第三节:taylor公式第四节函数的单调性与凹凸性

合集下载

3-4函数单调性与曲线的凹凸性

3-4函数单调性与曲线的凹凸性
求单调区间的步骤:
1:确定函数的定义域D,判断函数f (x)在D上连续,可导; 2:求出f (x) 0的点及 f (x)不存在的点; 3:用f (x) 0的点及 f (x)不存在的点来划分函数 f (x)的 定义区间; 4:判断各个区间内导数的符号,得出它的单调性.
例2 解
确定函数 f ( x) 2x3 9x2 12x 3的单调区间.
在[2 a, a]上单调减少; 3
3、在[k , k ]上单调增加, 22 3
在[k , k ]上单调减少,(k 0,1,2,) . 2 32 2
四、(1)a 1 时没有实根; e
(2)0 a 1 时有两个实根; e
(3)a 1时只有 x e一个实根. e
3、函数 y x 2 ln x 2 的单调区间为____________,
单减区间为_____________.
二、 确定下列函数的单调区间:
1、 y
10

4x3 9x2 6x
2、 y 3 (2 x a)(a x)2 (a 0);
3、 y x sin 2x .
三、证明下列不等式: 1、当 x 0时,1 x ln( x 1 x 2 ) 2、当 x 4时,2 x x 2 ; 3、若 x 0,则sin x x 1 x 3. 6
f ( x) 6x2 18x 12 6( x 1)(x 2) 解方程f ( x) 0 得, x1 1, x2 2. 当 x 1时, f ( x) 0, 在(,1]上单调增加; 当1 x 2时, f ( x) 0, 在[1,2]上单调减少; 当2 x 时, f ( x) 0, 在[2,)上单调增加; 单调区间为 (,1], [1,2],[2,).
充分小的邻域内单调递增?
思考题解答

高数第三章第四次函数单调性凹凸性

高数第三章第四次函数单调性凹凸性
b

o a
x
o a
f ( x ) 0
b x
定理 设y f ( x )在 [a , b] 上连续,在(a , b)内可导.
(1) 若在(a , b)内f ( x ) 0, f ( x ) 在 [a , b] 上单调增加; ( 2)若在 (a , b)内 f ( x ) 0, f ( x ) 在 [a , b] 上单调减少 .
三、曲线凹凸的判定
y
y f (x )
A
B
y
y f ( x)
B
A
o
a
b
x
o
a
f ( x ) 递增
y 0
f ( x ) 递减
b x y 0
定理2 如果 f ( x ) 在 [a , b] 上连续, 在 (a , b) 内具有
一阶和二阶导数, 若在 (a , b) 内 (1) f ( x ) 0, 则 f ( x ) 在 [a , b] 上的图形是凹的; ( 2) f ( x ) 0, 则 f ( x ) 在 [a , b] 上的图形是凸的.
1 (x ) x4 x4 4 (x ) 4! 8 12 x4 1 lim lim x 0 x 0 x4 1 ( x2 ) 6 2 2 x (x ) 2 2 x2
4
一、单调性的判别法
y
y f ( x)
A
B
y
A y f ( x)
B

f ( x ) 0
三、曲线凹凸的判定
例5 判断曲线 y x 3 的凹凸性. 解: y 3 x 2 , y 6x , 当x 0时, y 0,
曲线 在(,0]为凸的;

高等数学方明亮34函数的单调性与曲线的凹凸性

高等数学方明亮34函数的单调性与曲线的凹凸性

y f (x) B
A
yA y f (x) B
oa
bx
f ( x) 0
oa
bx
f ( x) 0
定理 1 (函数单调性的判定法) 设函数 y f (x) 在 [a,b] 上 连 续 , 在 (a,b) 内 可 导 .( 1 ) 如 果 在 (a,b) 内 , f (x) 0 ,则 y f (x) 在 [a,b] 上单调增加;(2)如果在 (a,b) 内, f (x) 0 ,则 y f (x) 在[a,b] 上单调减少.
2019年9月14日星期六
9
目录
上页
下页
返回
定义 设函数 f (x) 在区间 I 上连续,如果对 I 上任意
两点 x1, x2 (不妨设 x1 x2 )及任意正数 (0 1) ,恒

