常用电容器主要参数与特点

合集下载

电容参数详解

电容参数详解

在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。

这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不同的值也对应着一定的电容容量的范围。

具体来说,就是:X7R常用于容量为3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0°C变化为70°C时,电容容量的变化为±15%;Y5P与Y5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为±10%或者+22%/-82%。

对于其他的编码与温度特性的关系,大家可以参考表4-1。

例如,X5R的意思就是该电容的正常工作温度为-55°C~+85°C,对应的电容容量变化为±15%。

表4-1 电容的温度与容量误差编码下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。

不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是A VX公司的命名方法,其他公司的产品请参照该公司的产品手册。

NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。

在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。

所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。

一:NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。

它的填充介质是由铷、钐和一些其它稀有氧化物组成的。

NPO电容器是电容量和介质损耗最稳定的电容器之一。

在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。

NPO电容的漂移或滞后小于±0.05% ,相对大于±2%的薄膜电容来说是可以忽略不计的。

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数电阻主要特性参数1、标称阻值:电阻器上面所标示的阻值。

2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。

允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、1004、额定电压:由阻值和额定功率换算出的电压。

5、最高工作电压:允许的最大连续工作电压。

在低气压工作时,最高工作电压较低。

6、温度系数:温度每变化1℃所引起的电阻值的相对变化。

温度系数越小,电阻的稳定性越好。

阻值随温度升高而增大的为正温度系数,反之为负温度系数。

7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。

9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。

电感器的主要参数电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

(一)电感量电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。

电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁心及磁心的材料等等。

通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。

电子电路中的电容选取与使用技巧

电子电路中的电容选取与使用技巧

电子电路中的电容选取与使用技巧在电子电路设计和制作中,电容是一种重要的元件,它在各种电路中起着储存、过滤、隔离和耦合等作用。

正确的电容选取和使用技巧对电路的性能和稳定性具有重要的影响。

本文将介绍电子电路中电容选取与使用的一些技巧和注意事项。

一、电容的基本特性及参数电容是由两个导体板之间的电介质隔离而成的,它具有储存电荷的能力。

电容的主要参数有容量、电压、温度系数和功率损耗等。

容量单位为法拉(F),兆法拉(MF)和皮法拉(PF)是常见的单位。

二、电容的选取要点1. 容量选择在选择电容时,首先需要根据电路的需求确定所需容量的范围。

较小的电容常用于高频信号的耦合和去耦,较大的电容常用于低频信号的耦合和滤波。

一般来说,容量越大,电容器的体积也就越大。

2. 电压选择电容的工作电压需小于或等于电路中的电压值。

在电路设计时,需要考虑电压的峰值和稳态电压,选择适当的电容器来满足电路的工作要求。

3. 尺寸和封装选择电容尺寸和封装形式也是选取时需要考虑的重要因素。

根据电路板上的空间布局和尺寸限制,选择适合的电容器型号和外形封装。

4. 频率特性选择电容的频率特性也是需要考虑的因素之一。

对于高频应用,需要选择具有低阻抗和低的ESR(等效串联电阻)的电容器,以确保信号传递的准确性。

5. 环境适应性选择在一些特殊环境中,例如高温、低温、潮湿等,需要选择适应性更强的电容器。

有些电容器具有超高温度工作能力,适合在高温环境下使用。

三、电容使用的技巧和注意事项1. 使用陶瓷电容器陶瓷电容器是常见的电容器类型之一,具有尺寸小、稳定性好和频率特性优良的特点,适合用于高频和精密电路中。

2. 去耦电容的使用在电源和地之间并联一个适当容值的电容器,可以起到去除电源杂散干扰的作用,提高电路的稳定性。

3. 工作电压留余在选取电容时,应保留一定的电压余量。

工作电压过高或接近电容器额定电压,会导致电容器的寿命缩短。

4. 防止电容短路安全措施当使用大容量电容时,应注意电路中电容两端产生瞬时大电流的问题。

电容器的主要参数有哪些

电容器的主要参数有哪些

电容器的主要参数有哪些?电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。

(一)标称容量标称容量是指标注在电容器上的电容量。

电容量的基本单位是法拉(简称法),用字母“F”表示。

比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是:1F=1000mF1mF=1000μF1μF=1000nF1nF=1000pF其中,微法(μF)和皮法(pF)两单位最常用。

