最新1.高电压技术前言及第一章讲稿(1)PPT课件

合集下载

高电压技术前言及PPT课件

高电压技术前言及PPT课件

ν:光的频率
-
15
热游离 气体在热状态下引起的游离过程称为热游离
产生热游离的条件:
3 2
KT
Wi
K:波茨曼常数
T:绝对温度
-
16
金属表面游离
电子从金属电极表面逸出来的过程 称为表面游离
-
17
(4)去游离 a.扩散 带电质点从高浓度区域向低浓度区域运动. b.复合 正离子与负离子相遇而互相中和还原成中性原子 c.附着效应 电子与原子碰撞时,电子附着原子形成负离子
自持放电条件可表达为:
(eS 1)1
-
23
(5)巴申定律 a.表达式:
UF f(PS)
P:气体压力 S:极间距离
-
24
b.均匀电场中几种气体的击穿电压与ps的关系
-
25
2.流注理论 (1).在ps乘积较大时,用汤逊理论无法解释的几种现象 a.击穿过程所需时间,实测值比理论值小10--100倍
负捧-----正板 低
间隙击穿电压


-
33
四.雷电冲击电压下气隙的击穿特性
1.标准波形
-
34
几个参数
波头时间T1:T1=(1.2 30%)μs 波长时间T2: T2=(50 20%) μs
标准波形通常用符号 1.2/50s 表示
-
35
2.放电时延 (1).间隙击穿要满足二个条件
a.一定的电压幅值 b.一定的电压作用时间
-
11
变压器相间绝 缘以气体作为绝 缘材料
-
12
2.带电质点的产生与消失
(1) 激发 原子在外界因素作用下,其电子跃迁到能量较高的状态
(2)游离 原子在外界因素作用下,使其一个或几个电子脱离原

高电压技术第一章-PPT课件

高电压技术第一章-PPT课件

第一章 电介质的极化、电导和损耗
夹层式极化:使夹层电介质分界面上出现电 荷积聚的过程。由于夹层极化中有吸收电 荷,故夹层极化相当于增大了整个电介质 的等值电容。 夹层式极化的特点:极化过程缓慢;是非弹 性的;只有在直流电压下或低频电压作用下 ,极化才能呈现出来,有能量损耗。
第一章 电介质的极化、电导和损耗
第一章 电介质的极化、电导和损耗
第一章 电介质的 极化、 电导和损耗
• 要求
熟悉电介质在电场作用下的极化、电 导和损耗等物理现象,以及它们在工程上 的合理应用。
第一章 电介质的极化、电导和损耗
知识点 ● 电介质的极化、电导和损耗的概念 ● 各类电介质的极化、电导和损耗的特 点 ● 相对介电常数εr ● 电介质的等值电路 ● 介质损失角正切tanδ ● 电介质极化、电导和损耗在工程上的 意义
定义:无外电场时对外不显电性。外电场 作用下由于电子发生相对位移而发生极 化。 特点:极化过程时间极短,约10-14~10-15 s ;极化是弹性的,无能量损耗;与电源 频率、温度无关。
第一章 电介质的极化、电导和损耗
图1-2 离子式极化示意图
定义:发生于离子结构的电介质中。正常 对外不呈现极性,在外电场作用下正、 负离子偏移其平衡位置,使介质内正、 负离子的作用中心分离,介质对外呈现 极性。 特点:时间极短,约10-12~10-13s;极化是 弹性的,无能量损耗;极化程度与电源 频率无关,随温度升高而略有增加。
第一章 电介质的极化、电导和损耗
相对介电常数εr
它是表征电介质在电场作用下极化程度 的物理量
εr的值由电介质的材料 决定,并且与温度、频 率等因素有关。
第一章 电介质的极化、电导和损耗
第一章 电介质的极化、电导和损耗

