数学学科知识与教学能力
初中数学学科知识与教学能力

初中数学学科知识与教学能力
"初中数学学科知识与教学能力"是指教师在进行初中数学教学时所需要掌握的专业知识体系以及教学实践能力。
具体包括以下几个方面:
1. 数学专业知识:深入理解并掌握初中阶段的数学基础知识,如代数、几何、概率统计等,能够对数学概念、定理、公式有深刻的理解和运用能力。
2. 教育心理学知识:了解中学生数学学习的心理特点和发展规律,能根据不同学生的认知水平和学习风格进行针对性的教学设计。
3. 数学课程与教学论知识:熟悉国家数学课程标准,掌握教材分析、教学设计、课堂教学实施、教学评价等各个环节的方法与策略。
4. 教学实践能力:能够将数学理论知识有效地转化为教学活动,包括清晰讲解、引导探究、组织合作学习、灵活处理课堂问题、合理运用现代教育技术手段等。
5. 教育科研能力:关注数学教育的最新研究成果,结合教学实践开展反思和研究,持续提升自身的教育教学水平。
2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 5.00 分)我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。
A. 贾宪B. 刘徽C. 朱世杰D. 秦九韶2.3.(单项选择题)(每题 1.00 分)关于倍立方体问题中最重大的成就是柏拉图学派的()为解决倍立方体问题而发现了圆锥曲线。
A. 梅内赫莫斯B. 泰勒斯C. 欧几里得D. 阿基米德4.(单项选择题)(每题5.00 分)下列说法正确的是()。
A. 单调数列必收敛B. 收敛数列必单调C. 有界数列必收敛D. 收敛数列必有界5.(单项选择题)(每题 5.00 分) 一元三次方程x3 -3x-4 = 0的解的情况是()。
A. 方程有三个不相等的实根B. 方程有一个实根,一对共轭复根C. 方程有三个实根,其中一个两重根D. 无解6.(单项选择题)(每题 5.00 分) 我国现行法律认为,教师职业是一种()。
A. 私人职业B. 从属职业C. 专门职业D. 附加职业7.(单项选择题)(每题 1.00 分)下列关于椭圆的论述,正确的是()。
A. 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B. 平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C. 从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D. 平面与圆柱面的截线是椭圆8.(单项选择题)(每题 1.00 分)设4阶矩阵A与B仅有第3行不同,且|A|=1,|B|=3,则|A+B|=()。
A. 3B. 6C. 12D. 329.(单项选择题)(每题 5.00 分) 设向量a,b满足:|a| = 3,|b| = 4, a.b=0。
以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()。
A. 3B. 4C. 5D. 610.(单项选择题)(每题 1.00 分)《义务教育数学课程标准(2011 年版)》从四个方面阐述了课程目标,这四个目标是()。
2024年教师资格之中学数学学科知识与教学能力真题精选附答案

2024年教师资格之中学数学学科知识与教学能力真题精选附答案单选题(共45题)1、属于所有T细胞共有的标志性抗原的是A.CD2B.CD3C.CD4D.CD8E.CD20【答案】 B2、临床表现为反复发作的皮肤黏膜水肿的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】 C3、新课程标准下数学教学过程的核心要素是()。
A.师生相互沟通和交流B.师生的充分理解和信任C.教师的组织性与原则性D.多种要素的有机结合【答案】 A4、实验室常用的校准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】 C5、高中数学课程是义务教育阶段后普通高级中学的主要课程,具有()。
