高三数学教案:等差数列
数学高考复习名师精品教案:第23课时:第三章 数列-等差数列、等比数列的性质及应用

数学高考复习名师精品教案第23课时:第三章 数列——等差数列、等比数列的性质及应用一.课题:等差数列、等比数列的性质及应用二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力.三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识: 有关等差、等比数列的结论1.等差数列{}n a 的任意连续m 项的和构成的数列232,,,m m m m m S S S S S -- 仍为等差数列.2.等差数列{}n a 中,若m n p q +=+,则q p n ma a a a +=+3.等比数列{}n a 中,若m n p q+=+,则mn p q aa a a ⋅=⋅4.等比数列{a n }的任意连续m 项的和构成的数列232,,,m m m m m S S S S S -- 仍为等比数列.5.两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. 6.两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n n a b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎫⎩⎨⎧n b 1仍为等比数列.(二)主要方法:1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键.(三)例题分析:例1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有13 项;(2)已知数列{}n a 是等比数列,且>0n a ,*n N ∈,354657281a a a a a a ++=,则46a a +=9 .(3)等差数列前m 项和是30,前2m 项和是100,则它的前3m 项和是 210 .例2.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n mS +.解:(法一)基本量法(略);(法二)设2n S An Bn =+,则22(1)(2)An Bn m Am Bm n⎧+=⎪⎨+=⎪⎩(1)(2)-得:22()()n m A n m B m n -+-=-,m n ≠ , ∴()1m n A B ++=-,∴2()()()n mS n m A n m B n m +=+++=-+.例3.等差数列{}n a 中共有奇数项,且此数列中的奇数项之和为77,偶数项之和为66,11a =,求其项数和中间项.解:设数列的项数为21n +项, 则121(1)()772n n a a S +++==奇,22()662n n a a S+==偶∴17766S n S n+==奇偶,∴6n =,∴数列的项数为13,中间项为第7项,且711a =.说明:(1)在项数为21n +项的等差数列{}na 中,2+1=(+1),=,=(2+1)n Sn a S na S n a 奇中偶中中;(2)在项数为2n 项的等差数列{}n a 中2+11=,=,=()n n n n n S na S na S n a a +++1奇偶.例4.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++ *()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '. 解:(1)由题意:410nna-=,∴lg 4na n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列, ∴12(1)lg lg lg 32k k k aa a k -+++=-,∴1(1)7[3]22nn n n bn n--=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==(2)由(1)当7n ≤时,0nb ≥,当7n >时,0nb <,∴当7n ≤时,212731132()244n n n S b b b n n n-+'=+++==-+当7n >时,12789n n S b b b b b b '=+++---- 27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例5*.若n S 和n T 分别表示数列{}n a 和{b }n 的前n 项和,对任意自然数n ,有232n n a +=-,41213n nT S n-=,(1)求数列{b }n 的通项公式;(2)设集合*{|2,}n A x x a n N ==∈,*{|4,}n B y y b n N ==∈.若等差数列{}n c 任一项1,n c A B c ∈ 是A B 中的最大数,且10265125c -<<-,求{}n c 的通项公式.解:(1)当*2,n n N ≥∈时:114121341213(1)n n n n T S nT S n ---=⎧⎨-=-⎩,两式相减得:41213n n b a -=,∴1334n n b a =+534n =--,又1174b=-也适合上式,∴数列{b }n 的通项公式为n b 534n =--.(2)对任意*n N ∈,223,41252(61)3nn a n b n n =--=--=-+-,∴B A⊂,∴A BB=∵1c 是A B 中的最大数,∴1c 17=-,设等差数列{}n c 的公差为d ,则10179c d=-+,∴265179125d -<-+<-,即527129d -<<-,又4n b 是一个以12-为公差的等差数列,∴*12()d k k N =-∈,∴24d =-,∴724nc n=-.(四)巩固练习:1.若数列{}n a (N n ∈*)是等差数列,则有数列12nna a a bn+++=(N n ∈*)也为等差数列,类比上述性质,相应地:若数列n {c }是等比数列,且n c >0(N n ∈*),则有n d=N n ∈*)也是等比数列.2.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n nS n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43.说明:2121n n nn a S b T --=.。
苏教版高三数学必修五《等差数列》教案及教学反思

苏教版高三数学必修五《等差数列》教案及教学反思一、教学目标1.掌握等差数列的概念和基本性质。
2.熟练掌握等差数列的通项公式和求和公式,并能够应用于实际问题。
3.培养学生发现并解决问题的能力,提高学生的数学思维水平。
二、教学重难点1.等差数列的概念和基本性质。
2.等差数列的通项公式和求和公式。
3.如何将所学知识应用于实际问题中。
三、教学过程(一) 概念和基本性质1. 引入首先,我会通过举例的方式引出等差数列的概念,并通过与等差数列相关的实例来引导学生理解等差数列的基本概念和性质。
2. 知识点讲解接着,我将通过讲解等差数列的定义、公差、首项和通项等知识点来帮助学生全面理解等差数列的概念和基本性质。
为了帮助学生更好地掌握等差数列的概念和基本性质,我将安排一些练习题,让学生巩固所学知识点。
(二) 通项公式和求和公式1. 引入在引导学生掌握等差数列的概念和基本性质后,我将通过举例的方式引出等差数列的通项公式和求和公式,并通过与等差数列相关的实例来帮助学生理解这两个公式的应用场景和计算方法。
2. 知识点讲解接着,我将详细讲解等差数列的通项公式和求和公式,包括其公式推导过程和相关应用技巧,同时还会通过例题与学生进行互动,加深学生对这两个公式的理解。
3. 练习为了帮助学生更好地掌握等差数列的通项公式和求和公式,我将安排一些练习题,让学生巩固所学知识点。
