12.4无理数与实数 实数练习1 (北京课改版八年级上)

合集下载

北师大版八年级数学上册第2章实数同步测试含答案

北师大版八年级数学上册第2章实数同步测试含答案

北师大版八年级数学上册第二章实数 同步测试一、选择题1.下列实数为无理数的是( )A .﹣5B .27C .0D .π2.下列实数中是无理数的是( )A . √9B . 227C . πD . ( √3 )0 3.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个 B .2个C .3个D .4个 4.在实数中,有( )A .最大的数B .最小的数C .绝对值最大的数D .绝对值最小的数5.估算3-76的值在( )A .4与5之间B .5与6之间C .6与7之间D .7与8之间6.如图,数轴上的点A 表示的数是1,OB ⊥OA ,垂足为O ,且BO=1,以点A 为圆心,AB 为半径画弧交数轴于点C ,则C 点表示的数为( )A .﹣0.4B .﹣2C .1﹣2D .2﹣17.若一个有理数的平方根与立方根是相等的,则这个有理数一定是( )A . 0B . 1C . 0或1D . 0和±18.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个9.实数a ,b 在数轴上所对应的点的位置如图所示,且||a >||b ,则化简a 2-||a +b 的结果为()A .2a +bB .-2a +bC .bD .2a -b10.在数轴上标注了四段范围,如图1,表示8的点落在( )A .段①B .段②C .段③D .段④二、填空题11.根据如图所示的计算程序,若输入的x 的值为4,则输出的y 的值为 .12.16的平方根是________,算术平方根是________.13.计算:32-82=________. 14.方程223=-x 的解是_______________.15.已知实数a 在数轴上的位置如图所示,则5252-+-a a =16.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.17.大于2-且小于10的整数是.18的整数部分是a,小数部分是b a-=.三、解答题19.计算:(1)(√12+√20)+(√3−√5);(2)(√7−√2)(√7+√2);(3)(-3)2+3-8+|1-2|; (4)(6-215)×3-612.20.求下列各式中x的值:(1)(x-2)2+1=17; (2)(x+2)3+27=0.21.已知一个正数的平方根分别为a+3和2a-15,求这个数的立方根.22.已知a,b互为相反数,c,d互为倒数,x是2的平方根,求5(a+b)a2+b2-2cd+x的值.23.如图,每个小正方形的边长为1.(1)求四边形ABCD的面积和周长;(2)∠BCD是直角吗?请说明理由.24.先观察下列等式,再回答问题:=1+11-11+1=112;1+12-12+1=116;1+13-13+1=1112;…(1)(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).25.如图所示,数轴上有A、B、C三点,且 AB=3BC,若B为原点,A点表示数为6.(1)求C点表示的数;(2)若数轴上有一动点P,以每秒1个单位的速度从点C向点A匀速运动,设运动时间为t秒,请用含t的代数式表示PB的长;(3)在(2)的条件下,点P运动的同时有一动点Q从点A以每秒2个单位的速度向点C匀速运动,当P、Q两点相距2个单位长度时,求t的值.答案提示1.D 2.C.3.C 4.D.5.B 6.C. 7.A 8.A 9.C 10.C 11.1. 12.±4;4 13.2 14. x=215.-516.6-2 17. -1,0,1,2,3 18.319.解:(1)原式=2√3+2√5+√3−√5=3 √3+√5(2)原式==7-2=5.(3)原式=3-2-1+2= 2(4)原式=18-245-32=32-65-32=-6 520.解:(1)(x-2)2=16,x-2=±4,∴x=6或-2.(2)(x+2)3=-27,x+2=-3,∴x=-5.21.解:由题意,得a+3+2a-15=0,解得a=4.所以这个数是(a+3)2=49.22.解:由题意知a+b=0,cd=1,x=±2.当x=2时,原式=-2+2=0;当x=-2时,原式=-2-2=-2 2,故原式的值为0或-2 2.23.解:(1)由勾股定理可得AB2=12+72=50,则AB=50=52.∵BC2=42+22=20,∴BC=25.∵CD2=22+12=5,∴CD=5.∵AD2=32+42=25,∴AD=5,故四边形ABCD的周长为52+25+5+5=52+35+5,面积为7×5-12×1×7-12×4×2-12×1×2-12×(1+5)×3=17.5.(2)∠BCD是直角.理由如下:连接BD,由(1)得BC2=20,CD2=5,而BD2=32+42=25,∴DC2+BC2=BD2,∴△BCD是直角三角形,且∠BCD=90°.24.解:1+14-14+1=1120.验证如下:=441400=1120.(2=1+1n-11+n=1+()11+n n(n为正整数).25.解:(1)∵AB=3BC,A点表示数为6,若B为原点,∴C点表示的数为﹣2.(2)设运动时间为t 秒,若0<t <2时,PB 的长为:2﹣t若t >2时,PB 的长为:t ﹣2(3)AC=AB+BC=6+2=8∵动点P 从点C 向点A 匀速运动,动点Q 点A 向点C 匀速运动 ∴(8+2)÷(2+1)=310s ∴t 的值为310s .。