A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】 A6、Ⅱ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】 B7、临床有出血症状且APTT正常和PT延长可见于A.痔疮B.FⅦ缺乏症C.血友病D.FⅩⅢ缺乏症E.DIC【答案】 B8、Arthus及类Arthus反应属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】 C9、Th2辅助性T细胞主要分泌的细胞因子不包括A.IL-2B.IL-4C.IL-5D.IL-6E.IL-10【答案】 A10、血浆游离Hb的正常参考范围是()A.1~5mg/dlB.5~10mg/dlC.10~15mg/dlD.15~20mg/dlE.20~25mg/dl【答案】 A11、Arthus及类Arthus反应属于A.Ⅰ型超敏反应B.Ⅱ型超敏反应C.Ⅲ型超敏反应D.Ⅳ型超敏反应E.以上均正确【答案】 C12、红细胞形态偏小,中心淡染区扩大,受色浅淡,骨髓铁染色发现细胞内、外铁消失,为进一步确定贫血的病因,宜首选下列何项检查A.血清叶酸、维生素BB.Ham试验C.Coomb试验D.铁代谢检查E.红细胞寿命测定【答案】 D13、反复的化脓性感染伴有慢性化脓性肉芽肿形成的是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】 D14、血液凝块的收缩是由于A.纤维蛋白收缩B.PF3的作用C.红细胞的叠连D.血小板收缩蛋白收缩E.GPⅠA/ⅡA复合物【答案】 D15、“等差数列”和“等比数列”的概念关系是()A.交叉关系B.同一关系C.属种关系D.矛盾关系【答案】 A16、疑似患有免疫增殖病,但仅检出少量的M蛋白时应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】 C17、标准定值血清可用来作为A.室间质控B.室内检测C.变异系数D.平均值E.标准差【答案】 B18、下列命题不正确的是()。
高中数学教师资格考试学科知识与教学能力2024年自测试题及答案指导

2024年教师资格考试高中数学学科知识与教学能力自测试题及答案指导一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列选项中,不属于高中数学课程性质的是()A、理论性B、应用性C、综合性D、创新性答案:D解析:高中数学课程具有理论性、应用性和综合性,旨在培养学生的数学思维能力和解决问题的能力。
创新性虽然也是重要的教育目标之一,但并不是高中数学课程的基本性质。
因此,正确答案为D。
2、在以下数学概念中,不属于函数概念范畴的是()A、映射B、定义域C、值域D、对应法则答案:C解析:函数的概念包括映射、定义域、值域和对应法则四个基本要素。
映射是指每个定义域中的元素都有唯一的值域元素与之对应;定义域是函数输入值的集合;值域是函数输出值的集合;对应法则是定义域和值域之间元素对应关系的描述。
值域是函数的一个组成部分,因此不属于函数概念范畴的选项为C。
正确答案为C。
3、在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,5)。
若点C 在直线y=x+2上,且三角形ABC是直角三角形,则点C的坐标可能是()A、(1,3)B、(3,5)C、(-1,4)D、(2,4)答案:C解析:首先,三角形ABC是直角三角形,我们可以假设直角在A或B上。
假设直角在A点,则AC垂直于BC,因此斜率乘积为-1。
点A和点C的斜率为(y2-y1)/(x2-x1),将点A(2,3)和C(x,y)代入得(y-3)/(x-2)1=-1,解得y=2x-1。
将直线y=x+2和y=2x-1联立,解得x=-1,y=4,故点C的坐标为(-1,4)。
同理,假设直角在B点,则BC垂直于AB,斜率乘积为-1。
点B和C的斜率为(y-5)/(x+1)(3-5)/(2+1)=-1,解得y=4,点C的坐标为(-1,4)。
所以,点C的坐标可能是(-1,4),选项C 正确。
4、已知函数f(x)=ax^2+bx+c,若a≠0,且f(x)在x=-1时取得最小值,则下列结论错误的是()A、a>0B、b=-2aC、f(x)在x=0时取得最大值D、f(x)的图像是一个开口向上的抛物线答案:C解析:函数f(x)=ax2+bx+c是一个二次函数,a≠0表示抛物线开口向上或向下。
数学学科知识与教学能力(高级中学)

