上海市十三校2015届高三数学第二次联考试题 理(含解析)
15年高考真题——理科数学(上海卷)-推荐下载

2015 年普通高等学校招生全国统一考试(上海)卷
数学(理科) 一.填空题:共 14 小题,每小题 4 分,共 56 分。
1.设全集U R ,若集合 A 1, 2,3, 4, B x 2 x 3,则
A ðU B _________。
6.若圆锥的侧面积与过轴的截面面积之比为 2 ,则其母线与轴的夹角的大小为
_______。
7.方程 log2 9x1 5 log2 3x1 2 2 的解为___________。2
8.在报名的 3 名男教师和 6 名女教师中,选取 5 参加义务献血,要求男、女教师都有, 则不同的选取方式的种数为________(结果用数值表示)。
(A)充分非必要条件
(C)充要条件
(B)必要非充分条件
(D)既非充分又非必要条件
16.已知点 A 的坐标为 4 3,1,将 OA 绕坐标原点 O 逆时针旋转 至 OB ,则点 3
33 B 的纵坐标为( ) (A)
2
13
(D)
2
17.记方程①: x2 a1x 1 0 ,方程②: x2 a2 x 2 0 ,方程③:
f T 4 。⑴验证 h x x sin x 是以 6 为周期的余弦周期函数;⑵设 a b ,证明
3
对任意 c f a, f b ,存在 x0 a,b,使得
f x0 c ;⑶证明:“ u0 为方程 cos f x 1在
0,T 上得解”的充要条件是“ u0 为方程
x2 a3x 4 0 ,其中 a1, a2 , a3 是正实数。当 a1, a2 , a3 成等比数列时,下列选项中,能推
2015年上海高考数学理科含答案word版

2015年上海高等学校招生数学试卷(理工农医类)一. 填空题(本大题共有14题,每题4分,满分56分)1.设全集U=R ,若集合{}A=12,3,4,,{}23B x x =≤≤,则U AC B = ;2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z = ; 3.若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭,解为35x y =⎧⎨=⎩ ,则12c c -= ; 4.若正三棱柱的所有棱长均为a,且其体积为a = ;5.抛物线22(p 0)y px =>上的动点Q 到焦点的距离的最小值为1,则p = ; 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角大小为 ; 7.方程()()1122log 95log 322x x ---=-+的解为 ;8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 ;(结果用数值表示) 9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为1C 和2C ,若1C的渐近线方程为y =,则2C 的渐近线方程为 ; 10.设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 ;11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 ;(结果用数值表示)12.赌博有陷阱,某种赌博每局的规则是:赌客先在标记有1、2、3、4、5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的倍作为其奖金(单位:元);若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12E E ξξ-= 元; 13.已知函数()sin f x x =,若存在12,,m x x x 满足1206m x x x π≤<<<≤,且()()()()()()()*12231++=122,m m f x f x f x f x f x f x m m N --+--≥∈,则m 的最小值为 ;14.在锐角三角形ABC 中,1tan 2A =,D 为边BC 上的点,ABD 与ACD 的面积分别为2和4,过D 作DE AB ⊥于E ,DF AC ⊥于F ,则DE DF = ; 二. 选择题(本大题共有4题,每题5分,满分20分)15.设12z z C∈、,则“12z z、中至少有一个数是虚数”是“12z z-是虚数”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16.已知点A的坐标为()43,1,将OA绕坐标原点O逆时针旋转3π至OB,则点B的纵坐标为()A.33B.53C.112D.13217.记方程①:2110x a x++=;方程②:2210x a x++=;③:2310x a x++=;其中123a a a、、是正实数,当123a a a、、成等比数列时,下列选项中,能推出方程③无实数根的是()A. 方程①有实根,且②有实根B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根18.设(),n n nP x y是直线()*21nx y n Nn-=∈+与圆222x y+=在第一象限的交点,则极限1lim1nxnyx→∞-=-()A. 1-B.12- C. 1 D. 2三.解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤。
