初一上学期数学之整式的概念及整式的加减
七年级上整式加减知识点

七年级上整式加减知识点在七年级的整式加减中,学生需要掌握一些重要的知识点。
本文将重点介绍这些知识点,并给出详细的解释和实例。
一、整式加减的基本概念整式是指只含有整数次幂的代数式,例如:3x² + 4xy - 5。
整式加减就是对两个或多个整式进行加减运算,例如:3x² + 4xy - 5 + 2x² - 3xy + 7。
二、同类项同类项是指具有相同变量及相同次数的项,例如:2x²、5x²是同类项,2x²、5xy不是同类项。
在整式加减中,只有同类项才能进行加减运算。
三、整式加减的运算法则1. 同类项相加:把同类项的系数相加,变量不变。
例如:3x² + 4xy - 5 + 2x² - 3xy + 7 = (3 + 2)x² + (4 - 3)xy + (-5 + 7) = 5x² + xy + 2。
2. 不同类项不能相加,只能合并在一起。
例如:3x² + 4xy - 5 + 2xy + 7y² - 8xy² = 3x² + (4 - 2)xy + 7y² -8xy² - 5 = 3x² + 2xy + 7y² - 8xy² - 5。
3. 加法的交换律和结合律仍然成立。
例如:(3x² + 4xy - 5) + (2x² - 3xy + 7) = 3x² + 2x² + 4xy - 3xy - 5 + 7 = 5x² + xy + 2。
4. 减法是加法的逆运算,其运算法则与加法相同。
例如:(3x² + 4xy - 5) - (2x² - 3xy + 7) = 3x² - 2x² + 4xy + 3xy - 5 - 7 = x² + 7xy - 12。
初一上册数学整式的加减

初一上册数学整式的加减整式是指将数与字母按照一定的规则结合起来,并包含有加减乘除等运算符的代数表达式。
在初一上册的数学课程中,学生需要学习整式的加减运算。
整式的加减运算是指,将两个或多个整式相加或相减的过程。
在进行加减运算时,我们需要按照一定的规则进行合并同类项。
首先,回顾一下整式的基本概念。
整式由字母和系数相乘的项组成,例如3x、7y、2xy等都是整式的项。
整式由多个项相加或相减得到,例如3x+7y、2xy-4x等都是整式。
在整式中,字母表示未知数或变量,常数系数表示字母的倍数。
在整式的加减运算中,我们需要注意以下几个步骤:1.合并同类项:将具有相同字母幂的项进行合并。
例如,3x+5x可以合并为8x,2xy-3xy可以合并为-xy。
2.需要注意符号:合并同类项时要注意项的符号。
正项加正项得正项,负项加负项得负项。
例如,3x-5x可以合并为-2x,-3xy+4xy可以合并为xy。
3.保留未合并的项:合并同类项后,未合并的项保持不变。
例如,3x+5x-2x可以先合并为6x,再加上未合并的项-2x,结果为4x。
4.删除系数为零的项:合并同类项后,如果得到的项的系数为零,则该项可以删除。
在具体的计算中,我们可以使用运算规律和运算性质来简化计算过程。
首先,加减运算具有交换律。
即a+b=b+a,a-b=-(b-a)。
这意味着我们可以改变加法和减法的顺序,而结果不变。
其次,加减运算具有结合律。
即(a+b)+c=a+(b+c),(a-b)-c=a-(b+c)。
这意味着我们可以改变加减运算中的括号位置,而结果不变。
此外,加减运算还具有分配律。
即a(b+c)=ab+ac,a(b-c)=ab-ac。
这意味着我们可以将一个整式与另一个整式的和或差相乘,然后再进行加减运算。
在实际的计算中,我们可以先进行合并同类项,然后按照上述的运算规律和运算性质来简化计算过程,最后得到结果。
综上所述,初一上册的数学课程中,学生需要学习整式的加减运算。
七年级整式的加减的知识点

七年级整式的加减的知识点整式是代数式的一种重要形式。
在代数学的学习中,整式的加减是一个关键知识点。
本文将介绍七年级整式的加减的知识点,包括算法、规则和示例等。
一、整式的基本概念所谓整式,就是只含有常数项、变量项和它们的积的代数式。