数学学科知识与教学能力(高级中学)
一、数学学科知识
1. 数学基础知识:包括数论、代数、几何、解析几何、微积分、概率统计等方面的知识。
2. 数学模型:数学模型是数学在实际应用中的具体表现,学科知识中需要掌握的内容有建立数学模型的方法、应用数学模型解决实际问题的技巧等。
3. 线性代数:线性代数是数学学科中的一个重要分支,主要通过矩阵运算理论探究线性空间及其内部结构、线性方程组的求解等问题。
4. 微积分:微积分是计算数学的基础,主要包括一元微积分、多元微积分、微分方程等方面的知识。
5. 概率论与数理统计:概率论是研究随机现象规律的数学学科;数理统计则是利用统计学方法对数据进行描述、分析和推断的学科,包括抽样理论、估计理论、假设检验等。
二、教学能力
1. 制定教学计划:根据教材及课标确定教学内容和进度,制定教学计划并进行调整。
2. 授课能力:授课应注重启发式教学法,注重培养学生数学思维能力和解题能力。
3. 教学评估:教师应根据学生的学情和学习状况进行教学评估,变通授课方法及时调整教学方案。
4. 辅导能力:帮助需要帮助的学生进行备考,及时发现问题并解决。
5. 考试能力:编写和修改入学考试和普通考试题目,同时可以指导学生进行考试。
综上所述,数学学科知识和教学能力对于一名中学数学教师来说非常重要,只有掌握了足够的数学知识,并且具备了较强的教学能力,才能更好地教授学生,提高他们的数学学科能力。
教师资格证笔试考试大纲:《数学学科知识与教学能力》(初级中学(最新3篇)

教师资格证笔试考试大纲:《数学学科知识与教学能力》(初级中学(最新3篇)教师资格证考试《综合素质》考点15个篇一初中阶段的十个概念:数感;符号意识,空间观念,几何观念,数据分析观念;运算能力,推理能力;模型思想;创新思想(提出问题,独立思考,归纳验证);应用意识。
义务教育阶段数学课程总目标1) 获得适应生活要的知识技能思想和经验2) 体会数学与生活,其他学科的联系。
分析解决问题能力培养。
3) 了解数学价值,增加兴趣,信心,爱好。
养成良好习惯,初步形成科学态度。
义务教育具有基础性发展性和普及性。
数学课程能使学生掌握以后生活工作备的基本知识,基本技能,思想方法;抽象能力和推理能力;促进情感态度价值观健康发展。
为今后的生活,学习打下基础。
二次根式:就是开根号目标:了解意义,掌握字母取值问题,掌握性质灵活运用通过计算,培养逻辑思维能力领悟数学的对称性和规律美。
重点:根式意义;难点;字母取值范围勾股定理探索证明的基础上,联系实际,归纳抽象,应用解决实际问题。
通过探索分析归纳过程,提高逻辑能力和分析解决问题能力。
数学好奇心,热爱数学。
重点:应用难点:实际问题转化为数学问题平行四边形及性质经历探索平行四边形性质和概念,掌握性质,能够判别体会操作转化的思想过程,积累问题解决的思想。
与他人交流,积极动手的习惯四边形内角和:量角器;内部做三角形;按照边做三角形;按照定点做三角形。
一次函数和二元一次方程的关系。
数形结合数学思想为主体;问题为贯穿;数形结合为工具;提高问题解决能力。
数学课程理念内涵:人人获得良好数学教育,在数学上得到不同发展内容:符合数学特点,认知规律,社会实际。
层次性和多样性。
间接与直接。
过程:师生交往评价:多元发展信息技术与课程:现在信息技术改进教学方法,资源。
1) 信息技术开发资源,注重整合。
2) 教学方式的改善。
3) 理解原理的基础上,利用计算器,计算机。
4) 不能完全替代原有的有段。
合情推理:根据已有的结论,实践结果,直观等推测某些结论。
2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案
2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 1.00 分)设λ1,λ2是矩阵A的两个不同的特征值,a,β分别为A对应于λ1,λ2的特征向量,则a,β( )。
A. 线性相关B. 线性无关C. 正交D. 平行2.(单项选择题)(每题 5.00 分)中学数学的()是沟通教学理论与教学实践的中介与桥梁,是体现教学理论,指导教学实践的“策略体系”和“便于操作的实施程序”。
A. 教学标准B. 教学大纲C. 教学策略D. 教学模式3.(单项选择题)(每题 1.00 分)已知随机变量X服从正态分布N(μ,σ2),设随机变量Y=2X,那么Y服从的分布是()。