在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。

电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。

标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。

(二)允许偏差允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。

电容器的容量偏差与电容器介质材料及容量大小有关。

电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器等)的容量相对较小,误差范围小于±20%。

(三)额定电压额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。

该额定电压值通常标注在电容器上。

在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。

(四)漏电流电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。

一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。

(五)绝缘电阻绝缘电阻也称漏电阻,它与电容器的漏电流成反比。

电容参数:X5R,X7R,Y5V,COG详解

电容参数:X5R,X7R,Y5V,COG详解

电容参数:X5R,X7R,Y5V,COG详解我们选择⽆极性电容式,不知道⼤家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本⼈特意为此查阅了相关的⽂献,现在翻译出来奉献给⼤家。

这类参数描述了电容采⽤的电介质材料类别,温度特性以及误差等参数,不同的值也对应着⼀定的电容容量的范围。

具体来说,就是:X7R常⽤于容量为3300pF~0.33uF的电容,这类电容适⽤于滤波,耦合等场合,电介质常数⽐较⼤,当温度从0°C变化为70°C时,电容容量的变化为±15%;Y5P与Y5V常⽤于容量为150pF~2nF的电容,温度范围⽐较宽,随着温度变化,电容容量变化范围为±10%或者+22%/-82%。

对于其他的编码与温度特性的关系,⼤家可以参考表4-1。

例如,X5R的意思就是该电容的正常⼯作温度为-55°C~+85°C,对应的电容容量变化为±15%。

表4-1 电容的温度与容量误差编码下⾯我们仅就常⽤的NPO、X7R、Z5U和Y5V来介绍⼀下它们的性能和应⽤以及采购中应注意的订货事项以引起⼤家的注意。

不同的公司对于上述不同性能的电容器可能有不同的命名⽅法,这⾥我们引⽤的是AVX公司的命名⽅法,其他公司的产品请参照该公司的产品⼿册。

NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。

在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。

所以在使⽤电容器时应根据电容器在电路中作⽤不同来选⽤不同的电容器。

⼀ NPO电容器NPO是⼀种最常⽤的具有温度补偿特性的单⽚陶瓷电容器。

它的填充介质是由铷、钐和⼀些其它稀有氧化物组成的。

NPO电容器是电容量和介质损耗最稳定的电容器之⼀。

在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化⼩于±0.3ΔC。

各种电容的参数及作用

各种电容的参数及作用

各种电容的参数及作用一、什么是电容电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。

二、电容的作用电容器的基本作用就是充电与放电,但由这种基本充放电作用所延伸出来的许多电路现象,使得电容器有着种种不同的用途,例如在电动马达中,我们用它来产生相移; 在照相闪光灯中,用它来产生高能量的瞬间放电等等; 而在电子电路中,电容器不同性质的用途尤多,这许多不同的用途,虽然也有截然不同之处,但因其作用均来自充电与放电。

下面是一些电容的作用列表:•耦合电容:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,起隔直流通交流作用。

•滤波电容:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。

•退耦电容,用在退耦电路中的电容器称为退耦电容,在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。

•高频消振电容:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。

•谐振电容:用在LC谐振电路中的电容器称为谐振电容,LC并联和串联谐振电路中都需这种电容电路。

•旁路电容:用在旁路电路中的电容器称为旁路电容,电路中如果需要从信号中去掉某一频段的信号,可以使用旁路电容电路,根据所去掉信号频率不同,有全频域(所有交流信号)旁路电容电路和高频旁路电容电路。

•中和电容:用在中和电路中的电容器称为中和电容。

在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。

•定时电容:用在定时电路中的电容器称为定时电容。

在需要通过电容充电、放电进行时间控制的电路中使用定时电容电路,电容起控制时间常数大小的作用。

•积分电容:用在积分电路中的电容器称为积分电容。

电容器的主要参数(精)