其中,常数项是没有字母的项,变量项是含有字母的项,它们的积是常数项和变量项的积。
例如,3x+2、4y^2-7x、6-5y^2等都是整式。
二、整式的加减原则整式的加减有一些基本原则,包括下列两点:1.同类项相加减同类项是指具有相同代数式的项。
它们的加减原则是:将同类项的系数相加减,得到新的同类项系数,再将系数与代数式相乘得到新的同类项。
例如,对于 5x+2y-3x+2 ,它们的同类项是 5x 和 -3x,2y 和 2。
将同类项的系数相加减,得到2x+2y,因此该式可以化简为2x+2y+2。
2.变号相加减变号相加减是指相加减的两个项的系数符号不同,这时需要将它们的绝对值相加减,再用两个项的符号中绝对值较大的一个作为结果的符号。
例如,对于 7x-3y和-4x+3y ,它们的系数符号分别为正负和负正。
将它们的绝对值相加减,得到 3x 。
根据绝对值大的原则,结果的符号是正,即该式可以化简为 3x。
三、整式的加减算法整式加减的具体计算方法,可归纳为以下两点:1.将同类项的系数相加减将同类项的系数相加减,得到新的同类项系数。
例如,对于 5x+2y-3x+2 ,将同类项的系数相加减,得到2x+2y 。
2.化简结果将同类项化简后,用变号相加减的原则,将结果化简为最简形式。
例如,对于 7x-3y和-4x+3y ,将同类项的系数相加减,得到 3x。
根据变号相加减的原则,结果的符号是正,化简为 3x。
四、小结在七年级代数学的学习中,整式加减是一个重要的知识点。
通过本文对整式的基本概念、加减原则、加减算法进行了详细说明,希望能够帮助大家对整式的加减有更深入的了解。
第06讲整式及其加减(教案)

举例:难点在于学生往往在处理含括号的整式加减时,容易混淆去括号后的符号变化,如(-3)(x-2)变为-3x+6;在解决应用题时,难以将问题描述转化为数学表达式,如“小明买了一本书和一支笔,书的价格是x元,笔的价格是y元,一共花了多少钱?”需要引导学生将其转化为x+y的表达式;在处理多项式相加或相减时,对于不同类项的识别和分类也是学生容易出错的地方,需要通过具体例题和练习加以强化。
学生小组讨论的环节也很有成效,大家能够提出自己的见解,并从不同角度分析问题。但在引导讨论时,我发现有些问题可能设置得过于开放,导致学生们思考的方向过于发散,难以聚焦。在今后的教学中,我需要更加精准地设置问题,引导学生更深入地探讨核心知识点。
此外,我还注意到,在总结回顾环节,有些学生对于整式加减的应用仍然存在疑惑。这提醒我在下一次的教学中,需要更加重视对知识点的总结和巩固,确保学生们能够彻底理解和掌握。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的基本概念、整式加减的重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对于整式及其加减的概念和运算规则的理解存在一些差异。有的学生能够迅速掌握合并同类项的技巧,但有的学生在去括号和符号处理上犯了难。这让我意识到,在讲解这些知识点时,需要更加细致和具体。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式加减的基本原理,如合并同类项的实际操作。
初一数学上册整式的加减

初一数学上册整式的加减整式是指由常数、未知数和它们的积所构成的代数表达式,包括常数项、一次项、二次项及其他各种项。
首先,我们来了解一下整式的加法。
整式的加法就是将两个或多个整式相加,将同类项相加即可。
所谓同类项,是指具有相同的字母和相同的指数的项。
例如,对于两个整式5x+3y和2x-4y,它们的同类项是5x和2x,以及3y和-4y。
将同类项相加得到7x-y,所以5x+3y+(2x-4y)=7x-y。
整式的减法与加法类似,也是将两个或多个整式相减,将同类项相减即可。
例如,对于两个整式5x+3y和2x-4y,它们的同类项是5x 和2x,以及3y和-4y。
将同类项相减得到3x+7y,所以5x+3y-(2x-4y)=3x+7y。