(三) 应用实战1. 引入在学生掌握了等差数列的概念、基本性质、通项公式和求和公式后,我将通过实际应用场景的实例引导学生思考如何将所学知识应用于实际问题中。
2. 知识点讲解在引导学生思考问题的过程中,我将辅导学生分析问题,在此基础上,我将重点讲解如何将所学知识应用于实际问题中,并教授应用技巧和注意事项。
为了帮助学生更好地将所学知识应用于实际问题中,我将安排一些实战训练,让学生在实践中巩固所学知识,提高解决实际问题的能力。
四、教学反思通过本次教学实践,我认为教学效果还算不错。
高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
等差数列教学教案设计一等奖

4、等差数列教学设计一等奖2。
2。
1等差数列学案一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:①1,2,3,4,5是等差数列; ()②1,1,2,3,4,5是等差数列; ()③数列6,4,2,0是公差为2的等差数列; ()④数列是公差为的等差数列; ()⑤数列是等差数列; ()⑥若,则成等差数列; ()⑦若,则数列成等差数列; ()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ()⑨等差数列的`公差是该数列中任何相邻两项的差。
()6、思考:如何证明一个数列是等差数列。
二、实战操作:例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
5、等差数列教学设计一等奖教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
等差数列的性质教学设计

《等差数列性质》教学设计黑龙江省伊春市友好区第三中学张明慧一、内容和内容解析数列是高中数学的重要内容之一,也是培养学生数学学习能力的好素材.本章内容首先从学习数学的概念开始,然后学习等差数列和等比数列两种常用的数列.数列在实际生活中有着广泛的应用,如堆放物品总数的计算、储蓄、分期付款问题等都要用到数列知识.同时,数列起着承前启后的作用,数列与前面学习的函数知识紧密联系,又为进一步学习数列的极限等作好准备。
等差数列是一种最基本的数列,研究它的性质,需要通过观察、分析、归纳和猜想才能有所发现.在探究等差数列性质的过程中使学生学会研究数列的基本方法,提高数学再创造学习的能力.掌握研究数列的基本方法对于学好《数列》整章内容起着举足轻重的作用。
本节内容是人教A版高中数学必修五第二章第二节——等差数列。
本节是第二课时。
等差数列在日常生活中有着广泛的应用,是学生学习了等差数列的概念,通项公式的基础上,研究等差数列的性质,让学生通过本节课的学习要求理解等差数列的性质,并且了解等差数列与一次函数的关系。
本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。
在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。
同时也是初步培养学生运用等差数列模型解决问题的良好题材。
等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。
所以把教学重点定为理解等差数列的性质,并用性质解决一些相关问题,体会等差数列与一次函数之间的联系。
二、目标和目标解析(一)教学目标1.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,了解等差数列与一次函数的关系。
2.探究、发现等差数列的性质,并能利用等差数列的概念及通项公式给予证明,掌握性质及运用性质解决一些简单问题;通过优化问题设计,探究等差数列的性质,培养学生观察、分析、猜想、归纳和自主探究的能力。
高考数学一轮复习 第五章 数列 第二节 等差数列学案 文(含解析)新人教A版-新人教A版高三全册数学

第二节 等差数列2019考纲考题考情1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *)。
(2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2。
2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d 。
(2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2。
3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *)。
(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n 。
(等和性) (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d 。
(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列。
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列。
(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列。
(7)S 2n -1=(2n -1)a n 。
(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项)。
1.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”。
2020届高三复习经典教案:等差数列及其前n项和
第二节 等差数列及其前n 项和[最新考纲] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }和{a 2n +1}2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (7)等差数列的前n 项和公式与函数的关系S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .[常用结论]1.等差数列前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 有最大值,即所有正项之和最大,若a 1<0,d >0,则S n 有最小值,即所有负项之和最小.2.两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则有a n b n =S 2n -1T 2n -1.3.等差数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2. ( ) (2)等差数列{a n }的单调性是由公差d 决定的. ( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数. ( ) [答案] (1)√ (2)√ (3)× (4)×2.(教材改编)等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项 D .第22项C [由题意知a n =11+(n -1)×(-3)=-3n +14,令-3n +14=-49得n =21,故选C.] 3.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1D .6B [a 2,a 4,a 6成等差数列,则a 6=0,故选B.] 4.小于20的所有正奇数的和为________.100 [小于20的正奇数组成首项为1,末项为19的等差数列,共有10项,因此它们的和S 10=10(1+19)2=100.] 5.