电容器的主要参数(精)

电容器的主要参数有哪些?慧聪电子元器件商务网2003-07-11 16:30:43电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。

(一)标称容量标称容量是指标注在电容器上的电容量。

电容量的基本单位是法拉(简称法),用字母“F”表示。

比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是:1F=1000mF1mF=1000μF1μF=1000nF1nF=1000pF其中,微法(μF)和皮法(pF)两单位最常用。

在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。

电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。

标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。

(二)允许偏差允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。

电容器的容量偏差与电容器介质材料及容量大小有关。

电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器等)的容量相对较小,误差范围小于±20%。

(三)额定电压额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。

该额定电压值通常标注在电容器上。

在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。

(四)漏电流电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。

一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。

电容器常识与主要参数讲解

电容器常识与主要参数讲解

讲解电容器常识主要参数讲解与主要参数电容器常识与电容器是组成电路的基本电子原件之一,在各种电子产品和电力设备中被广泛应用。

1、电容器和电容任何两个互相靠近而又彼此绝缘的导体都可构成电容器。

组成电容器的两个导体叫做极板,极板中间的物质叫做电介质。

常见电容器的电介质有空气、纸、油、云母、塑料及陶瓷等。

电容器在电路中起着储存电荷的作用,电容器就是“储存电荷的容器”。

对任何一个电容器而言,两极板的电压都随所带电荷量的增加而增加,并且电荷量与电压成正比,其比值q/U是一个恒量;但是对于不同的电容器,这一比值不相同。

可见q/U表现了电容器的固有特性。

因此,把电容器所带电荷量与其端电压的比值叫做电容器的电容量,简称电容,用字母C表示。

电容器电容量的基本单位是法,用字母F表示。

因为实际中的电容器的容量往往比1F小得多,所以电路中常用的单位有微法μF、纳法nF和皮法pF等,其关系是1法= 106微法1微法=103纳法=106皮法2、电路图形符号和电容器的作用(1)电容器的图形符号图1 电容器的图形符号(2)电容器的作用在电子电路中,电容器通常具有滤波、旁路和耦合等功能。

在如图2所示电路中,C1,C6,C8为耦合电容,C2,C3为滤波电容,C4,C5,C7为谐振电容。

图2调频无线电话筒(3)常用电容器的实物图、结构特点及典型应用常用电容器的实物图、结构特点及应用如表1所示。

表1常用电容器的实物图、结构特点及应用电容器的主要参数电容器的主要参数有标称容量与允许偏差、额定工作电压、绝缘电阻、温度系数、电容器损耗和频率特性等。

1、电容器的标称容量与允许偏差标志在电容器上的电容量称作标称容量。

电容器的实际容量与标称容量存在一定的偏差,电容器的标称容量与实际容量的允许最大偏差范围,称作电容器的允许偏差。

电容器的标称容量与实际容量的误差反映了电容器的精度。

精度等级与允许偏差的对应关系如表1所示。

一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用电容器主要参数与特点1、标称电容量和允许偏差标称电容量是标志在电容器上的电容量。

电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。

因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。

在标准JISC 5102 规定:铝电解电容的电容量的测量条件是在频率为 120Hz,最大交流电压为(Voltage Root Mean Square,通常指交流电压的有效值),DC bias (直流偏压直流偏置直流偏移直流偏磁)电压为~的条件下进行。

可以断言,铝电解电容器的容量随频率的增加而减小。

电容器中存储的能量E = CV^2/2电容器的线性充电量I = C (dV/dt)电容的总阻抗(欧姆)Z = √ [ RS^2 + (XC – XL)^2 ]容性电抗(欧姆)XC = 1/(2πfC)电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。

精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%)一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。