高电压技术课件ppt

高电压技术课件ppt

总结词
高电压技术经历了多个阶段,从最初的直流输 电到现代的特高压交流输电,其技术水平和应用范围 不断得到提升和拓展。未来,随着新能源、智能电网 等领域的快速发展,高电压技术将继续向更高电压等 级、更远距离输电、更高效节能等方向发展。同时, 随着科技的不断进步,高电压技术还将与其他领域的 技术进行交叉融合,产生更多的创新应用。
应急预案制定
制定详细的高电压安全事故应急预案,明确应急组织、救援程序 和救援措施。
应急演练和培训
定期进行应急演练和培训,提高工作人员应对高电压安全事故的能 力和意识。
及时救援和处理
一旦发生高电压安全事故,应迅速启动应急预案,采取有效措施进 行救援和处理,以减少人员伤亡和财产损失。
06 实践案例分析
高电压设备的绝缘测试与维护
绝缘测试
为了确保高电压设备的安全运行,必 须定期进行绝缘测试。常见的绝缘测 试方法包括耐压测试、介质损耗测试 、局部放电测试等。
维护与检修
高电压设备的运行过程中,应定期进 行维护和检修,及时发现和处理设备 存在的隐患和缺陷,保证设备的正常 运行。
高电压的电磁场与电磁屏蔽
高电压技术在电力系统中的作用
总结词
高电压技术在电力系统中的作用
详细描述
高电压技术在电力系统中扮演着至关重要的角色。通过高压输电,可以大幅度提高输电效率,降低线损,减少能 源浪费。同时,高电压也是电力系统稳定运行的重要保障,能够有效地解决电力供需矛盾,保障电力系统的安全 稳定运行。
高电压技术的发展历程与趋势
某地区高电压输电线路的设计与优化
总结词
考虑地理环境、气象条件、线路长度等 因素,采用先进的输电技术,优化设计 高电压输电线路。
VS
详细描述

高电压技术(全套课件)

高电压技术(全套课件)
高电压技术
信息工程学院电气教研室
绪论
一.内容与范畴
高电压技术是电工学科的一个重要分支,它涉及到 数学、物理、化学、材料等基础学科,主要研究高电压 (强电场)下的各种电气物理问题。20世纪60年代以来, 高电压技术一直不断吸收其他学科尤其是新科技领域的 成果,促进自身发展;也促进了电力传输、大功率脉冲 技术、激光技术、核物理等科技领域的发展,显示出强 大的活力。
四.重点和难点
课程的重点包括: 汤逊理论和流注理论等气体放电的基本理论、电场
型式及其与击穿特性的关系、液体和固体电介质的 绝缘特性; 绝缘特性的测量方法、电气设备的高电压试验设备及 原理; 线路和绕组中的波过程、电力系统中的过电压及其防 护、绝缘配合。
课程的难点是:
汤逊、流注气体放电理论的理解; 电介质的极化、电导和损耗的物理概念及其工
当不存在外电场时,电子云的 中心与原子核重合,此时电矩为 零.当外加一电场,在电场力的 作用下发生电子位移极化.当外 电场消失时,原子核对电子云的 引力又使二者重合,感应电矩也 随之消失。
电场中的所有电介质内都存在 电子位移极化。
二、离子位移极化

在由离子结合成的电介质内,外电场的作用除促使
各个离子内部产生电子位移极化外还产生正、负离子相对位移而
二 .课程内容
第一篇 各类电介质在高电场下的特性 教学内容:气体放电的基本物理过程;气体介质的 气强度;液体和固体介质的电气特性。
第二篇 电气设备绝缘试验技术 教学内容:电气设备绝缘预防性试验;绝缘的高电压 试验。
第三篇 电力系统过电压与绝缘配合 教学内容:输电线路和绕组中的波过程;雷电放电与 防雷保护装置;电力系统的防雷保护;内部过电压; 电力系统绝缘配合。

《高电压技术一》PPT课件

《高电压技术一》PPT课件

2、在电场的作用下,电介质中出现的电气现象: 弱电场——电场强度比击穿场强小得多 如:极化、电导、介质损耗等。 强电场——电场强度等于或大于放电起始场 强或击穿场强: 如:放电、闪络、击穿等。
强电场下的放电、闪络、击穿等电气现象是 我们本篇所要研究的主要内容。
3、几个基本概念
击穿:在电场的作用下,电介质由绝缘状态突变为 良导电状态的过程。 放电:特指气体绝缘的击穿过程。
电气设备中常用的气体介质 : 空气、压缩的高电气强度气体(如SF6) 纯净的、中性状态的气体是不导电的,只有气体中出现
了带电粒子(电子、正离子、负离子)后,才可能导电, 并在电场作用下发展成各种形式的气体放电现象。
辉光放 火花放电(雷闪)