2015年普通高等学校招生全国统一考试数学理试题精品解析(上海卷)

2015年高考上海卷理数试题解析(精编版)(解析版)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则UA B = .【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B = 【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为163,则a = . 【答案】45、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】26、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π 【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 .【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=-> 21430,5333112x t t t t x x -⇒-+=>⇒=⇒=⇒-=⇒=【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】1209、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =,则2C 的渐近线方程为 .【答案】32y x =±【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为32y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】411、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元).【答案】0.2【解析】赌金的分布列为1ξ1 2 3 4 5P15 15 15 15 15所以11(12345)35E ξ=++++=奖金的分布列为2ξ1.42.8 4.2 5.6 P25425C = 253310C = 25215C = 251110C = 所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望13、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【解析】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m =【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= . 【答案】1615-【解析】由题意得:1sin ,cos ,sin 24125255A A AB AC A AB AC ==⋅⋅=+⇒⋅=,又112,43222125AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅=,因为DEAF 四点共圆,因此D DF E⋅=16cos()()151255DE DF A π⋅⋅-=⨯-=-【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B16、已知点A的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532 C .112 D .132【答案】D【解析】133313(cossin )(43)()3322OB OA i i i i ππ=⋅+=+⋅+=+,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根 【考点定位】不等式性质18、设(),n n nx yP是直线21nx yn-=+(n*∈N)与圆222x y+=在第一象限的交点,则极限1lim1nnnyx→∞-=-()A.1- B.12- C.1 D.2【答案】A三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
上海市黄浦区2015届高考二模数学理科试卷及答案

上海市黄浦区2015年高考模拟考数学试卷(理)(2015年4月21日)考生注意:1.每位考生应同时收到试卷和答题卷两份材料,解答必须在答题卷上进行,写在试卷上的解答一律无效;2.答卷前,考生务必将姓名、准考证号等相关信息在答题卷上填写清楚; 3.本试卷共23道试题,满分150分;考试时间120分钟.一、填空题(本大题满分56分) 本大题共有14题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分.1.函数0(2)()lg(3)1x f x x x -=-++的定义域是 .2.函数22log (1)y x =-的单调递减区间是 .3.已知集合{}{}2|160,R ,|3,R A x x x B x x a x =-≤∈=-≤∈,若B A ⊆,则正实数a 的取值范围是 .4.若二次函数222(2)31y x m x m =+--+是定义域为R 的偶函数,则函数()2(1,R)m f x x mx x x =-+≤∈的反函数1()f x -= .5.已知角α的顶点与平面直角坐标系的原点重合,始边在x 轴的正半轴上,终边经过点()3,4P a a -(0,R)a a ≠∈,则cos 2α的值是 .6.