNA分子中,因为A = T,G = C,所以,A + G = T + C,(A + G)/(T + C)= 1;②假设同(1),则Aα+ Tα= Tβ+ Aβ,Gα+ Cα= Cβ+ Gβ,所以,(Aα+ Tα)/(Gα+ Cα)=(Aβ+ Tβ)/(Gβ+ Cβ)= 0.7 ;在整个DNA分子中,(Aα+ Tα+ Aβ+ Tβ)/(Gα+Cα+ Gβ+Cβ)= 2(Aα+ Tα)/2(Gα+Cα)= 0.75.T7噬菌体DNA(双链B-DNA)的相对分子质量为2.5×107,计算DNA链的长度(设核苷酸对的平均相对分子质量为640)。
生物化学:04章核苷酸和核酸2

高于Tm值5℃
缓慢冷却 迅速冷却
理化性质: 紫外吸收↓ 粘度↑ 生物活性得到部分恢复
退火 (annealing)
淬火
5.DNA复性动力学
DNA 复性过程基本上符合二级反应动力 学,其中第一步为慢反应,因为两条链必须依 靠随机碰撞找到一段碱基配对的部分,首先形 成双螺旋。第二步为快反应,尚未配对的其他 部分碱基配对相结合,象拉锁链一样迅速形成 双螺旋。
Microprocessor Complex
miRNA的作用
降解
翻译抑制
第六节 核酸的变性,复性
和杂交
一、 核酸的紫外吸收
由于核酸中碱基的共轭双键,所以对紫 外光有强烈吸收,最大吸收峰在260nm附近, 利用这一特性可进行核酸的定量测定及纯度 分析。
A260的应用
DNA或RNA的定量 A260=1.0相当于: 50μg/ml双链DNA 40μg/ml单链DNA(或RNA) 20μg/ml寡核苷酸
原核生物 5S rRNA 23S rRNA 16S rRNA
E.Coli 16S rRNA
核糖体的组成
五. 小干扰RNA (siRNA)
➢由dsRNA介导的同 源RNA降解过程。 ➢2006年诺贝尔生理 学及医学奖: interference,RNAi
人工合成
MicroRNA(miRNA)
如果在连续加热DNA的过程中以温度对A260值 作图,所得的曲线称为解链曲线。
影响Tm值的因素
➢ DNA的均一性:均质DNA Tm值范围较窄, 异质DNA Tm值的范围较宽
➢ DNA中G-C对的含量 经验式: (G+C)%=(Tm-69.3)×2.44
➢ 盐离子强度:离子强度低的介质中,Tm 值较低范围较宽;离子强度较高的介质中, Tm 值较高,范围较窄。(DNA在含盐缓 冲液中保存)
生物化学核苷酸

生物化学核苷酸生物化学是研究生物体内的化学组成和化学过程的一门学科。
而核苷酸则是生物体内一类重要的化合物,它们在生物体内扮演着重要的角色。
本文将从定义、结构、功能等方面对生物化学核苷酸进行探讨。
一、定义核苷酸是由核糖(或去氧核糖)和一种或多种磷酸基团以酯键方式连接而成的化合物。
它构成了核酸(DNA和RNA)的基本组成单位,是生物体内传递遗传信息和能量的重要分子。
二、结构生物化学核苷酸的通用结构包括三个组成部分:一个五碳糖(核糖或去氧核糖),一个氮碱基和一个或多个磷酸基团。
核糖或去氧核糖以1'位连接氮碱基和以5'位连接磷酸基团。
氮碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胸腺嘧啶(T)、尿嘧啶(U)和胞嘧啶(C)。
磷酸基团是核苷酸分子中的能量贮存部分。
三、功能1. 遗传信息传递DNA是生物体内存储遗传信息的分子,它是由四种核苷酸(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)构成的长链。
核苷酸之间的序列编码了生物体合成各种蛋白质的信息,并决定了生物个体的遗传特征。
2. 能量转化三磷酸腺苷(ATP)是细胞内一种重要的能量供应分子。
当细胞需要能量时,ATP通过酶催化下的水解反应释放出磷酸根离子,转化为二磷酸腺苷(ADP),同时释放出能量供细胞使用。
3. 信号传导细胞内的信号传导过程中,环磷酸腺苷(cAMP)等嘌呤核苷酸扮演着重要的角色。
它们通过与细胞内的相应受体结合,触发一系列的生物反应,调节细胞内的代谢过程。
四、相关研究生物化学核苷酸的研究在生物科学领域具有广泛的应用和重要的意义。
例如,通过对核酸序列的研究,我们可以揭示生物种类的进化关系,探索生物体内的遗传变异。
此外,也可以利用核苷酸序列信息来进行疾病诊断和基因工程研究。
结语生物化学核苷酸作为生物体内的重要分子,不仅在遗传信息传递中起关键作用,还参与细胞内的能量转化和信号传导过程。
对核苷酸的研究有助于深入了解生命的奥秘,推动生物科学的发展。
生物化学 03核酸