大气压力下。
气压较低, 电源功率较小时, 电源功率很小时, 间隙间歇性击穿, 放电充满整个间隙。 放电通道细而明亮。
称为气体的电气强度,通常称之为平均击穿场强。
击穿场强是表征气体间隙绝缘性能的重要参数。
1、电介质的分类
按物质形态分:
➢气体电介质 ➢液体电介质 ➢固体电介质 其中气体最常见。气体介质同其它介质相比,具有在 击穿后完全的绝缘自恢复特性,故应用十分广泛。
按在电气设备中所处位置分:
外绝缘: 一般由气体介质(空气)和固体介质(绝缘子 )联合构成。 内绝缘: 一般由固体介质和液体介质联合构成。
ห้องสมุดไป่ตู้
第一节 带电粒子的产生和消失
(2)电离的四种形式
• 电子要脱离原子核的束缚成为自由电子,则必须给予其能量。能量来源的不同 带电粒子产生的方式就不同。
• 因此,根据电子获得能量方式的不同,带电粒子产生的方式可分为以下几种 。
第一节 带电粒子的产生和消失

高电压技术(全套课件)PPT课件

高电压技术(全套课件)PPT课件

精选PPT课件
6
第一篇 高电压绝缘及实验
第一章 第二章 第三章 第四章
电介质的极化、电导和损耗 气体放电的物理过程 气隙的电气强度 固体液体和组合绝缘的电气强度
精选PPT课件
7
第一章 电介质的极化、电导和损耗
第一节 电介质的极化 第二节 电介质的介电常数 第三节 电介质的电导 第四节 电介质中的能量损耗
1.电气设备的绝缘:
①绝缘试验(固、液、气体) ——在电场作用下的电气物
理性能和击穿的理论、规律。 ②高压试验——判断、监视绝
缘质量的主要试验方法。
2.电力系统的过电压:
③过电压及其防护——过电压
的成因与限制措施。
精选PPT课件
3
三.中国电力系统电压等级的划分0KV, 包括:10KV,35KV,110KV,220KV
精选PPT课件
10
§1.1 电介质的极化
定义:电介质在电场作用下产生的束缚电荷的弹 性位移和偶极子的转向位移现象,称为电 介质的极化。
效果:消弱外电场,使电介质的等值电容增大。 物理量:介电常数 类型:电子位移极化; 离子位移极化;
转向极化; 空间电荷极化。
精选PPT课件
11
一、 电子位移极化
E
精选PPT课件
8
§1. 电介质的极化、电导和损耗
电介质有气体、固体、液体三种形态,电
介质在电气设备中是作为绝缘材料使用的。一切电介质
在电场的作用下都会出现极化、电导和损耗等电气物理
现象。
电介质的电气特性分别用以下几个参数来
表示:即介电常数εr,电导率γ(或其倒数——电阻率
ρ),介质损耗角正切tgδ,击穿场强 E,它们分别反
映了电介质的极化、电导、损耗、抗电性能。

高电压技术第一章课件.ppt

高电压技术第一章课件.ppt
• 这些电离强度和发 展速度远大于初始
电子崩的二次电子
崩不断汇入初崩通
道的过程称为流注。
流注条件
• 流注的特点是电离强度很大和传播速度很快, 出现流注后,放电便获得独立继续发展的能 力,而不再依赖外界电离因子的作用,可见 这时出现流注的条件也就是自持放电的条件。
• 流注时初崩头部的空间电荷必须达到某一个临界 值。对均匀电场来说,自持放电条件为:
n
n0
e
dx
0
n n0ed
• 途中新增加的电子数或正离子数应为:
n na n0 n0 (ed 1)
• 将等号两侧乘以电子的电荷qe ,即得 电流关系式::
I I0ed I0 n0qe
一旦除去外界电离因子?
(三)自持放电与非自持放电
在I-U曲线的BC段 一旦去除外电离因素,
气隙中电流将消失。 外施电压小于U0时 的放电是 非自持放 电。
• 复合可能发生在电子和正离子之间,称 为电子复合,其结果是产生一个中性分 子;
• 复合也可能发生在正离子和负离子之间, 称为离子复合,其结果是产生两个中性 分子。
气体放电的基本理论
• 汤逊理论 • 流注理论 • 巴申定律
一 汤逊气体放电理论
1. 电子崩
• 电子崩的形成过程 • 碰撞电离和电子崩引起的电流 • 碰撞电离系数
一、带电粒子在气体中的运动
(一)自由行程长度
气体中存在电场时, 粒子进行 热运动和 沿电场定向运动
• 各种粒子在气体中运动时 不断地互相碰撞,任一粒 子在1cm的行程中所遭遇 的碰撞次数与气体分子的 半径和密度有关。
• 单位行程中的碰撞次数Z 的倒数λ
–即为该粒子的平均自由行 程长度。
二、带电粒子的产生