在进行整式的加减法时,有几个需要注意的地方。
首先,要注意符号的运用。
相同的正负号相加为正,不同的正负号相加为负。
相同的正负号相减为零,不同的正负号相减为正。
其次,要注意化简的步骤。
在将同类项相加或相减后,要进行合并整理,将同类项合并成一个系数。
最后,要注意根据具体的题目要求进行化简。
有些题目要求化简至最简形式,有些题目要求展开式子等等,要根据题目要求进行相应的操作。
接下来,我们举几个例子来进行实际操作。
例子1:化简表达式5x+3y-(2x-4y)。
首先,将同类项相加,得到3x+7y。
所以化简后的表达式为3x+7y。
例子2:求解方程3x+5=2x+8。
首先,将方程中的同类项移到一边,得到3x-2x=8-5。
化简得到x=3。
例子3:展开并化简表达式(2x+3y)(4x-5y)。
展开表达式,得到8x^2-10xy+12xy-15y^2。
将同类项相加得到8x^2+2xy-15y^2,所以展开并化简后的表达式为8x^2+2xy-15y^2。
整式的加减法是数学中的基本运算,掌握好整式的加减法是学习代数的基础。
通过反复练习和实际应用,我们可以更好地理解和掌握整式的加减法,提高我们的数学能力。
七年级上册整式加减

七年级上册整式加减知识点总结一、整式的概念与性质整式是由常数、变量、加、减、乘运算符号以及括号组成的代数式。
其中,变量与常数的乘积称为单项式,而由有限个单项式通过加、减运算组成的代数式称为多项式。
二、整式的加减法则整式的加减运算主要基于合并同类项和去括号等法则进行。
合并同类项:同类项是指次数相同、字母部分也相同的单项式。
合并同类项时,只需将其系数相加或相减,字母部分保持不变。
例如:3x + 2x = (3+2)x = 5x-2y² - 3y² = (-2-3)y² = -5y²去括号:去括号时,如果括号前是加号,则括号内的各项符号保持不变;如果括号前是减号,则括号内的各项符号都要改变。
例如:a + (b - c) = a + b - ca - (b + c) = a - b - c三、整式加减的运算步骤去括号:首先去掉整式中的括号,根据括号前的符号调整括号内各项的符号。
合并同类项:将整式中的同类项合并,使整式简化。
四、方法技巧注意符号:在进行整式加减运算时,要特别注意符号的变化,特别是在去括号和合并同类项时。
有序进行:先进行去括号的运算,再进行合并同类项的运算,以保证运算的正确性。
利用分配律:在整式加减中,可以利用分配律来简化运算。
例如,当遇到形如a(b+c)的式子时,可以将其展开为ab+ac。
五、举例题例1:化简整式3x²- 2x + 5 - (2x²- 4x + 1)。
解析:首先去括号,得到3x²- 2x + 5 - 2x²+ 4x - 1。
然后合并同类项,得到x²+ 2x + 4。
答案:x²+ 2x + 4例2:已知整式 A = 2x²- 3xy + y²,B = -x²+ xy - 2y²,求 A + B。
解析:首先代入整式A和B的表达式,得到 A + B = (2x ²- 3xy + y²) + (-x²+ xy - 2y²)。
七上数学第二章整式的加减

七上数学第二章整式的加减摘要:1.整式的概念及其分类2.整式的加减运算法则3.整式的加减运算实例分析4.整式的加减运算技巧和方法5.整式的加减在实际问题中的应用正文:七上数学第二章整式的加减一、整式的概念及其分类整式是指由常数、变量和它们的乘积以及它们的和差所组成的代数式。
整式可以分为单项式和多项式两大类。
单项式是只包含一个变量或常数的代数式,例如:3x、-2y等;多项式是由多个单项式通过加减运算组合而成的代数式,例如:x+3xy-2y等。
二、整式的加减运算法则整式的加减运算主要遵循以下法则:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如:3x 和4x 是同类项,而2x 和3y 不是同类项。
2.合并同类项:将同类项的系数相加减,字母和字母的指数不变。