f [x1 (1 ))x2 ] f (x1) (1 ) f (x2 ),
解:已知 f (x0 ) 0 ,不妨设 f (x0 ) 0 , 由于 f (x0 ) 在 x x0 的某邻域内连续,
因此必存在 0 ,当 x (x0 , x0 ) 时 f (x) 0
又已知 f (x0 ) 0
从而当 x (x0 , x0 ) 时 f (x) f (x0 ) 0 ,函数凸
则称曲线 y f (x) 在 I 上是凹的.
类似地,可给出曲线是凸的定义,若上式中不等 号反向,则称曲线 y f (x) 在 I 上是凸的.
直接利用定义来判别曲线的凹凸性是比较困难的,
下面利用二阶导数来判别曲线的凹凸性.
2019年9月14日星期六
10
目录
上页
下页
返回

第四节 函数的单调性与曲线的凹凸性

第四节  函数的单调性与曲线的凹凸性

第四节 函数的单调性与曲线的凹凸性㈠本课的基本要求掌握用导数判断函数的单调性的方法,会用导数判断函数图形的凹凸性以及拐点,会单调性和凹凸性的一些简单运用㈡本课的重点、难点单调性的判断是本课的重点、凹凸性的判定为本课的难点㈢教学内容单调性是函数的重要性态之一,它既是决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。

本节以微分中值定理为工具,给出函数单调性及极值的判别法。

一.函数单调性的充分条件单调性的定义。

再假设函数在某个区间内可导且具有单调性,如单调递增,由单调递增这一整体性质不难看到:无论0>∆x 还是0<∆x ,差商0)()(≥∆-∆+=∆∆xx f x x f x y ,这样可得0)(≥'x f 。

(注意,即使严格递增,一般也得不到0)(>'x f 。

),反过来,也希望利用导数的符号判断函数在某个区间上的单调性。

定理1 设函数内可导上连续,在在),(],[)(b a b a x f ⑴如果在内单调增加在,则内],[)(0)(),(b a x f x f b a >';⑵如果在内单调在,则内],[)(0)(),(b a x f x f b a <'减少。

证略。

(课堂上介绍)几何意义:如曲线)(x f y =在某区间内的切线与x 轴正向的夹角α是锐角(tan α>0),则该曲线在该区间内上升,若这个夹角是钝角(tan α<0),则该曲线在该区间内下降。

(在黑板上画图)由定理知,可导函数的单调性可根据其导数的正负情况予以确定。

如函数的导数仅在个别点处为0,而在其余的点处均满足定理的条件,那么定理1的结论仍然成立,例如3x y =在x=0处的导数为0,但在),(+∞-∞内的其它点处的导数均大于0,因此它在区间),(+∞-∞内是增加的。

有时,函数在其定义域上并不具有单调性,但在各个部分区间上却具有单调性。

3-4第四节 函数的单调性和曲线的凹凸性

3-4第四节    函数的单调性和曲线的凹凸性

y 高 x=1,x=3是曲线的拐点. 等 数 x 学 2 5 1 3 2 3 电 (2) y 3 x , y x , y x 3 9 子 教 没有使y“(x)=0的点,但当x=0时y“不存在,点(0,0)可能是拐点. 案 当x<0时, y“>0,当x>0, y“<0,
武 汉 科 技 学 院 数 理 系
y 2( x 1)e x ( x 1) 2 e x ( x 2 4 x 3)e x
则1,3可能是拐点
武 汉 科 技 学 院 数 理 系
x 1, y 0 1 x 3, y 0 x 3, y 0
曲线是凹的
曲线是凸的 曲线是凹的
高 等 数 学 电 子 教 案
第四节
函数的单调性和曲线的凹凸性
一、函数的单调性之判定
y Y=f(x)
y Y=f(x)
x
武 汉 科 技 学 院 数 理 系
x
a a b b 在图象中我们发现上升函数的导数大于0,而下降函数的 导数小于0,可见,函数的单调性与函数导数的符号有关.
高 等 数 学 电 子 教 案
高 等 数 学 电 子 教 案