《高电第1章》课件

《高电第1章》课件
电压。
间接测量法
通过测量与高电压相关的其他 物理量,如电流、电容、电感 等,再换算出电压值。
分压器法
使用电阻分压器将高电压降低 到可测量的范围,再通过测量 电阻上的电压来推算出高电压 。
光学测量法
利用光学原理,如光电效应、 光纤传输等,实现高电压的非
接触测量。
高电压的试验设备与技术
高电压发生器
用于产生高电压的设备,根据不同需求选择 合适的类型和规格。
高电压传输的安全措施
为了确保高电压传输的安全,需要采取一系列安全措施,如保持安全距离、加强绝缘、安 装避雷设施等。这些措施可以有效降低高电压对周围环境和人员的影响。
高电压的绝缘材料与绝缘技术
高电压的绝缘材料
高电压的绝缘材料需要具备较高的电气强度和耐老化性能等特点。常用的绝缘材 料包括陶瓷、橡胶、塑料等。这些材料在高电压环境下能够保持较好的绝缘性能 ,是高电压设备中必不可少的组成部分。
04
高电压技术涉及高电压的产生 、传输、控制和应用,具有高 能、高压、强电场等特点。
高电压的应用领域
应用领域 高电压技术在电力、能源、交通、国 防等领域有广泛应用,如高压输电、
雷电防护、脉冲功率等。
应用实例
1. 高压输电:通过高压输电线路将电 能从发电厂传输到负荷中心,减少能 量损失。
2. 雷电防护:利用高电压技术产生雷 电模拟信号,对电子设备进行测试和 保护。
指通过改变电场中的电荷分布来产生高电压,而电磁感应则是通过改变
磁场中的电流分布来产生高电压。
02
高电压产生装置
高电压产生装置通常包括静电发生器和变压器等设备。静电发生器通过
电荷分离原理产生高电压,而变压器则通过改变磁场中的电流分布来产
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如右图所示
25
试验图形分析:
• 首先,大气中少量的正负离子存在;
• 其次,在极间加上电压后,带电离子 oa段:
分别向两极移动,形成电流;
随着电压升高,到达阳极 的带电质点数量和速度也随之 增大。
均匀电场中气体的伏安特性
ab段:
电流不再随电压的增大而 增大因为这时由外界电离因素 在极间产生的带电离子已全部 参加导电,所以电流趋于饱和 。电流密度是极小的,一般只 有10-19 A/cm2,间隙仍处于良 好的绝缘状态。
12
输电线路以气体作为绝缘材料
架空输电线 相与相之间 线路与铁塔之间
13
变压器相间绝缘以气体作为绝缘材料
变压器引出 线之间
14
液体与固体绝缘材料中的气体
15
一.气体电介质的放电特性
2.带电质点的产生
(1) 激发(激励)
原子在外界因素(电场、高温等)作用下,其电子 跃迁到能量较高的状态,但这一过程只有10-8S,非 常短暂。后回到正常状态并发射光子。
叫自持放电。电子雪崩。
27
试验图形分析:
电子在电场作用下从阴 极奔向阳极,并与中性分子 碰撞产生电离,由此产生的 新电子也加入其中,使电子 的数目迅速增加,这种迅猛 发展的碰撞电离过程被称为 电子雪崩。
均匀电场中气体的伏安特性
28
相关的概念
(1).电子崩 在电场作用下电子从阴极向阳极推进而形成的一群电子。
18
一.气体电介质的放电特性
2.带电质点的产生
(a)碰撞游离
当带电质点具有的动能积累到一定数值后,在与气 体原子(或分子)发生碰撞时,可以使后者产生游离 ,这种由碰撞而引起的游离称为碰撞游离
引起碰撞游离的条件:
1 2
m2
Wi
W i :气体原子(或分子)的游离能
19
一.气体电介质的放电特性
2.带电质点的产生
21
一.气体电介质的放电特性
2.带电质点的产生 (d)金属表面游离 电子从金属电极表面逸出来的过程称为表面游离
22
一.气体电介质的放电特性
2.带电质点的消失
(1)去游离
a.扩散 带电质点从高浓度区域向低浓度区域运动.
b.复合 正离子与负离子相遇而互相中和还原成中性 原子
c.附着效应 电子与原子碰撞时,电子附着原子形成负 离子
6
21世纪电力发展特点:
发展智能电网(Smart Grid)
