范钦珊材料力学第六章习题解答
材料力学第六版答案第06章

弯曲应力6-1求图示各梁在刃一刃截面上力点的正应力和危 险截面上最大正应力。
时间:2021.03.02 创作:欧阳数a=10cmV■ • W ■■A-O 0O r —412cmLB1■ —< 丄<题6-1图 解.(a )m-mmax23 x4xb= 20.37唤490.8x 10 亠(压) (b) M = S KN ・ m M “ = 0 5KN • m max5832 xlO"8(丿(C ) max1x10^x0.99x10- =38>67^25.6x10*(压)6-2图示为直径cm 的圆轴,其外伸段为空 心,内径d=4cm,求轴内最大正应力。
解:祥寻皿)6-3T 字形截面铸铁梁的尺寸与所受载荷如图示。
DV® 6-3 图^niaxl ^niax2 bmin2 (压(拉)试求梁内最大拉应力与最大压应力。
已知7L=10170cm:, h二9・ 65cm,厶二15. 35cm。
解:A截面:40 X IO3r而EX9.65W37.95 咖4()X1()s xl5.35 xIO-2=-50.37Mpa10170 xlO"sE截面2()xl(). X 15.35 X IO-2=30A9Mpa10170 xlO"820x10 X9.65 X IO-2 =-18.98A7/?6/10170 xlO"86-4 一根直径为〃的钢丝绕于直径为〃的圆轴上。
(1)求钢丝由于弯曲而产生的最大弯曲正应力(设钢丝处于弹性状态)(2)若d =lmm,材料的屈服极限6二700MP8,弹性模量启210GPa,求不使钢丝产生残余变形的轴径几丄=理_解:~P~EJ解: 10 x( 30x20'~~12-30x12?~~12~~=1568 nun2查表:b_26-5矩形悬臂梁如图示.已知1= 4 m, h = 3, ^10kN/m,许用应力[。
]二lOMpa。
试确定此梁横截面尺寸。
材料力学_范钦珊_习题参考解答

OB
B F P 60kN
Ea
1 .2 m
A
FP
x
解:1.铝筒: u A − u B
=
−FPl AB Ea Aa
(其中 uA = 0)
As
A' 2.1m
Es
C FP = 60 kN
x
uB
=
60 ×103 ×1.2 ×103 70 ×103 ×1.10 ×10−3 ×106
= 0.935 mm
Mx1= Mx2 2.确定轴和薄壁管横截面上的最大剪应力 设轴受 T = 73.6N·m 时,相对扭转角为 ϕ0 ,于是,有
dφ0 = M x = T dx GIp1 GIp1
(a)
焊接后卸载,管承受扭转,其相对扭转角为 ϕ 2 ,轴上没有恢复的相对扭转角为 ϕ1 = ϕ0 − ϕ2 ,即
其中
ϕ1 + ϕ2 = ϕ0
×103 × 10 −6
= 95.5 MPa
σ BC
=
FN2 A2
=
4 × (50 + 30) ×103 π × 302 ×10−6
= 113 MPa
(2) ∆l = ∆l AB
+ ∆lBC
=
FN1l1 EA1
+ FN2l2 EA2
= 1.06 mm
2-3 长度 l=1.2 m、横截面面积为 1.10×l0-3 m2 的铝制圆筒放置在固定的刚性块上;直 径 d=15.0 mrn 的钢杆 BC 悬挂在铝筒顶端的刚性板上;铝制圆筒的轴线与钢杆的轴线重合。若在钢杆的 C 端施加轴向拉力 FP,且已知钢和铝的弹性模量分别为 Es=200 GPa,Ea=70 GPa;轴向载荷 FP=60 kN, 试求钢杆 C 端向下移动的距离。
清华出版社工程力学答案-第6章 拉压杆件的应力变形分析与强度设计