(教材改编)设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=________. -1 [由S 2=S 6得a 3+a 4+a 5+a 6=0,即a 4+a 5=0,又a 4=1,则a 5=-1.]1.已知等差数列{a n }的前n 项和为S n ,a 6+a 18=54,S 19=437,则a 2 018的值是( ) A .4 039 B .4 038 C .2 019 D .2 038 A [设等差数列{a n }的公差为d ,由题意可知 ⎩⎨⎧ 2a 1+22d =54,19a 1+171d =437,解得⎩⎨⎧a 1=5,d =2,所以a 2 018=5+2017×2=4 039,故选A.] 2.(2019·武汉模拟)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( ) A .-1 B .-2 C .-3 D .-4C [由题意知⎩⎨⎧a 1+a 7=2a 1+6d =-8,a 2=a 1+d =2.解得⎩⎨⎧d =-3,a 1=5,故选C.]3.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有一女子擅长织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女子最后一天织布的尺数为( )A .18B .20C .21D .25 C [用a n 表示第n 天织布的尺数,由题意知, 数列{a n }是首项为5,项数为30的等差数列.所以30(a 1+a 30)2=390, 即30(5+a 30)2=390,解得a 30=21,故选C.] 4.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________. -72 [设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎨⎧a 1=3,d =-1.∴S 16=16×3+16×15×(-1)=-72.]【例1】 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.[解] (1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1⎝⎛⎭⎫2-1a n -1-1a n -1 =a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数.所以当n =3时,a n 取得最小值-1, 当n =4时,a n 取得最大值3.[拓展探究] 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. [解] 由已知可得 a n +1n +1=a nn +1, 即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-2n .n 1n +1n (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[解] (1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1),得 na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .►考法1 等差数列项的性质的应用 【例2】 (1)(2019·长沙模拟)数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于( )A .9B .10C .11D .12 (2)(2019·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(1)D (2)A [(1)数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.(2)由a 3+a 6+a 10+a 13=32得4a 8=32,即a 8=8.又d ≠0,所以等差数列{a n }是单调数列,由a m =8,知m =8,故选A.] ►考法2 等差数列前n 项和的性质【例3】 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________. (1)B (2)8 076 [(1)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45,故选B.(2)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1. 故S 2 0192 019=S 11+2 018d =-2 014+2 018=4,n n 102030(2)等差数列{a n }的前n 项和为S n ,若a m =10,S 2m -1=110,则m =________.(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.(1)60 (2)6 (3)3727[(1)由题意知,S 10,S 20-S 10,S 30-S 20成等差数列.则2(S 20-S 10)=S 10+(S 30-S 20), 即40=10+(S 30-30), 解得S 30=60.(2)S 2m -1=(2m -1)(a 1+a 2m -1)2=2(2m -1)a m2=110,解得m =6.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=132(a 1+a 13)132(b 1+b 13)=S 13T 13=3×13-22×13+1=3727.]【例4】 (1)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( ) A .5 B .6 C .7 D .8C [(1)法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.法二:由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.](2)已知等差数列{a n }的前三项和为-3,前三项的积为8. ①求等差数列{a n }的通项公式;②若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和T n . [解] ①设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎨⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎨⎧ a 1=2,d =-3或⎩⎨⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.②当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎨⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{3n -7}的前n 项和为S n ,则S n =n [(-4)+(3n -7)]2=32n 2-112n . 当n ≤2时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )=-32n 2+112n ,当n ≥3时,T n =|a 1|+|a 2|+|a 3|+…+|a n |=-(a 1+a 2)+(a 3+a 4+…+a n )=S n -2S 2=32n 2-112n +10,综上知:T n =⎩⎨⎧-32n 2+112n ,n ≤2,32n 2-112n +10,n ≥3.n 135246n n 则使S n 达到最大值的n 是( )A .21B .20C .19D .18(2)设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________.