在△ABC 中,内角A B C 、、所对的边分别为a b c 、、,且2222sin a b c bc A =+-,则∠A = .7.在等差数列{}n a 中,若8103,1a a =-=,9m a =,则正整数m = . 8.已知点(2,3)(1,4)A B --、,则直线AB 的点法向式方程是 .9.已知抛物线216y x =的焦点与双曲线2221(0)12x y a a -=>的一个焦点重合,则双曲线的渐近线方程是 .10.已知AB 是球O 的一条直径,点1O 是AB 上一点,若14OO =,平面α过点1O 且垂直AB ,截得圆1O ,当圆1O 的面积为9π时,则球O 的表面积是 .11.若二次函数()y f x =对一切R x ∈恒有2224()245x x f x x x -+≤≤-+成立,且(5)27f =,则(11)f = .12.(理科)在平面直角坐标系中,直线l :3,(R)32x t t t y t =+⎧∈⎨=-⎩是参数,,圆2cos ,:22sin x C y θθ=⎧⎨=+⎩([0,2))θθπ∈是参数, ,则圆心到直线的距离是 . 13.(理科)一个不透明的袋子里装有外形和质地完全一样的5个白球,3个红球,2个黄球,将它们充分混合后,摸得一个白球计2分,摸得一个红球记3分,摸得一个黄球计4分,若用随机变量ξ表示随机摸一个球的得分,则随机变量ξ的数学期望E ξ的值是 分.14.(理科)已知点(4,0)(2,2)B C 、,平面直角坐标系上的动点P 满足OP OB OC λμ=⋅+⋅(其中O 是坐标原点,且1,1a b λμ<≤<≤),若动点P 组成的区域的面积为8,则a b +的最小值是 . 二、选择题(本大题满分20分) 本大题共有4题,每题有且只有一个正确答案,考生应在答题卷的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.在空间中,下列命题正确的是 [答] ( ).A .若两直线a ,b 与直线l 所成的角相等,那么a ∥bB .空间不同的三点A BC 、、确定一个平面 C .如果直线l //平面α且l //平面β,那么βα//D .若直线a 与平面M 没有公共点,则直线a //平面M16.设实数1212,,,a a b b 均不为0,则“1122a b a b =成立”是“关于x 的不等式110a x b +>与220a x b +>的解集相同”的 [答] ( ).A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件17.若复数z 同时满足2i z z -=,i z z =,则z = (i 是虚数单位,z 是z 的共轭复数) [答] ( ).A .1i -B .iC .1i --D . 1i -+18.已知数列{}n a 共有5项,满足123450a a a a a >>>>≥,且对任意(15)i j i j ≤≤≤、,有i ja a -仍是该数列的某一项,现给出下列4个命题: (1)50a =;(2)414a a =;(3)数列{}n a 是等差数列; (4)集合{}|,15i j A x x a a i j ==+≤≤≤中共有9个元素.则其中真命题的序号是 [答]( ). A .(1)、(2)、(3)、(4) B .(1)、(4) C .(2)、(3) D .(1)、(3)、(4) 三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题卷的相应编号规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如下所示的几何体111ABCD AC D -.(理科)(1) 若11AC 的中点为1O ,求异面直线1BO 与11A D 所成角的大小(结果用反三角函数值表示);(2)求点D 到平面11A BC 的距离d .第19题图20.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知函数13g()sin 2cos 21R 22x x x x =-+∈,,函数()f x 与函数()g x 的图像关于原点对称.(1)求()y f x =的解析式;(2)(理科)求函数()f x 在[0]π,上的单调递增区间.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.有一块铁皮零件,其形状是由边长为40cm 的正方形截去一个三角形ABF 所得的五边形ABCDE ,其中12,10AFcm BF cm ==,如图所示.现在需要用这块材料截取矩形铁皮DMPN ,使得ABCD1A 1C 1D矩形相邻两边分别落在,CD DE 上,另一顶点P 落在边CB 或BA 边上.设DM x =cm ,矩形DMPN 的面积为y 2cm .(1)试求出矩形铁皮DMPN 的面积y 关于x 的函数解析式, 并写出定义域;(2)试问如何截取(即x 取何值时),可使得到的矩形DMPN 的面积最大?第21题图22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.