C6 C5
C1’
6 1
C1’
C1’
C1’
一、核酸的组分 5.细胞内的游离核苷酸及其衍生物
——NTP类的高能磷酸化合物
一、核酸的组分 5.细胞内的游离核苷酸及其衍生物
——环状核苷酸
一、核酸的组分 5.细胞内的游离核苷酸及其衍生物
——环状核苷酸
细胞内 : 腺苷酸环化酶
ATP (AC)
cAMP + PPi
构成核酸的核苷酸之间的连接方式:
3’,5’磷酸二酯键
一、核酸的组分 6.核苷酸的性质与功能
性质: 1)互变异构现象
2)紫外吸收:核苷酸的 碱基具有共轭双键结构, 故在260nm左右有强吸收 峰。其紫外吸收光谱受碱 基种类和解离状态的影响, 利用碱基一定的pH下紫外 吸收的差别,可以鉴定各 种核苷酸。
一、核酸的组分 6.核苷酸的性质与功能
3)核苷酸的两性解离和等电点 胞嘧啶核苷酸的解离
pICMP =
pKa1+pKa2 2
=
0.8+4.5 2
= 2.65
一、核酸的组分 6.核苷酸的性质与功能
性质: 从4种核苷酸的解离曲线。 可以看出,当pH处于第一磷 酸基和碱基环解离曲线的交 点时,二者的解离度刚好相 等。在这个pH下,第二磷酸 基尚未解离,所以这一pH为 该苷酸的等电点。当pH小于 等电点时,整个核苷酸带净 正电荷。相反,如果pH大于 该核苷酸的等电点,则整个 核苷酸就带净负电荷。
+0
-1
洗脱顺序是:UMP→GMP→CMP→ AMP。
一、核酸的组分 6.核苷酸的性质与功能
功能:AMP可生成ADP和 ATP。其他单核苷酸也可生成相应的二磷酸 或三磷酸。ATP在化学能的转化和利用中起着关键的作用。UTP参与糖 的互相转化与合成,CTP参与磷脂的合成,GTP参与蛋白质的合成。 ATP、GTP、CTP和UTP是RNA合成的直接原料,dATP、 dGTP、dCTP 和dTTP是 DNA合成的直接原料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.限制性内切酶的种类(约1000多种)
4.限制性内切酶 在基因重组中的 应用
第八节 核酸酶和DNA限制
性内切酶
一、核酸酶(nuclease)
➢ 能水解核酸的酶为核酸酶 ➢ 核酸酶都是磷酸二酯酶(phosphodiesterases)
核酸酶的分类
➢ 按底物专一性分类:核糖核酸酶(RNase)和脱 氧核糖核酸酶(DNase)
➢ 按作用方式分类:内切核酸酶和外切核酸酶 • 内切核酸酶:从核酸的内部切割核酸链,产生
1. 限制性内切酶的分类
➢Ⅰ、Ⅱ、Ⅲ ➢ 基因工程技术中常用Ⅱ型
2. II型限制性内切酶
➢ 不需要ATP参加; ➢ 不对DNA进行甲基化或其它方式修饰。 ➢ 专门识别和切割特定的核苷酸序列,这个
序列一般含4—6 个核苷酸残基,并具回文 结构。
Ⅱ类酶识别序列特点
回文结构
palindrome
切口(kerf):粘端,平端
核酸链片段。 • 外切核酸酶:从核酸链的一端逐个切断磷酸二
酯键,释放单核苷酸。按磷酸二酯键断裂方式: 3’-核酸酶和5’-核酸酶
核酸酶对其底物的作用具有特异性
二、限制性内切酶(restriction endonuclease)
限制性内切酶是从细菌中分离的一类专门 识别和水解特定核苷酸序列的内切酶类。这类 酶在原核生物体内,用于“防御”外来DNA的 入侵,将外来DNA以独特的方式切成无感染能 力