(1)B (2)130 [(1)因为a 1+a 3+a 5=3a 3=105,a 2+a 4+a 6=3a 4=99,所以a 3=35,a 4=33,所以d =-2,a 1=39.由a n =a 1+(n -1)d =39-2(n -1)=41-2n ≥0,解得n ≤412,所以当n =20时S n 达到最大值,故选B.(2)由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,所以n ≤5时,a n ≤0,当n >5时,a n >0,所以|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4+a 5)+(a 6+…+a 15)=S 15-2S 5=130.]1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8 C [设{a n }的公差为d ,则 由⎩⎨⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4. 故选C.] 2.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192 C .10 D .12B [∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.故选B.] 3.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11A [a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.]4.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式;(2)求Sn ,并求S n 的最小值.[解] (1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2. 所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.课后限时集训(二十九) (建议用时:60分钟) A 组 基础达标一、选择题1.在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( ) A .4 B .-4 C .5 D .-5C [法一:由题意得⎩⎨⎧10a 1+45d =60,a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=3,d =23,∴a 4=a 1+3d =5,故选C.法二:由等差数列的性质有a 1+a 10=a 7+a 4,∵S 10=10(a 1+a 10)2=60,∴a 1+a 10=12.又∵a 7=7,∴a 4=5,故选C.]2.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( ) A .52 B .78 C .104 D .208 C [由a 2+a 7+a 12=24得3a 7=24, 即a 7=8,∴S 13=13(a 1+a 13)2=13a 7=13×8=104,故选C.] 3.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3nA [由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n=n ,即a n =1n .]4.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( ) A .3 B .4 C .5 D .6C [∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2. 又S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又 S m =m (a 1+a m )2=m (a 1+2)2=0, ∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.] 5.(2019·银川模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上述的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤A [依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a 1=4,则a 5=2,由等差数列的性质得a 2+a 4=a 1+a 5=6,所以第二尺与第四尺的重量之和为6斤.故选A.]二、填空题6.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =________. 22 [a k =a 1+(k -1)d =(k -1)d ,a 1+a 2+a 3+…+a 7=7a 4=7a 1+21d =21d ,所以k -1=21,得k =22.]7.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________. 10 [a 2+a 4+a 6+…+a 100=(a 1+a 3+a 5+…+a 99)+25,由S 100=45得a 1+a 3+a 5+…+a 99=10.]8.(2019·青岛模拟)若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则a 1-a 2b 1-b 2=________.43 [由题意得a 1-a 2=x -y 3,b 1-b 2=x -y 4,所以a 1-a 2b 1-b 2=43.] 三、解答题9.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n . [解] (1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.10.(2019·长春模拟)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.[解] (1)设{a n }的公差为d .由题意,得 a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去)或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2) =n2(-6n +56) =-3n 2+28n .B 组 能力提升1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列 C [a n =n +a 1-1,∴a 2n -1=2n +a 1-2,a 2n =2n +a 1-1, ∴a 2n -1+2a 2n =6n +3a 1-4.因此数列{a 2n -1+2a 2n }是公差为6的等差数列,故选C.]2.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( )A .9日B .8日C .16日D .12日A [根据题意,显然良马每日行程构成一个首项a 1=103,公差d 1=13的等差数列,前n 天共跑的里程为S =na 1+n (n -1)2d 1=103n +132n (n -1)=6.5n 2+96.5n ;驽马每日行程也构成一个首项b 1=97,公差d 2=-0.5的等差数列,前n 天共跑的里程为S =nb 1+n (n -1)2d 2=97n -0.52n (n -1)=-0.25n 2+97.25n .两马相逢时,共跑了一个来回.设其第n 天相逢,则有6.5n 2+96.5n -0.25n 2+97.25n =1 125×2,解得n =9,即它们第9天相遇,故选A.]3.