北师大版八年级上第2章《实数》练习题及答案解析

北师大版八年级上第2章《实数》练习题及答案解析

第二章实数2.1认识无理数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D. 2.解:(1)边长为5cm.(2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.2.2平方根专题一 非负数问题1. 若2(2)a +与1+b 互为相反数,则a b -的值为( )A .2B .21+C .21-D .12-2. 设a ,b ,c 都是实数,且满足(2-a )2+2a b c +++|c+8|=0,ax 2+bx+c=0,求式子x 2+2x 的算术平方根.3. 若实数x ,y ,z x 1y -2z -= 14(x+y+z+9),求xyz 的值.专题二 探究题 4. 研究下列算式,你会发现有什么规律?131⨯+=4 =2;241⨯+=9=3;351⨯+=16=4;461⨯+=25=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题: ①2211112++=1+ 11111-+- =112;②2211123++ =1+ 11221-+=116; ③2211134++=1+ 11331-+=1112. (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).答案:1.D 【解析】 ∵2(2)a +与|b+1|互为相反数,∴2(2)a ++|b+1|=0, ∴2+a =0且b+1=0, ∴a=2,b=﹣1,a b -=12-,故选D.2.解:由题意,得2-a=0,a 2+b+c=0,c+8=0. ∴a=2,c=-8,b=4. ∴2x 2+4x-8=0. ∴x 2+2x=4.∴式子x 2+2x 的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得x-4x +y-41y -+z-42z -+9=0,∴(x-4x +4)+(y-1-41y -+4)+(z-2-42z -+4)=0, ∴(x-2)2+(1y --2)2+(2z --2)2=0,∴x-2=0且1y --2=0且2z --2=0, ∴x=21y -=2 2z -=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.4.解:第n 项a n =(2)1n n ++=2(1)n +=n+1,即a n =n+1. 5.解:(1)2211145++=1+ 11441-+=1120. 验证:2211145++=1111625++=25161400400++=441400=1120. (2)22111(1)n n +++=1+111n n -+=1+1(1)n n +(n 为正整数).2.3立方根专题 立方根探究性问题1. (1)填表:a 0.000001 0.001 1 1000 10000003a(2)由上表你发现了什么规律(请你用语言叙述出来);(3)根据发现的规律填空:①已知33=1.442,则33000=_____________;②已知30.000456=0.07696,则3456=_____________.2.观察下列各式:(1)223=223;(2)338=338;(3)4415=4415.探究1:判断上面各式是否成立.(1)________;(2)________;(3)________ .探究2:猜想5524= ________ .探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展:3227=2327,33326=33326,34463=43463,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.答案:1.解:(1)直接开立方依次填入:0.01;0.1;1;10;100.(2)从表中发现被开方数小数点向右移动三位,立方根向右移动一位.(3)①14.42 ②7.6962.解:探究1:(1)成立 (2)成立 (3)成立 探究2:5524探究3:21n nn -=21nn n -(n≥2,且n 为整数).理由如下: 21n n n -=321n n n n -+-=221n n n ⨯-=21n n n -. 拓展:331n nn -=331n n n -.理由如下: 331n n n -=4331n n n n -+-=3331n n n ⨯-=331n n n -.2.4估算专题 比较无理数大小1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1…(1)观察上面的规律,计算下列式子的值. (121++132++143++…+ 120132012+)•( 2013+1).(2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问:(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1. D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++,则(121++132++143++…+ 120132012+)•( 2013+1) =[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1) =( 2013-1) ( 2013+1) =.(2)∵11211-=1211+,11312-=1312+,又1211+<1312+,∴11211-<11312-, ∴1211->1312-.3.解:依次填:0.001,0.01,0.1,1,10,100,1000. (1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位,即a=3240000; (3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .2.6实数专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( ) A .2 B .22 C .12 D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处 A .17 B .55 C .72 D .853. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|; (2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】由勾股定理得:正方形的对角线为2,设点A表示的数为x,则2-x=2,解得x=2-2.故选B.2.B 【解析】根据题意,数轴上刻度15,18的位置分别对准A,B两点,而AB两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B.3.3+22【解析】在直角△ABC中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.2.7二次根式专题一 与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )A.1B.2C. 23D.6 2. 观察下列各式及其验证过程:322322=+,验证:228222223333⨯+===. 333388+=,验证:2327333338888⨯+===.(1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简 4. 化简二次根式22a aa 的结果是( ) A.2a B.2a C. 2a D.2a5.如图,实数a .b 在数轴上的位置, 化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(1)44441515+=.验证:24644444415151515⨯+===. (2)2211a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111a a a a a aa aa a a a -++===----. (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥). 验证:33334433331111aa a aa aa aa a a a -++===----. 11nnn na aa a a a +=--(a 为任意自然数,且2a ≥). 验证:n n n n n n n n n n a a a a a a a a a a a a 111111-=-=-+-=-+++. 3. 解:(1)223n m + 2mn (2)21 12 3 2(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.4.B 【解析】若二次根式有意义,则22a a+-≥0,-a-2≥0,解得a≤-2,∴原式=2a a a=2a .故选B .5.解:由图知,a <0,b >0,∴a ﹣b <0,∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。