y’
函数的单调性
(-∞,-1] [-1,1) (1,3] [3,+ ∞)
f ’(x)≥0 f ’(x) ≤ 0 f ’(x) ≤ 0 f ’(x)≥0
3
单调上升 单调下降 单调下降 单调上升
-1
武 汉 科 技 学 院 数 理 系
1
x
高 等 数 学 电 子 教 案
武 汉 科 技 学 院 数 理 系
记(x1+x2)/2=x0,并记 x2-x0=x0-x1=h, 则x1=x0-h, x2=x0+h 由拉格朗日中值公式,得到

第四节 函数的单调性与曲线的凹凸性

第四节 函数的单调性与曲线的凹凸性

第四节 函数的单调性与曲线的凹凸性一、函数单调性的判定法定理1 设函数()y f x =在[],a b 上连续,在(),a b 内可导.(1)如果在(),a b 内()0f x '≥,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 上单调增加;(2)如果在(),a b 内()0f x '≤,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 单调减少.例1 判定函数sin y x x =-在[],ππ-上的单调性. 解 因为函数sin y x x =-在[],ππ-上连续,当x ∈(),ππ-时, 1cos 0y x '=-≥,且等号仅在0x =处成立,所以函数sin y x x =-在[],ππ-上单调增加. 例2 讨论函数1x y e x =--的单调性.解 函数1x y e x =--的定义域为(),-∞+∞, 1.x y e '=- 因为在(),0-∞内0y '<,在()0,+∞内0y '>,所以1x y e x =--在(],0-∞上单调减少,在[)0,+∞上单调增加.例3 讨论函数y解 的定义域为(),-∞+∞.当0x ≠时,y '=而函数在0x =处不可导.在(),0-∞内,0y '<,在()0,+∞内0y '>,因此函数y =在(],0-∞上单调减少,在[)0,+∞上单调增加.该函数的图象如下图所示.例4 确定函数()3229123f x x x x =-+-的单调区间.解 该函数的定义域为(),-∞+∞.()()()261812611.f x x x x x '=-+=--方程()0f x '=的全部根为121, 2.x x ==这两个根把区间(),-∞+∞分为三个部分区间:(][][),1,1,2,2,.-∞+∞在区间(),1-∞内()0f x '>,函数()f x 在(],1-∞单调增加.在区间()1,2内,()0f x '<,函数()f x 在区间[]1,2单调减少.在区间()2,+∞内()0f x '>,函数()f x 在区间[)2,+∞单调增加.例5 证明:当1x >时,13.x-证 令()13f x x ⎛⎫=- ⎪⎝⎭,则 ()()22111.f x x x '== ()f x 在[)1,+∞上连续,在()1,+∞内()0f x '>,因此在[)1,+∞上函数()f x 单调增加,于是当1x >时,()()10f x f >=,即130,x ⎛⎫-> ⎪⎝⎭ 13.x- 二、曲线的凹凸性与拐点定义 设函数()f x 在区间I 上连续,如果对I 上任意两点12,x x ,恒有()()1212,22f x f x x x f ++⎛⎫< ⎪⎝⎭那么称()f x 在I 上的图形是凹的;如果恒有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭, 那么称()f x 在I 上是凸的.定理2 设()f x 在[],a b 上连续,在(),a b 内具有一阶和二阶导数,那么(1)若在(),a b 内()0f x ''>,则()f x 在[],a b 上的图形是凹的;(2)若在(),a b 内()0f x ''<,则()f x 在[],a b 上的图形是凸的. 例6 判定曲线ln y x =的凹凸性.解 因为211,y y x x'''==-,所以函数ln y x =在定义域()0,+∞内,0y ''<,故曲线ln y x =是凸的.例7 判定曲线3y x =的凹凸性.解 因为23,6.y x y x '''==当0x <时,0y ''<,所以曲线在(],0-∞是凸的;当0x >时,0y ''>,曲线在[)0,+∞是凹的.例8 求曲线32231214y x x x =+-+的拐点.解 216612,126122y x x y x x ⎛⎫'''=+-=+=+ ⎪⎝⎭. 解方程0y ''=,得1.2x =-当12x <-时,0y ''<;当12x >-时,0y ''>.因此点11,2022⎛⎫- ⎪⎝⎭是曲线的拐点.例9 求曲线43341y x x =-+的拐点及凸凹区间. 解 函数43341y x x =-+的定义域为(),-∞+∞.321212,y x x '=-22362436.3y x x x x ⎛⎫''=-=- ⎪⎝⎭ 解方程0y ''=,得1220,.3x x == 在(),0-∞内,0y ''>,曲线在区间(),0-∞凹的.在20,3⎛⎫ ⎪⎝⎭内,0y ''<,曲线在区间20,3⎡⎤⎢⎥⎣⎦是凸的.在2,3⎛⎫+∞ ⎪⎝⎭内,0y ''>,曲线在区间2,3⎡⎫+∞⎪⎢⎣⎭是凹的. 当0x =时,1y =.当23x =时,11.27y = 点()0,1和211,327⎛⎫ ⎪⎝⎭是这曲线的两个拐点. 习题3-41.判定函数()arctan f x x x =-的单调性.解 ()22211011x f x x x '=-=-≤++且仅在0x =时成立.因此函数()arctan f x x x =-在(),-∞+∞内单调减少.2.判定函数()cos f x x x =+的单调性.解 ()1sin 0f x x '=-≥,且当()20,1,2,2x n n ππ=+=±± 时,()0f x '=.因此函数()cos f x x x =+在(),-∞+∞内单调增加.3.确定下列函数的单调区间:(1)3226187y x x x =---;解 函数的定义域为(),-∞+∞,在(),-∞+∞内可导,且 ()()261218631.y x x x x '=--=-+令0y '=,得驻点121, 3.x x =-=当时1x <- 时,0y '>,函数在(],1-∞-单调增加; 当13x -<<时,0y '<,函数在[]1,3-单调减少; 当3x >时,0y '>,函数在()3,+∞单调增加.(2)()820y x x x=+>;解 函数的定义域为()0,+∞,在()0,+∞内可导,且()()22222228282.x x x y x x x -+-'=-== 令0y '=,得驻点12x =-(舍去),22x = 当02x <<时,0y '<,函数在(]0,2单调减少;当2x >时,0y '>,函数在[)2,+∞单调增加.。