3.遵循交换律和结合律:整式的加减运算可以交换顺序,也可以先计算部分项的和差,再进行总的加减运算。
三、整式的加减运算实例分析例如:计算以下整式的和差。
(1) 5x + 3xy - 2y + 2x - xy首先合并同类项,得到:7x + 2xy - 2y。
(2) 4a - 2b + 3c - (2a - b + c)去括号后,合并同类项,得到:2a - b + c。
四、整式的加减运算技巧和方法1.观察运算符号,根据符号进行相应的加减运算。
2.利用分配律,将加减运算分解为多个简单的加减运算。
3.注意合并同类项,避免遗漏或重复计算。
4.可以使用括号改变运算顺序,简化计算过程。
五、整式的加减在实际问题中的应用整式的加减在解决实际问题中具有重要作用,例如:在几何中求解面积、周长等问题时,需要用到整式的加减运算;在代数方程中,整式的加减是求解方程的重要手段。
七年级整式的加减知识点

七年级整式的加减知识点整式是由常数、变量及它们的积或幂次积,以及它们的和或差组成的代数式。
整式的加减是初中阶段数学中基础且重要的知识点,本文将从整式的定义、基本概念、加减法规则等方面,为大家详细介绍七年级整式的加减知识点。
一、整式的定义及基本概念1. 整式的定义:由常数和变量的积、幂以及它们的和或差组成的关于变量的代数式。
例如:2xy+3y-5a²b+4ab²+a²b+2a²b²2. 同类项:整式中,含有相同的字母和相同的次数的代数式称为同类项。
例如:2xy, 5xy, -9xy都是同类项;4a²b², -3a²b², 2a²b²也都是同类项。
3. 非同类项:整式中,不是同类项的代数式称为非同类项。
例如:2xy, 5xz, -9y都是非同类项;4a²b, -3h²j, 2cd也都是非同类项。
二、整式的加法原则两个整式相加,将它们的同类项合并在一起,非同类项则保留原样。
具体来说,可按如下方法进行:1. 去括号:如果有括号,先把括号去掉。
例如:(3x + 4y) + (2x - 5y) = 3x + 4y + 2x - 5y2. 合并同类项:把其中相同的项相加或相减,并保留非同类项。
例如:3x + 4y + 2x - 5y = 5x - y三、整式的减法原则整式相减时,也是先合并同类项,再保留非同类项。
具体来说,可按如下方法进行:1. 按一般加法步骤准备整式,要注意被减式的所有项都要取相反数。
例如:(5x² - 3x + 2) - (2x² - 4x + 1) = 5x² - 3x + 2 + (-2x² + 4x - 1)2. 合并同类项。
例如:5x² - 3x + 2 + (-2x² + 4x - 1) = 3x² + x + 1四、整式加减混合运算整式加减混合运算是指在同一道题目中,既有整式的加法运算,又有整式的减法运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的概念和整式的加减定 义示例剖析代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式.单独的一个数或字母也是代............数式...21x +,23ab ,10,a单项式:像2a -,2πr ,213x y -,abc -,237x yz ,……,这些代数式中,都是数字与字母的积,这样的代数式称为单项式.也就是说单项式中不存在数字与字母或字母与字母的加、减的关系,且单项式的分母中不含字母.单独的一个字母或数也叫做单项式,例如:a ,3-是单项式;356x y ab c +-+,不是单项式单项式的次数:是指单项式中字母..的指数和.单独的一个数(零除外),它们的次数规定为零.单项式212ab c -,它的指数1214++=,是四次单项式. 单项式的系数:单项式中的数字因数....叫做单项式的系数.47叫做单项式247x y 的系数;2r π的系数是π.同类项:所含字母相同....,并且相同字母的指.数.也分别相同的单项式叫做同类项. 213x y -与247x y ,2abc 与abc -, m -与7m易错点:① 单项式的系数包括单项式前面的符号;② π是一个数,不要将它当作字母.