∑ Fx = 0 , FNAC cos 45D + FNAD = 0
解得 AD 杆轴力大小为: FNAD = 15kN(拉)
2. 强度条件
拉杆:
AAD
=
FNAD [σ ]+
=
15 ×103 120 ×10−6
= 125mm2
压杆:
AAC
=
2. 钢杆的伸长量:
ΔlBC
=
FPlBC Es As
=
60×103 × 2.1 200×109 × π ×152 ×10−6
= 3.565mm
4
3. 钢杆 C 端向下移动的距离: uC = ΔlAB + ΔlBC = 0.935 + 3.565 = 4.50 mm
6-3 螺旋压紧装置如图所示。现已知工件所受的压紧力为 F=4 kN。装置中旋紧螺栓
10
习题 6-10 图
解:1.活塞杆 受到的轴力为:
FN
=
pA
=
p
⎡π ⎢ ⎣
(
D
2− 4
d2)⎤ ⎥ ⎦
=
⎡π 2.5⎢
⎣
(5602 − 4
1002
)
⎤ ⎥ ⎦
=
596.12kN
活塞杆的正应力: σ = FN = 596.12 ×103 = 75.9MPa A杆 π ×1002 / 4
工作安全系数: n = σ s = 300 = 3.95 σ 75.9
弹性模量E和泊松比ν 。
l0
b
解:1.计算弹性模量E
h 习题 6-11 图
11
εx
=
高教范钦珊材料力学习题集_【有答案】

习题1-1图 习题1-2图习题1-3图习题1-4图习题1-5图习题1-6图 材料力学习题集第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图ABABC)(ql 2lM QF QF 454141第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F x M=; (B ))(d d Q x q x F -=,Q d d F x M-=; (C ))(d d Q x q x F -=,Q d d F x M=; (D ))(d d Q x q x F =,Q d d F xM-=。
高教范钦珊材料力学习题集 有答案

习题1-1图习题1-2图习题1-3图习题1-4图习题1-5图习题1-6图材料力学习题集第1章引论1-1图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M。
关于固定端处横截面A-A上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2图示带缺口的直杆在两端承受拉力F P作用。
关于A-A截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是D 。
1-3图示直杆ACB在两端A、B处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P。
关于杆中点处截面A-A在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致。
关于杆中点处截面A-A在杆变形后的位置(对于左端,由AA'→;对于右端,由AA''→),有四种答案,试判断哪一种答案是正确的。
正确答案是C 。
1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是C 。
第2章杆件的内力分析习题2-1图习题2-2图习题2-3图习题2-4图A BABC)(ql 2lM QF QF 454141(a-1) (b-1)AD EC MABCB 2M2M 34122-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F x M=; (B ))(d d Q x q x F -=,Q d d F x M-=; (C ))(d d Q x q x F -=,Q d d F x M=; (D ))(d d Q x q x F =,Q d d F xM-=。
材料力学课后标准答案

解:取轴向长为 的管分析:微元 上,作用力为
向分量 ,积分得
则: ,而
则:
题6-12图题6-13图
6-13长输水管受内压 ,管的内径为 , , ,用第四强度理论计算壁厚。(提示:可设管的轴向应变为零。)
解: ,数据代入,得:
,
所以
现已知
,
得
题6-5图
题6-6图题6-7图
6-6图示简支梁为 工字梁, , 。 点所在截面在集中力 的左侧,且无限接近 力作用的截面。试求: 点在指定斜截面上的应力; 点的主应力及主平面位置(用单元体表示)。
解: 所处截面上弯矩、剪力:
,
查型钢表后, 点以下表面对中性轴静矩:
,
同理,积分得
所以, 处转角为 ,为顺时针方向; 处挠度为 ,为竖直向下。
8-6试求图示各刚架 点的竖直位移,已知刚架各杆的 相等。
解: 段: ; 段上
由卡氏定理, 处的竖直位移
分段带入后面积分:
为正值,则与 同向,竖直向下
分析可知, 处已经作用有竖直方向的力,为了能利用卡氏定理解题, 处和竖杆中间处的 分别为
(压), (拉)
进而求得 (拉),由
求得:
8-3计算图示各杆件结构的变形能。
题8-3图
解: 首先求解 处的约束反力为
弯矩方程为:
则
分段积分:
解: 以逆时针方向为正,
,积分得
8-4试求图示各梁的 点的挠度的转角。
题8-4图
解: 以 点为 轴起点,结构的弯矩方程为:
则:
得
撤去 和 ,在 处作用逆时针向
理论力学课后答案范钦珊)