3-4函数单调性与凹凸性(09)

3-4函数单调性与凹凸性(09)

f ''(0) 0
f ''( x) 0
f '(x)
f '(0) 0
f '(x) 0
f (x)
f (0) 0
f (x) 0
tan x x x3 (x 0, x k ,k N ).
3
2
2. 讨论方程根的个数问题 若 y = ƒ(x) 变号, 则方程 ƒ(x) = 0 一定有根, 若函数单调, 则曲线与 x 轴的只有一个交点, 就是方程的根唯一.
2
o x1 x1 x2 x2
x
2
将曲线具有的向上凹或向上凸的性质称为曲线的凹凸性.
向上凹(或 凸)的另一种定义: 定义2 设函数 y = ƒ(x) 在区间 I 内可导. y 若该函数曲线在 I 内总是位于其上任意一 点的切线上方 (即曲线向下弯曲), 则称该 曲线在 I 内是向上凹的; 区间 I 为该曲线的向 o 上凹区间.用符号∪表示 .称函数 y = ƒ(x) 为在 区间 I 内的凸函数.
利用定理1可以讨论函数的单调区间.
问题 一般地,函数在定义区间上不是单调的,如何判 断函数在各个部分区间上的单调性?
若函数在其定义域的某个区间内是单调的,则该区间称 为函数的单调区间.
导数等于零的点和不可导点是单调区间的分界点.
方法 用方程 f ( x) 0的根及 f ( x)不存在的点 来划分函数 f ( x)的定义区间,然后判断各区间内导 数的符号.
区间的单调性.
例2 求函数 f ( x) 2x3 9x2 12x 3 的单调区间. 解 函数 f(x) 定义域为(, )
f ( x) 6x2 18x 12 6(x 1)(x 2) 由 f ( x) 0 解得 x1 1, x2 2