A. N(2μ,2σ2)B. N(4μ,4σ2)C. N(2μ,4σ2)D. N(μ,σ2)4.(单项选择题)(每题5.00 分) 设an}是公差为-2的等差数列,如果a1+a4+a7+...+a28=90,那么a3+a6+a9+...+a30的值为()。
{A. 80B. 60C. 50D. 705.(单项选择题)(每题 1.00 分)将一枚硬币重复掷n次,以x和y,分别表示正面朝上和反面朝上的次数,则x与y的相关系数等于( )A. -1B. OC. 1/2D. 16.(单项选择题)(每题 5.00 分)设f(x),g(x)在x=x0处均不连续,则在x=x0处()A. f(x)+g(x)f(x)·g(X)均不连续B. f(x)+g(x)不连续,f(x)·g(x)的连续性不确定C. f(x)+g(x)的连续性不确定,f(x)·g(x)不连续D. f(x)+g(x)f(x)·g(x)的连续性均不确定7.(单项选择题)(每题 5.00 分) 对于不重合的两个平面α与β,给定下列条件:① 存在平面γ,使得α、β都垂直于γ;② 存在平面γ,使得α、β都平行于γ;③ α内有不共线的三点到P的距离相等;④ 存在异面直线1、m,使得1//α, 1//β, m//α, m//β。
数学学科教学知识与能力考试内容
数学学科教学知识与能力考试内容摘要:1.考试简介2.考试内容3.考试形式与结构4.考试要求与备考建议正文:一、考试简介数学学科教学知识与能力考试(以下简称“数学教考”)是我国教育考试体系中的一项重要考试,旨在评估未来数学教师的学科知识和教育教学能力,为选拔和培养优秀的数学教师提供参考。
该考试面向所有希望成为数学教师的人员,包括在职教师、教育硕士、师范生等。
通过数学教考,可以获得相应的教师资格证书,从而具备从事数学教育教学工作的资格。
二、考试内容数学教考的内容主要包括以下几个方面:1.数学基础知识:涵盖了初高中阶段的数学知识,包括代数、几何、三角函数、概率与统计等内容。
这些知识是数学教师必须掌握的基本功,对于解答教学过程中的问题和指导学生具有重要意义。
2.数学教学理论:包括数学教育学、数学心理学等理论知识。
这些理论知识有助于考生理解教育教学的原理和方法,从而更好地指导教学实践。
3.数学教学设计与实施:这部分主要考察考生对数学教学内容的理解和把握,以及对教学方法、教学过程、教学评价等方面的掌握。
考生需要具备一定的教学经验和教学设计能力,能够根据学生的实际情况制定合适的教学方案。
4.数学教育评价:这部分主要考察考生对数学教育评价的理解和应用,包括教学评价、学生评价等方面。
考生需要掌握教育评价的基本原则和方法,能够对教学过程和学生学习成果进行全面、客观、科学的评价。
三、考试形式与结构数学教考一般采用笔试形式,考试时间通常为120 分钟。
试卷分为选择题、填空题、简答题、案例分析题等几种题型,全面考察考生的数学基础知识、教学理论、教学设计和评价能力。
考试满分为100 分,合格分数线根据不同地区和年份有所不同。
四、考试要求与备考建议1.认真学习数学基础知识,掌握初高中阶段的数学知识体系。
2.学习数学教育学、心理学等相关理论知识,理解教育教学的原理和方法。
3.多参加教育实践活动,积累教学经验和教学设计能力。
4.关注历年真题,熟悉考试题型和答题要求。
数学学科知识与教学能力(高级中学)核心考点
模块一数学学科知识1. 数列极限的性质和证明◇收敛数列的极限是唯一的◇收敛数列是有界的◇收敛数列满足保号性2. 函数极限的性质和证明◇函数极限的唯一性◇函数极限的局部有界性◇函数极限的局部保号性◇函数极限与数列极限的关系3. 连续函数的性质和证明◇连续的定义◇函数的间断点的类型◇反函数和复合函数的连续性◇闭区间上连续函数的性质(有界性、最大值最小值定理、零点定理、介值定理)4. 一元函数微积分的性质和证明◇导数的概念◇导数的运算(基本导数公式)◇中值定理(罗尔中值定理、拉格朗日中值定理)◇洛必达法则◇函数的单调性和极值◇函数的凹凸性和拐点(詹森不等式)◇不定积分公式◇不定积分的积分法(公式法、凑微分法、换元积分法、分部积分法)◇定积分的性质和计算(积分中值定理、变上限积分、牛顿——莱布尼茨公式、换元法、分部积分法、公式法)◇定积分与旋转几何体5. 向量及其运算的性质和证明◇向量加法法则◇减法法则◇向量的乘法◇向量的数量积与向量积◇向量的混合积6. 