【例1】 指出下列各式,哪些是代数式 ?⑴ 21x + ⑵ 23ab ⑶ 10 ⑷ 10n a ⨯ ⑸ a b b a +=+ ⑹ 32> ⑺ 2πS R = ⑻ 347+= ⑼ π【例2】 写出下列单项式的系数和次数:夯实基础模块一 单项式相关概念单项式 325x y - 423a b - 0.9mn -22πr2x yz -3x系数 次数【例3】 ⑴ 单项式3257ab c-的系数是57-,次数是 . (人大附中期中)⑵ 一个单项式:它的系数是1-,次数是3,必须含x ,y 两个字母,请写出这样的单项式 .(写出一个即可)(北京101中学期中)⑶ 系数为3,只含..字母x 、y ,且次数是3的单项式共有( )个. A .1 B .2 C .3 D .4(人大附中期中)⑷ 下面给出的四对单项式中,是同类项的一对是( )A .213x y 与23z -B .232.2m n 与32112n mC .20.2a b 与20.2abD .11abc 与11ab(人大附中期中)⑸ ①2002-与2000是同类项;②2ab 与3abc -是同类项;③53x 与55x 是同类项;④5b -与3b 是同类项,上述说法正确的有( )A .0个B .1个C .2个D .3个(人大附中期中) ⑹ 写出325x y -的一个同类项(清华附中期中) ⑺ 若342n m x y +与923n x y -是同类项,那么m n ,的值分别是( )A .23m n =-=,B .23m n ==,C .32m n =-=,D .32m n ==, (三帆中学期中)⑻ 如果3||2n x y 与113m x y +-是同类项,则m n +=__________(北京师范大学附属实验中学期中)定 义示例剖析多项式:几个单项式的和叫做多项式. 27319x x -+是多项式. 多项式的项:其中每个单项式都是该多项式的一个多项式2231x x -+中,223x x -、、1是多项式能力提升模块二 多项式相关概念项.多项式中的各项包括它前面的符号.多项式中不含字母的项叫做常数项.的项,1是常数项.多项式的次数:多项式里,次数最高项的次数就是这个多项式的次数.27319x x -+的次数是二次. 2459x y y --+次数是四次. 多项式的命名:几次几项式.27319x x -+是二次三项式; 2459x y y --+是四次三项式. 整式:单项式和多项式统称为整式. 3,1ab +,2459x y y --+是整式. 把多项式按某个字母升幂、降幂排列233567x x x ---升幂排列:236735x x x --+- 降幂排列:325376x x x -+--【例4】 ⑴ 多项式43332577x y x y xy -+-是 次四项式,最高次项是 . (三帆中学期中) ⑵ 下列判断中正确的是( )A .23a bc 与2bca 不是同类项 B .25m n 不是整式C .单项式23x y -的系数是1-D .2235x y xy -+是二次三项式(三帆中学期中) ⑶ 下列代数式中是五次多项式的是( )A . 521x x -+B . 5112ab - C .35xy - D . 235a b ab -(清华附中期中)【例5】 334220.010.13xyx y x y x y ---+是 次 项式,把它按字母x 的降幂排列成 _________ ____ _____,排列后的第二项系数是 ,系数最小的项是_________. (人大附中期中)【例6】 在多项式32124199334m n m n m n n m u v x y u v x y --++-(其中m ,n 为正整数)中,恰有两项是同类项,则mn =能力提升夯实基础合并同类项:把多项式中同类项合并成一项,叫做合并同类项. 合并同类项时,只需把系数相加....,所含字母和字母指数不变... ()()3232x x x x +-=-= 去括号与添括号:去括号:括号前是负号时,括号里各项均要变号,括号前是正号,括号里的各项均不变号,添括号:括号前是负号时,括号里各项均要变号,括号前是正号,括号里的各项均不变号.