2、额定电压在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。

3、绝缘电阻直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。

当电容较小时,主要取决于电容的表面状态,容量〉时,主要取决于介质的性能,绝缘电阻越大越好。

电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。

4、损耗电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。

各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

在直流电场的作用下,电容器的损耗以漏导损耗的形式存在,一般较小,在交变电场的作用下,电容的损耗不仅与漏导有关,而且与周期性的极化建立过程有关。

5、频率特性随着频率的上升,一般电容器的电容量呈现下降的规律。

电容器参数的基本公式6、相位角Ф理想电容器:超前当前电压 90度理想电感器:滞后当前电压 90度理想电阻器:与当前电压的相位相同7、耗散系数(%)损耗角正切值Tan δ在电容器的等效电路中,串联等效电阻 ESR 同容抗1/ωC 之比称之为Tan δ,这里的ESR 是在 120Hz 下计算获得的值。

显然,Tan δ 随着测量频率的增加而变大,随测量温度的下降而增大。

. = tan δ (损耗角)= ESR / Xc = (2πfC)(ESR)损耗因数,因为电容器的泄漏电阻、等效串联电阻和等效串联电感,这三项指标几乎总是很难分开,所以许多电容器制造厂家将它们合并成一项指标,称作损耗因数,主要用来描述电容器的无效程度。

损耗因数定义为电容器每周期损耗能量与储存能量之比。

又称为损耗角正切。

图1中,电容的泄露电阻Rp、有效串联电阻Rs和有效串联电感L式寄生元件,可能会降低外部电路的性能。

一般将这些元件的效应合并考虑,定义为损耗因数或DF。

电容的泄漏是指施加电压时流过电介质的微小电流。

虽然模型中表现为与电容并联的简单绝缘电阻Rp,但实际上泄露与电压并非线性关系。

制造商常常将将泄漏规定为MΩ-μF 积,用来描述电介质的自放电时间常数,单位为秒。

其范围介于 1 秒或更短与数百秒之间,前者如铝和钽电容,后者如陶瓷电容。

玻璃电容的自放电时间常数为 1,000 或更大;特氟龙和薄膜电容(聚苯乙烯、聚丙烯)的泄漏性能最佳,时间常数超过1,000,000 MΩ-μF。

对于这种器件,器件外壳的表面污染或相关配线、物理装配会产生泄漏路径,其影响远远超过电介质泄漏。

有效串联电感 ESL(图 1)产生自电容引脚和电容板的电感,它能将一般的容抗变成感抗,尤其是在较高频率时;其幅值取决于电容内部的具体构造。

管式箔卷电容的引脚电感显著大于模制辐射式引脚配置的引脚电感。

多层陶瓷和薄膜电容的串联阻抗通常最低,而铝电解电容的串联阻抗通常最高。

因此,电解电容一般不适合高频旁路应用。

电容制造商常常通过阻抗与频率的关系图来说明有效串联电感。

不出意料的话,这些图会显示:在低频时,器件主要表现出容性电抗;频率较高时,由于串联电感的存在,阻抗会升高。

有效串联电阻 ESR(图 1 的电阻 Rs)由引脚和电容板的电阻组成。

如上文所述,许多制造商将 ESR、ESL 和泄漏的影响合并为一个参数,称为“损耗因数”或 DF。

损耗因数衡量电容的基本无效性。

制造商将它定义为每个周期电容所损失的能量与所存储的能量之比。

特定频率的等效串联电阻与总容性电抗之比近似于损耗因数,而前者等于品质因数 Q 的倒数。

损耗因数常常随着温度和频率而改变。

采用云母和玻璃电介质的电容,其 DF 值一般在 % 至 % 之间。

室温时,陶瓷电容的 DF 范围是 % 至 %。

电解电容的 DF 值通常会超出上述范围。

薄膜电容通常是最佳的,其 DF 值小于 %。

8、品质因素Q = cotan δ = 1/ DF9、等效串联电阻ESR(欧姆)ESR = (DF)Xc = DF/ 2πfC10、功率消耗Power Loss = (2πfCV2)(DF)11、功率因数PF = sin δ (loss angle)–cos Ф (相位角)12、阻抗 Z在特定的频率下,阻碍交流电流通过的电阻即为所谓的阻抗(Z)。

它与电容等效电路中的电容值、电感值密切相关,且与 ESR 也有关系。

Z = √ [ESR^2 + (XL - XC)^2 ]式中,XC = 1 / ωC = 1 / 2πfCXL = ωL = 2πfL电容的容抗(XC)在低频率范围内随着频率的增加逐步减小,频率继续增加达到中频范围时电抗(XL)降至 ESR 的值。