12.4无理数与实数 实数练习3(北京课改版八年级上)

12.4无理数与实数 实数练习3(北京课改版八年级上)

实数练习3第1题. 以下四个命题①若a a a 是有理数;④若a )A.①④B.②③ C.③ D.④答案:D.第2题. 若22(5)a =-,33(5)b =-,则a b +的所有可能值为( )A.0 B.10- C.0或10- D.不确定答案:C.第3题. 一个正整数的算术平方根为a ,则比这个正整数大3的数的算术平方根是( )A.3a + B.a +答案:C.第4题. 下列说法错误的是( )A.实数与数轴上的点一一对应B.数轴上的点表示的数若不是有理数就是无理数C.有理数的运算律和运算性质,在实数运算中仍成立D.对于实数a ,若a a =,则0a >答案:D.第5题. 当01a <<,下列关系式成立的是( )a >a >a <a <a <a > a >a <答案:A.第6题. 下列说法中,正确的是( )A.27的立方根是33=B.25-的算术平方根是5C.a 的三次立方根是D.正数a答案:D.第7题. 已知a 和a 互为相反数,则a ( )A.为任意实数 B.为非正实数 C.为非负实数D.等于0答案:B.第8题. 下列各式中,不正确的是( )> <> 5=-答案:B.第9题. 若a 为实数,则下列叙述正确的是( ) A.a -是正数B.a -是负数D.a -永远大于a -答案:C.第10题. 一个数先平方后求算术平方根,所得的结果和原数的关系是( )A.互为相反数 B.相等 C.和原数绝对值相同 D.无法确定答案:C.第11题. 2.078=0.2708=,则y =( )A.0.8966 B.0.008966 C.89.66D.0.00008966答案:B.第12题. 下列命题中错误的一个是( )A.如果a ,b 互为相反数,那么1a +与1b -仍是相反数B.不论x C.331a a -必为负数答案:B.第13题. 求x =中的x .答案:x =-x =第14题. 求22(38x -=中的x .答案:x =或x =.第15题. 已知2410a -+=,求ab 的值.答案:32±.第16题. a =-,则a 的范围 .答案:0a ≤.第17题. a ,b 为有理数,且24a +=-ab 的值.答案:4ab =-.第18题. 已知3a =2=,求a b -的值.答案:1-或7-.第19题.计算:2022223-⎛⎛⎛⎫-+-- ⎪ ⎝⎭⎝⎭⎝⎭ 答案:解:原式19124=+- 34=-.第20题. 写出两个和为1的无理数 (只写一组即可).和1)第21题. 求下列各数的和1011112222-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,答案:解:1011112222-⎛⎫⎛⎫-+++ ⎪ ⎪⎝⎭⎝⎭11212232=-+++=+。