第三节:taylor公式第四节函数的单调性与凹凸性

第三节:taylor公式第四节函数的单调性与凹凸性

2. 余项估计 令 Rn ( x) f ( x) pn ( x) (称为余项) , 则有
Rn ( x) ( x x0 ) n1 (1 ) Rn Rn ( x) Rn ( x0 ) (1 在 x0 与 x 之间) n n1 (n 1)(1 x0 ) ( x x0 ) 0 (1 ) Rn ( 2 ) Rn Rn ( x0 ) ( 2 在 x0 与 n (n 1)(1 x0 ) 0 (n 1)n( 2 x0 ) n1 1 之间)
a0 pn ( x0 ) f ( x0 ) ,
1 p ( x ) a2 2 ! n 0
1 f ( x )( x x ) 2 故 pn ( x) f ( x0 ) f ( x0 )( x x0 ) 2 0 0 ! 1 f ( n ) ( x )( x x ) n n 0 0 !

Rn ( x) f ( x) pn ( x)
( 在 x0 与 x 之间)
( n1) ( n1) pn ( x) 0 , Rn ( x) f ( n1) ( x)
Rn ( x)
f ( n1) ( ) (n 1) !
( x x0 ) n1 ( 在 x0 与 x 之间)
公式 ③ 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .
* 可以证明:
④ 式成立
f ( x0 ) f ( x) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! (n) ( n 1) f ( x0 ) n f ( ) ( x x0 ) ( x x0 ) n1 n! (n 1) ! ( 在 x0 与 x 之间) 特例: 给出拉格朗日中值定理 (1) 当 n = 0 时, 泰勒公式变为 f ( x) f ( x0 ) f ( )( x x0 ) ( 在 x0 与 x 之间)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rn(n1) ( )
(n 1) !
( 在 x0 与xn 之间)
Rn (x) f (x) pn (x)
( 在 x0 与x 之间)
pn(n1) (x) 0, Rn(n1) (x) f (n1) (x)
Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间)
)
n
Rn
(
x)

其中 Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间) ②
公式 ① 称为 的 n 阶泰勒公式 .
公式 ② 称为n 阶泰勒公式的拉格朗日余项 .
注意到 Rn (x) o[(x x0 )n ]