当频率达到高频范围时感抗(XL)变为主导,所以阻抗是随着频率的增加而增加。

13、漏电流电容器的介质对直流电流具有很大的阻碍作用。

然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。

通常,漏电流会随着温度和电压的升高而增大。

14、纹波电流和纹波电压在一些资料中将此二者称做“涟波电流”和“涟波电压”,其实就是 ripple current,ripple voltage。

含义即为电容器所能耐受纹波电流/电压值。

它们和ESR 之间的关系密切,可以用下面的式子表示:Urms = Irms × R式中,Vrms 表示纹波电压,Irms 表示纹波电流,R 表示电容的ESR由上可见,当纹波电流增大的时候,即使在 ESR 保持不变的情况下,涟波电压也会成倍提高。

换言之,当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低 ESR 值的原因。

叠加入纹波电流后,由于电容内部的等效串连电阻(ESR)引起发热,从而影响到电容器的使用寿命。

一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。

各种电容关键参数:1、铝电解电容器用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的化氧化膜作介质的电容器。

因为氧化膜有单向导电性质,所以电解电容器具有极性。

容量大,能耐受大的脉动电流,容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz 以上频率低频旁路、信号耦合、电源滤波。

电容量:额定电压:主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等2、钽电解电容器(CA)铌电解电容(CN)用烧结的钽块作正极,电解质使用固体二氧化锰温度特性、频率特性和可靠性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积对脉动电流的耐受能力差,若损坏易呈短路状态超小型高可靠机件中。

电容量:额定电压:主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容3、薄膜电容器结构与纸质电容器相似,但用聚脂、聚苯乙烯等低损耗塑材作介质频率特性好,介电损耗小不能做成大的容量,耐热能力差滤波器、积分、振荡、定时电路。

a 聚酯(涤纶)电容(CL)电容量:40p--4u额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路b 聚苯乙烯电容(CB)电容量:10p--1u额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路c聚丙烯电容(CBB)电容量:1000p--10u额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路4、瓷介电容器穿心式或支柱式结构瓷介电容器,它的一个电极就是安装螺丝。

引线电感极小,频率特性好,介电损耗小,有温度补偿作用不能做成大的容量,受振动会引起容量变化特别适于高频旁路。

a 高频瓷介电容(CC)电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路b 低频瓷介电容(CT)电容量:额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路5、独石电容器(多层陶瓷电容器)在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成小体积、大容量、高可靠和耐高温的新型电容器,高介电常数的低频独石电容器也具有稳定的性能,体积极小,Q 值高容量误差较大噪声旁路、滤波器、积分、振荡电路。

容量范围:耐压:二倍额定电压。

电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等。

应用范围:广泛应用于电子精密仪器。

各种小型电子设备作谐振、耦合、滤波、旁路。

6、纸质电容器一般是用两条铝箔作为电极,中间以厚度为~的电容器纸隔开重叠卷绕而成。

制造工艺简单,价格便宜,能得到较大的电容量。

一般在低频电路内,通常不能在高于3~4MHz 的频率上运用。

油浸电容器的耐压比普通纸质。

电容器高,稳定性也好,适用于高压电路。

7、微调电容器电容量可在某一小范围内调整,并可在调整后固定于某个电容值。

瓷介微调电容器的Q 值高,体积也小,通常可分为圆管式及圆片式两种。

云母和聚苯乙烯介质的通常都采用弹簧式东,结构简单,但稳定性较差。

线绕瓷介微调电容器是拆铜丝〈外电极〉来变动电容量的,故容量只能变小,不适合在需反复调试的场合使用。

a 空气介质可变电容器可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等b 薄膜介质可变电容器可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等c 薄膜介质微调电容器可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿d 陶瓷介质微调电容器可变电容量:主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路8、陶瓷电容器用高介电常数的电容器陶瓷〈钛酸钡一氧化钛〉挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。

相关文档
最新文档