北京课改版2022八年级数学上册《实数》同步练习含解析

北京课改版2022八年级数学上册《实数》同步练习含解析

北京课改版2022八年级数学上册《实数》同步练习含解析(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的学习资料,如英语资料、语文资料、数学资料、物理资料、化学资料、生物资料、地理资料、历史资料、政治资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of learning materials for everyone, such as English materials, language materials, mathematics materials, physical materials, chemical materials, biological materials, geographic materials, historical materials, political materials, other materials, etc. Please pay attention to the data format and writingmethod!北京课改版2022八年级数学上册《实数》同步练习含解析时间:30分钟,总分:100分班级:姓名:___________一、选择题(每小题5分,共30分)1.实数0是()A.有理数 B.无理数 C.正数 D.负数答案:A.解析:0是有理数,故选:A.考点:实数.2. 的倒数是()A. B. C. D.答案:B.解析:由× =1,得的倒数是,故选:B.考点:实数.3. 化简结果是()A. B. C. D.答案:A.解析:化简结果是,故选:A.考点:实数.4.数轴上的点与()成一一对应关系.A.有理数 B.无理数 C.实数 D.正数和负数答案:C.解析:∵数轴上的点可表示全体实数,∴数轴上的点与实数成一一对应关系.故选C.考点:实数与数轴.5.大于且小于的整数有()个A.3 B.4 C.5 D.6答案:B.解析:∵1<<2,∴-2<<-1,∵2<<3,∴大于且小于的整数有-1,0,1,2,即有4个,故选B.考点:实数大小比较.6.天安门广场的面积大约为440000m2,如果广场的形状呈正方形,那么它的边长约为(误差小于10m)()A.640m或650m B.650m或660m C.660m或670mD.670m 或680m答案:C.解析:由<<,6602=435600,448900=6702,得660<<670,故选:C.考点:估算无理数的大小.二.填空题(每小题5分,共30分)7. 的绝对值是____________.【答案】.【解析】,故答案为:.考点:实数.8. 数轴上表示的点与原点的距离为________.【答案】.【解析】数轴上表示的点与原点的距离为| |= .故答案为:.考点:实数与数轴.9.比较大小关系:4__________ .【答案】>.【解析】∵42=16,( )2=12,16>12,∴4>,故答案为:>.10. 已知的小数部分记为a,则a可以表示为________.【答案】 -8.【解析】∵64<78<81,∴8<<9,∴a= -8.故答案为: -8.11. 计算的结果为________.【答案】6.【解析】 = + =6.12. 已知实数的整数部分是4,则m的取值范围是__________.【答案】15≤ m<24.【解析】∵实数的整数部分是4,∴16≤m+1<25,∴15≤m<24,故答案为:15≤m<24.三、解答题(共40分)13.(本题满分12分)求下列各数的相反数、倒数和绝对值.(1)3 .8;(2);(3)-π;(4).答案:见解析.解析:(1)3 .8的相反数是-3.8,倒数是,绝对值是3.8;(2 的相反数是,倒数是,绝对值是;(3)-π的相反数是π,倒数是,绝对值是π;(4)的相反数是,倒数是,绝对值是.14.(本题满分14分)比较大小,并说理:(1)与6;(2)与.答案:(1)<;(2)<.解析:(1)∵6= ,35<36,∴<6;(2)∵ 1≈-2.236+1=-1.236,≈-0.707,1.236>0.707,∴<.15.(本题满分14分)已知a是的整数部分,b是它的小数部分,求(-a)3+(b+3)2的值.答案:-17.解析:∵4<a<9,∴a=3,b= -3,∴原式=(-3)3+( +3-3)2=-2 7+10=-17.考点:估算无理数的大小.。