AyF FBCAAxF 'F CCDCF FAxF DR F FACBDAyFFDR F A CBD Ax F Ay F(a-1)第1篇 工程静力学基础第1章 受力分析概述1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。
试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。
习题1-1图解:(a )图(c ):11 sin cos j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y =投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
(b )图(d ): 分力:22)cot sin cos (i F ϕααF F x -= ,22sin sin j F ϕαF y = 投影:αcos 2F F x = , )cos(2αϕ-=F F y讨论:ϕ≠90°时,投影与分量的模不等。
1-2 试画出图a 和b 两种情形下各物体的受力图,并进行比较。
习题1-2图1y F x1F 1yF α1x F yF (c ) 2x F 2y F 2y 2x 2x F 2y F F(d )比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。
1-3 试画出图示各物体的受力图。
习题1-3图F AxF AyF D C B A B F或(a-2)FF AF DCA(a-1)BF AxF AAyF C(b-1)W F BD C AyF F(c-1)F F CB B F A或(b-2) αDAF ABCBFAx F AAyFDF DC αF1-4 图a 所示为三角架结构。
荷载F 1作用在铰B 上。
杆AB 不计自重,杆BC 自重为W 。
试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。
习题1-4图C F CAAF (e-1) BF FCDBOOx F OyF W1O F A(f-1)FF DCABBF(e-3)'F AOOxF OyF AW(f-2)AF 1F A1O(f-3)F AF BF AAF xB 2F'yB 2F'1(c-1)F A B1B F(b-1)Dy F DDx F yB F C2(b-2)xB 2F'1F 1F'yB 2F'B(b-3)B WDxF DCyB F'(c-2)AF A D GF CH F H (a)1-5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。
高教范钦珊材料力学习题集 有答案

材料力学习题集第1章引论1-1图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M。
关于固定端处横截面A -A上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
A-A在(b-1)(a-1) (b-1)(a-2) (b-2)(c) (d)(c-2) (d-2)(e) (f)(e-1) (f-1)(e-2) (a) (b)(c) (d)(a-1)(c-1) (d-1)(f-2)(b )0=∑A M ,022R 2=⋅+⋅+⋅--l F l ql lql ql B , ql F B 41R =(↑) 0=∑y F ,ql F A 41R =(↓), 2R 4141ql l ql l F M B C =⋅=⋅=(+) 2ql M A =(c )0=∑y F ,ql F A =R (↑) 0=∑A M ,2ql M A =0=∑D M ,022=-⋅-⋅+D M lql l ql ql(d )0=∑B Mql F A 45R =(↑) 0=∑y F ,ql F B 43R =(↑)0=∑B M ,22l qM B =0=∑D M ,23225ql M D = (e )0=∑y F ,F R C = 00=∑C M ,0223=+⋅+⋅-C M lql l ql0=∑B M ,221ql M B =0=∑y F ,ql F B =Q2max ||ql M =(f )0=∑A M ,ql F B 21R =(↑)0=∑y F ,ql F A 21R =(↓)0=∑y F ,021Q =-+-B F ql ql0=∑D M ,042221=+⋅-⋅D M ll q l ql281ql M E =∴ ql F 21||max Q =2-5 试作图示刚架的弯矩图,并确定max ||M 。
解: 图(a ):0=∑A M ,02P P R =⋅-⋅-⋅l F l F l F B P R F F B =(↑)0=∑y F ,P F F Ay =(↓) 0=∑x F ,P F F Ax =(←)弯距图如图(a-1),其中l F M P max 2||=,位于刚节点C 截面。