矩阵与变换的性质和证明◇拉普拉斯定理◇克莱姆法则◇矩阵的加法、数乘、乘法、转置◇矩阵的运算性质◇矩阵的基本初等变换◇可逆矩阵的基本性质◇线性相关与线性无关◇齐次线性方程组的基础解系◇矩阵的对角化7. 概率与数理统计的性质和证明◇排列组合公式◇加法和乘法原理◇古典概型基本公式◇条件概率基本公式◇独立性◇离散型随机变量分布律◇连续型随机变量的分布密度◇分布函数◇六大分布◇期望及其性质◇方差及其性质8. 必修课程——数学1◇集合的运算◇函数单调性的证明◇函数奇偶性的判定◇指数函数的性质◇对数函数的性质◇幂函数的性质◇二分法◇函数应用题9. 必修课程——数学2◇空间几何体的表面积和体积◇线面平行、垂直的相关性质和定理◇三垂线定理及其逆定理◇二面角◇直线方程的求法◇点到直线的距离公式◇圆的标准方程和一般方程◇直线和圆的位置关系◇两圆的位置关系10. 必修课程——数学3◇用样本估计总体◇古典概型◇几何概型11. 必修课程——数学4◇三角函数的诱导公式◇正弦、余弦、正切函数的图像和性质◇三角恒等变换12. 必修课程——数学5◇余弦定理、正弦定理◇等差、等比数列◇数学归纳法◇基本不等式◇一元二次不等式◇线性规划问题13. 选修课程基础◇椭圆方程及其几何性质◇双曲线及其几何性质◇抛物线及其几何性质◇复数及其几何意义◇复数的四则运算14. 选修课程大纲要求◇常用逻辑用语◇导数及其几何意义◇框图◇数学史◇几何证明◇矩阵与变换◇坐标系与参数方程模块二高中数学课程知识1. 高中数学课程性质◇高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
数学学科知识与教学能力
数学学科知识与教学能力导言:数学作为一门学科,是现代科学和技术的基础。
它不仅是一种学科知识,更是一种思维方式、解决问题的工具。
数学教学在学生培养中具有重要的地位和作用,而教师的数学学科知识和教学能力是有效提高学生数学学习成绩和兴趣的关键。
一、数学学科知识的重要性数学学科知识是教师教学的基础。
了解和掌握数学学科知识,可以帮助教师更好地理解和解释数学概念,准确把握数学规律,指导学生进行数学思考和解题。
一位数学教师只有掌握扎实的数学学科知识,才能在教学中做到知其然,更知其所以然。
数学学科知识还能够丰富教师的教学资源。
数学学科知识的积累为教师提供了丰富的教学素材和案例,在课堂上可以更加灵活地使用各种教学方法和教具,激发学生的学习兴趣和参与度。
二、数学教学能力的培养数学教学能力是教师的核心能力之一,它是教师根据数学学科知识进行教学实践的能力。
数学教学能力的培养不仅包括教学技能的提升,还包括教师的教学观念和教育教学方法的更新。
首先,教学技能是数学教学能力的重要组成部分。
教师需要掌握一定的教学技能,包括如何组织和设计教学活动,如何引导学生进行数学思考和解题,如何在课堂上进行有效的互动和交流等。
这些教学技能的掌握可以帮助教师更好地开展教学工作,提高学生的学习效果。
另外,教师的教学观念和教育教学方法的更新也是数学教学能力的重要方面。
教育教学理论的发展和更新,为教师提供了新的教学思路和方法。
作为数学教师,我们应该关注教育教学理论的新动向,及时调整和改变自己的教学观念,灵活运用各种教学方法,不断提高自己的教学能力。
三、提高数学学科知识和教学能力的途径1. 继续学习和专业培训。
作为一名数学教师,我们应该保持学习的姿态,不断提高自己的数学学科知识和教学能力。
可以通过参加相关的研讨会、学术讲座和专业培训班等形式,不断拓宽自己的数学学科知识和教育教学理论的广度和深度。
2. 反思和总结教学经验。
在教学实践中,教师应该经常进行教学反思和总结,及时发现和解决教学中存在的问题和困惑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学学科知识与教学能力》(高级中学)
一、考试目标
1.数学学科知识的掌握和运用。
掌握大学本科数学专业基础课程的知识和高中数学知识。
具有在高中数学教学实践中综合而有效地运用这些知识的能力。
2.高中数学课程知识的掌握和运用。
理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。
理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