()353525x x x x x -+=--=- ()3535x x x x ++=++45x =+【例7】 ⑴ 下列各式正确的是( )A . 336x y xy +=B .2x x x +=C .22963y y -+=-D .22660xy y x -+=(人大附中期中)⑵ 下列计算正确的是( )A . 54x x x -=B . 22111236y y -=C . 35823x x x +=D . 33332x x x -+=(清华附中期中)⑶ 下列式子中去括号错误的是( ) A . 5(25)525x x y z x x y z --+=-+-B . ()222(3)322332a a b c d a a b c d +----=---+C . 2233(6)336x x x x -+=--D . ()2222(2)2x y x y x y x y ----+=-++-(人大附中期中) ⑷ 多项式2422422a b a b a a -+-=-( ).(北京五中期中)【例8】 化简下列各式: ⑴ 2222x x x x ----能力提升夯实基础模块三 整式加减⑵ 22221(356)(44)2x xy y y xy x -----+(人大附中期中)⑶ 计算:设32243A x x x =-++、226B x x =+-、323C x x =+-, 则()A B C -+= .(人大附中期中)【例9】 若关于x 、y 的多项式21331231n nm mm m x y xyx y x y m n -----+++++-合并同类项后得到一个四次三项式,求m 、n 的值(所有指数均为正整数)探索创新知识模块一 单项式相关概念 课后演练【演练1】 找出下列各代数式中的单项式,并写出各单项式的系数和次数.223xy ; a -; a bc ; 32mn +; 572t ; 233a b c -; πx -【演练2】 ⑴ 234ab c 的同类项是( ).A .234bc aB .234ca bC .3214ac bD .2314ac b⑵ 已知946a b -和445n a b 是同类项,则式子1210n -的值是( ) A .17 B .37 C .17- D .98 ⑶ 若32009m m a b -与156n ab 是同类项,求2009()m n -的值.⑷ 如果3m ab --与413n ab 是同类项,且m 与n 互为负倒数,求m ,n 值.知识模块二 多项式相关概念 课后演练【演练3】 ⑴ 现有五种说法:①a -表示负数;②若||x x =-,则0x <;③绝对值最小的有理数是0;④22310x y ⨯是5次单项式;⑤5x y-是多项式.其中正确的是( )A .①②B .②③C .③⑤D .④⑤(北京师范大学附属实验中学期中) ⑵ 把下列多项式按x 降幂排列,并指出是几次几项式,并指出系数最小的项:① 322132187y xy x y x y --- ② 2233521xy x y x y y ---+-知识模块三 整式加减 课后演练【演练4】 ⑴ 一个多项式减去22x y -等于22x y +,这个多项式是( )A .22xB .22x -C .22yD .22y -实战演练(三帆中学期中) ⑵ 下列去括号错误的是 ( )A .()222323x x y x x y --=-+B .()222211322333x y xy x xy y +-=-+C .()224144a a a a --+=--D .()()222222b a a b b a a b ----+=-++-(北京五中期中)【演练5】 已知223A x =-,31B x =-+,25C x x =-,且2B C A D +=-,求D .【演练6】 如果30.3x m n -与412y m n 是同类项,那么代数式()()2323323254232532x y y xy x x xy y x y ---+----的值等于。