(完整版)八年级数学上册第二章实数知识点总结+练习

(完整版)八年级数学上册第二章实数知识点总结+练习

第二章:实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。

2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;ππππ(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。

(3)无理数与有理数的和差结果都是无理数。

如:2-是无理数π(4)无理数乘或除以一个不 为0的有理数结果是无理数。

如2,π(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,39,5,2如:等;无理数也不一定带根号,如:)9π3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003…75-252.±32-…(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。

(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个π432【算术平方根】:1.定义:如果一个正数x 的平方等于a ,即,那么,这个正数x 就叫做a 的算术平方根,a x =2记为:“”,读作,“根号a”,其中,a 称为被开方数。

例如32=9,那么9的算术平方根a 是3,即。

39=特别规地,0的算术平方根是0,即,负数没有算术平方根00=2.算术平方根具有双重非负性:(1)若 有意义,则被开方数a 是非负数。

(2)算术平方根a 本身是非负数。

3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两a个互为相反数的值,表示为:。

八年级上册实数知识点及练习

八年级上册实数知识点及练习

第四章实数一、实数1、实数的定义:有理数和无理数统称实数。

2、分类:正有理数有理数0 有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数二、无理数1、无理数的概念:无限不循环小数叫做无理数。

2、常见的无理数:(1)所有开方开不尽的方根。

(2)化简后含有π的数。

(3)无限不循环小数。

3、无理数的小数部分的表示一个无理数减去整数部分,差就是小数部分。

如:√2的整数部分是1,因此√2的小数部分就是√2−1;π的小数部分就是π−3.三、实数与数轴上的点的对应关系1、实数与数轴上的点是一一对应的,也就是说,每一个实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数。

【提醒:任意两个实数之间都有无数个有理数和无数个无理数。

】2、利用实数与数轴的对应关系解题例、实数a,b在数轴上的位置如图所示,则√(a+b)2+a的化简结果为。

四、实数大小的比较方法1、一般方法(1)性质比较法:正数大于0,负数小于0,正数大于任何负数;两个负数相比,绝对值大的反而小。

(2)数轴比较法:右边点表示的数总比左边点表示的数大。

(3)差值比较法(4)商值比较法2、特殊比较法(1)平方法(2)倒数比较法3的大小:。

例、比较2,√5,√7五、平方根、算术平方根1、平方根的概念:如果x2=a,那么x 叫做a的平方根。

2、平方根的性质:(1)正数有两个平方根,它们互为相反数。

(2)0的平方根是0.(3)负数没有平方根。

3、平方根的表示方法正数a的算数平方根可以用√a表示;正数a的负的平方根,可以用“−√a”表示,故正数a的平方根可以用符号“±√a”表示,读作“正、负根号a”.4、平方根与算术平方根的联系(1)具有包含关系:平方根包含算术平方根,一个数的正的平方根就是该数的算术平方根。

(2)相同点:只有非负数才有平方根和算术平方根;0的平方根和算术平方根都是0.5、开平方求一个数a的平方根的运算,叫做开平方,其中数a叫作被开方数。

北京课改版八年级(上) 中考题同步试卷:12.4 无理数与实数(12)

北京课改版八年级(上) 中考题同步试卷:12.4 无理数与实数(12)