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________. 5 [由题意知a m =S m -S m -1=2,a m +1=S m +1-S m =3,则公差d =a m +1-a m =1.由S m =0得m (a 1+a m )2=0,解得a 1=-a m =-2, 则a m =-2+(m -1)×1=2,解得m =5.] 4.(2019·武汉模拟)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;(2)设b n =2a n -15,求数列{|b n |}的前n 项和T n .[解] (1)证明:∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *),∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn=2,∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .(2)由(1)知a n =2n 2,∴b n =2a n -15=2n -15,则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n . 令b n =2n -15≤0,n ∈N *,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n .n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎨⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.第二节 等差数列及其前n 项和[考纲传真] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.用符号表示为a n +1-a n =d(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的通项公式与前n 项和公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }和{a 2n +1}2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (7)等差数列的前n 项和公式与函数的关系S n =d2n 2+⎝⎛⎭⎫a 1-d 2n .[常用结论]1.等差数列前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 有最大值,即所有正项之和最大,若a 1<0,d >0,则S n 有最小值,即所有负项之和最小.2.两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则有a n b n=S 2n -1T 2n -1.3.等差数列{a n }的前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2. ( ) (2)等差数列{a n }的单调性是由公差d 决定的. ( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数. ( )2.(教材改编)等差数列11,8,5,…,中-49是它的第几项( ) A .第19项 B .第20项 C .第21项 D .第22项3.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .64.小于20的所有正奇数的和为________.5.(教材改编)设S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=________.1.已知等差数列{a n }的前n 项和为S n ,a 6+a 18=54,S 19=437,则a 2 018的值是( ) A .4 039 B .4 038 C .2 019 D .2 038 2.(2019·武汉模拟)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( ) A .-1 B .-2 C .-3 D .-4 3.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有一女子擅长织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女子最后一天织布的尺数为( )A .18B .20C .21D .254.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.【例1】 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.[拓展探究] 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.n 1n +1n (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.►考法1 等差数列项的性质的应用 【例2】 (1)(2019·长沙模拟)数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于( )A .9B .10C .11D .12 (2)(2019·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4►考法2 等差数列前n 项和的性质【例3】 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.n n102030 (2)等差数列{a n}的前n项和为S n,若a m=10,S2m-1=110,则m=________.(3)等差数列{a n}与{b n}的前n项和分别为S n和T n,若S nT n=3n-22n+1,则a7b7=________.等差数列的前n项和及其最值【例4】(1)等差数列{a n}的前n项和为S n,已知a1=13,S3=S11,当S n最大时,n的值是() A.5 B.6 C.7 D.8(2)已知等差数列{a n}的前三项和为-3,前三项的积为8.①求等差数列{a n}的通项公式;②若a2,a3,a1成等比数列,求数列{|a n|}的前n项和T n.n135246n n则使S n达到最大值的n是()A.21 B.20 C.19 D.18(2)设数列{a n}的通项公式为a n=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________.1.(全国卷Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为() A.1B.2C.4D.82.·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192 C .10 D .123.(全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .114.(全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.课后限时集训(二十九) (建议用时:60分钟) A 组 基础达标一、选择题1.在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=( ) A .4 B .-4 C .5 D .-52.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( ) A .52 B .78 C .104 D .2083.