在不需要余项的精确表达式时 , 泰勒公式可写为
f (x0 )
f
特例:
(n) (x0 n!
)
(
x
x0
)n
f (n1) ( )
(n 1) !
(x
(
x0 )n1
在 x0 与x
之间)
(1) 当 n = 0 时, 泰勒公式变给为出拉格朗日中值定理
f (x) f (x0 ) f ( )(x x0 )
( 在 x0 与x 之间)
(2) 当 n = 1 时, 泰勒公式变为
Rn (x) Rn (x0 ) (x x0 )n1 0
(n
Rn (1) 1)(1
x0
)n
(1 在 x0 与x 之间)
Rn (1) Rn (x0 ) (n 1)(1 x0 )n 0
Rn(2 ) (n 1)n(2 x0 )n1
(2 在 x0 与 1 之间)
(n
Rn(n) (n ) Rn(n) (x0 ) 1)2(n x0 ) 0
当在 x0 的某邻域内 f (n1) (x) M 时
Rn (x)
M (n 1)!
x
x0
n1
Rn (x) o((x x0 )n ) (x x0 )
泰勒中值定理 :
阶的导数 , 则当
时, 有
f
(x0 )
f
(x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 n!
)
(
x
x0
x
之间)
二、几个初等函数的麦克劳林公式
f (k) (x) ex , f (k) (0) 1 (k 1, 2,)
ex
1
x
x2 2!
x3 3!
xn n!
Rn (x)
其中
f (k) (x) sin(x k )
2
f
(k)
(0)
sin
k
2
0, (1)m1
,
k 2m (m 1,2,) k 2m 1
sin
x
x
x3 3!
x5 5!
(1)m1 x2m1 (2m 1) !
R2m (x)
其中 R2m (x)
s(in1()mxcos2(m2x1) ) x2m1
(2m 1) !
(0 1)
类似可得
cos x
1 x2 2!
x4 4!
(1)m
x2m (2m)
!
R2m1
(
x)
其中
R2m1(x)
(1)m1 cos( x)
由此得近似公式
若在f (公xf) (式x)成f(立xf0(的)0)区f 间(fx上0(0)()xfx(n1x)f0()x2()!0)fxM22(,x!0) (xfx(0nn))!(20)
xn
则有f误(nn)差(!x估0 )计(x式 x0
)n
Rn
f((x(nn)1)1()(!n) M((x1)在!x0xx)0nn与11
f(x)fFra bibliotek(x0 )
f
(x0 )(x x0 )
f
( ) (x
2!
x0 )2
可见
( 在 x0 与x 之间)
误差
( 在 x0 与x 之间) d f
在泰勒公式中若取 x0 0 , x (0 1) , 则有
f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
称为麦克劳林( Maclaurin )公式 .
f (x0 ) f (x0 )
p1(x)
o x0 x
x
以直代曲
如何提高精度 ? 需要解决的问题
如何估计误差 ?
1.求 n 次多项式
近似等于 f (x) 要求:
令 pn (x) a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n
则 pn (x)
a1 2a2(x x0) n an (x x0 )n1
f (x0 )
f
(x0)(x
x0 )
1 2!
f
(x0)(x
x0 )2
1 n!
f (n) (x0 )(x x0 )n
2. 余项估计
令 Rn (x) f (x) pn (x)(称为余项) , 则有
Rn (x0 ) Rn (x0 ) Rn(n) (x0 ) 0 Rn (x)
(x x0 )n1
(2m 2) !
x2m2
(0 1)
f (k) (x) ( 1)( k 1)(1 x)k
f (k) (0) ( 1)( k 1) (k 1,2,)
(1 x) 1 x ( 1) x2
2!
( 1)( n 1)
n!
xn Rn (x)
其中
Rn (x)
(
1)(
(n 1) !
n) (1
第三节 泰勒 ( Taylor )公式
用多项式近似表示函数— 应用
一、泰勒公式的建立
理论分析 近似计算
二、几个初等函数的麦克劳林公式
三、泰勒公式的应用
一、泰勒公式的建立
在微分应用中已知近似公式 :
y f (x) f (x0 ) f (x0 )(x x0 )
y f (x)
特点:
x 的一次多项式
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(
n) (x0 n!
)
(
x
x0
)n
o[(x x0 )n ]

公式 ③ 称为n 阶泰勒公式的佩亚诺(Peano) 余项 .
* 可以证明:
④ 式成立
f
(x) f
(x0 )
f (x0 )(x x0 )
f (x0 ) (x 2!
x0 )2
pn (x)
2 !a2 n(n 1)an (x x0 )n2
pn(n) (x)
n!an
a0 pn (x0 ) f (x0 ),
a1 pn (x0) f (x0),
a2
1 2!
pn
(
x0
)
1 2!
f
( x0 ) ,,an
1 n!
pn(n)
(
x0
)
1 n!
f
(n) (x0 )

pn (x)
x) n1 xn1
(0 1)
三、泰勒公式的应用
1. 在近似计算中的应用
f (x) f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
误差
Rn (x)
M (n 1) !
x
n1
M 为 f (n1) (x) 在包含 0 , x 的某区间上的上
相关文档
最新文档