二、考试内容模块与要求
1.学科知识
数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。
大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。
其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。
2.课程知识
了解高中数学课程的性质、基本理念和目标。
熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。
了解《课标》各模块知识编排的特点。
能运用《课标》指导自己的数学教学实践。
3.教学知识
了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。
掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。
掌握概念教学、命题教学等数学教学知识的基本内容。
掌握合作学习、探究学习、自主学习等中学数学学习方式。
掌握数学教学评价的基本知识和方法。
4.教学技能
(1)教学设计
能够根据学生已有的知识水平和数学学习经验,准确把握所教内容与学生已学知识的联系。
能够根据《课标》的要求和学生的认知特征确定教学目标、教学重点和难点。
能正确把握数学教学内容,揭示数学概念、法则、结论的发展过程和本质,渗透数学思想方法,体现应用与创新意识。
能选择适当的教学方法和手段,合理安排教学过程和教学内容,在规定的时间内完成所选教学内容的教案设计。
(2)教学实施
能创设合理的数学教学情境,激发学生的数学学习兴趣,引导学生自主探索、猜想和合作交流。
能依据数学学科特点和学生的认知特征,恰当地运用教学方法和手段,有效地进行数学课堂教学。
能结合具体数学教学情境,正确处理数学教学中的各种问题。
(3)教学评价
能采用不同的方式和方法,对学生知识与技能、过程与方法和情感、态度与价值观等方面进行恰当地评价。
能对教师数学教学过程进行评价。
能够通过教学评价改进教学和促进学生的发展。
三、试卷结构
模块比例题型
学科知识41%单项选择题简答题解答题
课程知识23%单项选择题简答题论述题
教学知识10%单项选择题简答题
教学技能26%案例分析题教学设计题
合计100%单项选择题:约27%非选择题:约73%
四、题型示例
1.单项选择题
A.单调增函数
B.单调减函数
C.上凸函数
D.下凸函数
(2)在高中数学教学中,课堂小结的方式多种多样。
有一种常见的小结方式是:结合板书内容梳理本课教学重点和难点的学习思路,同时提醒学生课下复习其中的要点。
这种小结方式的作用在于
A.升华情感,引起共鸣
B.点评议论,提高认识
C.巧设悬念,激发兴趣
D.总结回顾,强化记忆
(3)在高等代数中,有一种线性变换叫做正交变换,即不改变任意两点距离的变换。
下列变换中不是正交变换的是
A. 平移变换
B. 旋转变换
C. 反射变换
D. 相似变换
2.简答题
(1)根据下图编一道函数的应用问题
(2)一位教师讲了一堂公开课《函数》,多数听课教师认为他讲出了函数概念的本质,但课堂教学有效性不足,突出表现在课堂提问方面。
你认为应注意哪些问题才能提高课堂提问的有效性(请结合自己对《函数》的教学设想来谈)?
3.解答题
4.论述题
在必修模块中,将平面解析几何内容放在函数与立体几何之后,对这种安排谈谈你的看法。
5.案例分析题
阅读下列两个对于不等式的教学活动设计,然后回答问题。
设计1:
活动(1)让学生分别取a,b为具体数值,检验该不等式是否成立。
活动(2)讨论:ab,的几何意义。
讨论(1):三个图形的关系:
讨论(2):该不等式何时等号成立,何时不等号成立?
活动(3)不等式的严格证明
讨论(3):若有三个数:a>0,b>0,c>0,是否会有一个什么相应的不等式?
设计2:
活动:学生分组讨论不等式的证明方法。
学生分组展示,讨论。
请回答如下问题:
(1)分析设计1的教学设计意图。
(2)结合本案例分析合情推理与演绎推理的关系,简述教学
过程中如何引导学生经历一个由合情推理到演绎推理的过程。
(3)对比分析两个教学设计的理念。
6.教学设计题
就高中数学“人教版教材”必修1第一单元中的函数概念第一课时的内容,设计一个教学方案(将提供教材内容)。