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n4.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( ) A .3 B .4 C .5 D .65.(2019·银川模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上述的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤二、填空题6.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 7,则k =________.7.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.8.(2019·青岛模拟)若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则a 1-a 2b 1-b 2=________.三、解答题9.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n .10.(2019·长春模拟)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.B 组 能力提升1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列 C [a n =n +a 1-1,2.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( )A .9日B .8日C .16日D .12日3.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________.4.(2019·武汉模拟)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;(2)设b n =2a n -15,求数列{|b n |}的前n 项和T n .。
高三数学复习教案
高三数学复习教案作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的高三数学复习教案,欢迎阅读,希望大家能够喜欢。
高三数学复习教案1教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由XX《红高粱》主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察————发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:已知等差数列{an}的首项是a1,公差是d。
则由定义可得:a2—a1=da3—a2=da4—a3=d……an—an—1=d即可得:an=a1+(n—1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。
代入通项公式解:∵a1=3,d=2∴an=a1+(n—1)d=3+(n—1)×2=2n+1例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20 解:∵a1=10,d=8—10=—2,n=20由an=a1+(n—1)d得∴a20=a1+(n—1)d=10+(20—1)×(—2)=—28例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
[精]高三第一轮复习全套课件3数列:等差数列
http :/ www.xjktyg .com /wxc /
特级教师 王新敞 wxckt @126 .com
解:设三个数为 a,公差为 d,则这 5 个数依次为 a-2d,a-d ,a ,a+d ,a+2d依题意: 新疆 源头学子小屋 /wxc/
/wxc/
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
⑴求点 Pn 的坐标;
⑵设抛物线列 c1, c2 , c3 ,, cn ,中的每一条的对称轴都垂直于 x 轴,第 n
/wxc/
特级教师 王新敞 wxckt@
⑶ 设 S x | x 2xn , n N, n 1,T y | y 4 yn , n 1 , 等 差 数 列
an 的 任 一 项 an S T , 其 中 a1 是 S T 中 的 最 大 数 ,
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
解:设数列{an}的公差为 d,首项为 a1, 由已知得 5a1 + 10d = -5, 10a1 + 45d = 15 解得 a1=-3 ,d=1
∴Sn =
n(-3)+
n(n 1) 2
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
由此得
a6>-a7>0 因为 新疆 源头学子小屋 /wxc/
特级教师 王新敞 wxckt@
特级教师 王新敞 wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞 wxckt@
(a-2d)2 +(a-d)2 + a2 + (a+d)2 + (a+2d)2 = 85 9
高三数学等差数列1
求和
Sn=a1+a2+a3+…+an (项较少时用之方便)
s1
an=
sn
sn1
n 1
( 项和关系式)
n2
Sn
1 2
n(a1
an )
1 2
(a2
an1 )
1
1
na1 2 n(n 1)d nan 2 n(n 1)d
d 2
n2
(a1
d 2
等差数列(1)
等差等比抓首公;看清下标用性质。 五个元素三基本;求和项数很重要。 细心翻译常联想;心中公式是关键。
定义:
a2-a1=a3-a2=…=an-an-1=d
0增
d
0常
0减
判断 :
1、定义法:an-an-1=d
2、递推公式:an-an-1= an+1-an 2an=an-1 +an+1
80a1+a2+..+ak,ak+1+ak+2+…a2k,…
(3) {an}是正数等比数列,则数列{logan}
在数列{an}中,a1=1,a2=2/3,且 1/an-1+1/an+1=2/an(n>1)则这个数 列的通项公式
利用递推公式判断{1/an}是 等差数列
通项公 式: an=a1+(n-1)d (迭代或累加)
4、递增数列{an}中,若 a2+a4=16,a1.a5=28,则an=?
5、数列{an}中,a1=2,an+1 -an=3n(n∈N*),则数列的通项 为an=?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学教案:等差数列
鉴于大家对十分关注,小编在此为大家搜集整理了此文高三数学教案:等差数列,供大家参考!
本文题目:高三数学教案:等差数列
2.2.1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:
①1,2,3,4,5是等差数列; ( )
②1,1,2,3,4,5是等差数列; ( )
③数列6,4,2,0是公差为2的等差数列; ( )
④数列是公差为的等差数列; ( )
⑤数列是等差数列; ( )
⑥若,则成等差数列; ( )
⑦若,则数列成等差数列; ( )
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列; ( )
⑨等差数列的公差是该数列中任何相邻两项的差。
( )
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项.
(2) 是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。