北京课改版八年级(上)中考题同步试卷:12.4 无理数与实数(12)一、选择题(共2小题)1.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14B.16C.8+5D.14+2.计算(﹣1)2+20﹣|﹣3|的值等于()A.﹣1B.0C.1D.5二、填空题(共2小题)3.计算:tan45°﹣(﹣1)0=.4.一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则A+B=.三、解答题(共26小题)5.(1)计算:﹣4sin30°+(2014﹣π)0﹣22.(2)解不等式组:.6.(1)计算:﹣24﹣+|1﹣4sin60°|+(π﹣)0;(2)解方程:2x2﹣4x﹣1=0.7.(1)计算:(﹣1)2014+(sin30°)﹣1+()0﹣|3﹣|+83×(﹣0.125)3(2)解不等式组:把解集在数轴上表示出来,并将解集中的整数解写出来.8.计算:+|﹣4|+(﹣1)0﹣()﹣1.9.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|10.计算:|﹣|+sin45°+tan60°﹣(﹣)﹣1﹣+(π﹣3)0.11.计算:﹣4sin60°+(π+2)0+()﹣2.12.计算:()﹣2﹣+2tan60°+(3﹣π)0.13.+(﹣)﹣1+(﹣5)0﹣cos30°.14.计算:.15.计算:﹣4×()﹣2+|﹣5|+(π﹣3)0.16.计算:+(﹣2014)0﹣2cos30°﹣()﹣1.17.计算:(﹣2)2﹣2﹣1+(sin30°﹣1)0﹣.18.计算:()﹣2﹣+2sin30°.19.计算:(﹣1)2014+﹣()﹣1+sin45°.20.计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.21.计算:|﹣3|+30﹣.22.计算:+(﹣3)2﹣20140×|﹣4|+.23.计算:(﹣3)2+|﹣2|﹣20140﹣+()﹣1.24.计算:﹣|﹣3|﹣(﹣π)0+2013.25.计算:(﹣2)2﹣+2sin45°+|﹣|26.计算:(+π)0﹣2|1﹣sin30°|+()﹣1.27.计算:(﹣1)3++(﹣1)0﹣.28.计算:(﹣1)2﹣4sin45°+|﹣3|+.29.计算:(3.14﹣π)0+(﹣)﹣2+|1﹣|﹣4cos45°.30.(1)计算:()﹣2+(π﹣2014)0+sin60°+|﹣2|.(2)解方程:=.北京课改版八年级(上)中考题同步试卷:12.4 无理数与实数(12)参考答案一、选择题(共2小题)1.C;2.A;二、填空题(共2小题)3.;4.{﹣3,﹣2,0,1,3,5,7};三、解答题(共26小题)5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

北京课改版八年级(上) 中考题同步试卷:12.4 无理数与实数(01)

北京课改版八年级(上) 中考题同步试卷:12.4 无理数与实数(01)

A.2
B.
C.0
25.下列实数中是无理数的是( )
A.
B.2﹣2
C.5.
26.下列实数是无理数的是( )
A.5
B.0
C.
27.下列实数中,无理数是( )
A.﹣1
B.
C.5
D.3 D.﹣1 D.sin45° D. D.
28.下列各数: ,π, ,cos60°,0, ,其中无理数的个数是( )
A.1 个
B.2 个
二、填空题(共 2 小题)
29.实数
C.3 个
D.4 个
中的无理数是

30.请你写出一个无理数

第3页(共4页)
北京课改版八年级(上)中考题同步试卷:12.4 无理数
与实数(01)
参考答案
一、选择题(共 28 小题)
1.D; 2.D; 3.D; 4.A; 5.C; 6.B; 7.B; 8.A; 9.C; 10.A; 11.D;
A.0
B.﹣3
C.3 )
C.
D.4 D.
15.下列各数中,3.14159, ,0.131131113…(相邻两个 3 之间 1 的个数逐次加 1 个),
﹣π, , ,无理数的个数有( )

A.1 个
B.2 个
C.3 个
16.下列实数中,属于无理数的是( )
A.﹣3
B.3.14
C.
17.下列实数中,是无理数的为( )
12.C; 13.B; 14.C; 15.B; 16.D; 17.A; 18.B; 19.A; 20.C; 21.C;
22.C; 23.D; 24.B; 25.D; 26.D; 27.D; 28.B;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档