就是电网的智能化,它是建立在集成的、高速双 向通信网络的基础上,通过先进的传感和测量技术 、先进的设备技术、先进的控制方法以及先进的决 策支持系统技术的应用,实现电网的可靠、安全、 经济、高效、环境友好和使用安全的目标,其主要 特征包括自愈、激励和包括用户、抵御攻击、提供 满足21世纪用户需求的电能质量、容许各种不同发 电形式的接入、启动电力市场以及资产的优化高效 运行。
7
电气设备的一般特性
1. 设备可靠性随电压升高而下降 2. 设备的体积随电压升高而增大
8
电气设备的一般特性
设备
可靠性
体积
电压 9
高电压技术 张一尘 第一章
气体的绝缘特性
10
概述
➢ 气体 如绝缘气体:空气 1 用于高压电气设备绝缘的介质 ➢ 液体 如油,变压器等
➢ 固体 如绝缘子等
2 绝缘的击穿: 作用在绝缘材料上的电场强度超过某一临界值 而使其失去绝缘性能的现象。
3 气体介质的两大优点
❖ 不存在老化问题;
❖ 击穿后具有完全的绝缘自恢复特 性。
11
一.气体电介质的放电特性
1.空气在强电场下放电特性 气体在正常状态下是良好的绝缘体,在一个立方厘
米体积内仅含几千个带电粒子,但在高电压下,气体从少量 电荷会突然产生大量的电荷,从而失去绝缘能力而发生放 电现象.
一旦电压解除后,气体电介质能自动恢复绝缘状态
23
气体中带电粒子的产生与消失
中性的气体
能量 电离的方式 ➢ 激发
电离 去电离过程 ➢ 带电粒子的扩散
➢ 游离
碰撞电离 光电离
➢ 带电粒子的复合
热电离
➢ 附着效应
表面电离
24
第二节 均匀电场中气体间隙的放电特性电子崩与流注
1.汤逊放电理论(又名电子崩理论). 适用条件:
均匀电场,低气压,短间隙 实验装置:
正常 原子
电场 高温等
激发 原子
+
正常 原子
光子
16
一.气体电介质的放电特性
2.带电质点的产生
(2) 游离 原子在外界因素作用下,使其一个或几个电子脱
离原子核的束博而形成自由电子和正离子。
中性 原子
外界能量
+
正离子 电子
17
一.气体电介质的放电特性
2.带电质点的产生
游离的方式 a.碰撞游离(电子起主要作用) b.光游离 c.热游离 d.金属表面游离
26
试验图形分析:
bc段:
电流又再随电压的增大而增 大,到达b点后,电流又重新随电 压升高而增大。间隙中出现新的 电离因素,这就是电子的碰撞电 离。
c点:电流急剧突增
均匀电场中气体的伏安特性
随着电压的升高,电流越来
越大。最后达到c点时,电流更急
剧增加到必须依靠外电路的电阻
来限制的地步。放电的这一阶段
1.高电压技术前言及第一章讲 稿(1)
高电压技术
High Voltage Technology
Teacher: 钟云
Cell Phone: 13617917378
office: 信工楼c206
Office hour:每周四上午9-12点
张一尘主编
2
前言 profile
Question time Q1.为什么巨大的电能需要通过高电压输送? Q2.高电压技术学习内容和要求
(2).非自持放电 去掉外界游离因素的作用后,放电随即停止。
(3).自持放电 不需要外界游离因素存在,放电也能维持下去。
29
电子雪崩的示意图
-
3
前言 profile
高电压技术作为工程技术中的一门学科的原因:
是因为 大功率、远距离输电
的发展而产生的
4
前言 profile
20世纪电力发展特点:
大机组 大电网 高电压
数据统计:美国 中国 Nhomakorabea俄国单机(千瓦) 120万 90万
90万
电压(千伏) 800 500
765
5
21世纪电力发展特点:
更加可靠 更加开放 更加有效 更加灵活
(b)光游离
由光辐射引起气体原子(或分子)的游离称为光游 离
产生光游离的条件: h Wi
从公式中可得出,:能量取决于光的波长
h:普朗克常数 ν:光的频率
20
一.气体电介质的放电特性
2.带电质点的产生 (c)热游离
气体在热状态下引起的游离过程称为热游离
产生热游离的条件:
3 2
KT
Wi
K:波茨曼常数
T:绝对温度
相关文档
最新文档