(理科)已知数列{}n a 满足112a =,对任意*N m p ∈、都有m p m p a a a +=⋅. (1)求数列{}n a (*N n ∈)的递推公式; (2)数列{}n b 满足131223(1)21212121n n n nb b b ba +=-+-++-++++(*N n ∈),求通项公式n b ; (3)设2n n n c b λ=+,问是否存在实数λ使得数列{}n c (*N n ∈)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知点12(2,0)(2,0)F F -、,平面直角坐标系上的一个动点(,)P x y 满足12||+||=4PF PF .设动点P 的轨迹为曲线C .(1)求曲线C 的轨迹方程;(2)点M 是曲线C 上的任意一点,GH 为圆22:(3)1N x y -+=的任意一条直径,求MG MH ⋅的取值范围;(3)(理科)已知点A B 、是曲线C 上的两个动点,若OA OB ⊥(O 是坐标原点),试证明:直线AB 与某个定圆恒相切,并写出定圆的方程.黄浦区2015年高考模拟考数学试卷(文理合卷)参考答案 (2015年4月21日)一、填空题1.(3,)+ ; 8.7(2)3(3)0 7(1)3(4)0x y x y ++-=-++=也可以是; 2.(,1)-?; 9.3y x =;3.(0,1] ; 10.100p ; 4.1()11(1)f x x x -=-- ; 11.153;5.725-; 12.(理科)755;(文科)143;6.4p ; 13.(理科)2.7;(文科)23;7.14 ; 14.(理科)4.(文科)2或32.二、选择题 15.D 16.B 17.D 18.A 三、解答题19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. (理科)解 (1)按如图所示建立空间直角坐标系.由题知,可得点D(0,0,0)、(2,2,0)B 、1(0,0,3)D 、1(2,0,3)A 、1(0,2,3)C .由1O 是11AC 中点,可得1(1,1,3)O . 于是,111(1,1,3),(2,0,0)BO A D =--=-. 设异面直线1BO 与11A D 所成的角为θ,则111111211c o s 11||||211BO A D BO A D θ⋅===. 因此,异面直线1BO 与11A D 所成的角为11arccos11. (2)设(,,)n x y z =是平面ABD 的法向量.ABC D1A 1C 1D xyz∴110,0.n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩ 又11(0,2,3),(2,0,3)BA BC =-=-,∴230,230.y z x z -+=⎧⎨-+=⎩ 取2z =,可得3,3,2.x y z =⎧⎪=⎨⎪=⎩即平面11BAC 的一个法向量是(3,3,2)n =. ∴||n DB d n ⋅=62211=. (文科)解(1)2AB BC ==,13AA =,11111=2232231032ABCD A D C V V V -∴=-⨯⨯-⨯⨯⨯⨯=长方体三棱锥.左视图如右图所示. (2)依据题意,有11,A D AD AD BC ,即11A D BC .∴1C BC ∠就是异面直线1BC 与11A D 所成的角. 又1C C BC ⊥,∴113tan 2C C C BC BC ∠==. ∴异面直线1BC 与11A D 所成的角是3tan 2arc .20.(本题满分12分) 本题共有2个小题,第1小题满分5分,第2小题满分7分.解(1)设点(,)x y 是函数()y f x =的图像上任意一点,由题意可知,点(,)x y --在()y g x =的 图像上,于是有13sin(2)cos(2)1,22R y x x x -=---+∈. 所以,13()sin 2cos 2122f x x x =+-,R x ∈.(理科)(2)由(1)可知,13()sin 2cos 21sin(2)1,[0,]223f x x x x x ππ=+-=+-∈,记[0,]D π=. 由222,Z 232k x k k πππππ-≤+≤+∈,解得5,1212Z k x k k ππππ-≤≤+∈,则函数()f x 在形如5[,],1212k k k Z ππππ-+∈的区间上单调递增. 结合定义域,可知上述区间中符合题意的整数k 只能是0和1.令0k =得15[,]1212D ππ=-;1k =时,得1713[,]1212D ππ=.所以,1[0,]12DD π=,27[,]12D D ππ=.于是,函数()f x 在[0,]π上的单调递增区间是[0,]12π和7[,]12ππ.(文科)(2)由(1)可知,13()sin 2cos 21sin(2)1223f x x x x π=+-=+-.又[,]42x ππ∈-, 所以,42633x πππ-≤+≤.考察正弦函数sin y x =的图像,可知,3sin(2)123x π-≤+≤,[,]42x ππ∈-.于是,31sin(2)1023x π--≤+-≤. 所以,当[,]42x ππ∈-时,函数()f x 的取值范围是23()02f x +-≤≤.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.解(1)依据题意并结合图形,可知:1 当点P 在线段CB 上,即030x <≤时,40y x =;2 当点P 在线段BA 上,即3040x <≤时,由PQ BFQA FA=,得6485QA x =-.于是,26765y DM PM DM EQ x x =⋅=⋅=-. 所以,240,030676.30405 < x x y x x x ≤⎧⎪=⎨-<≤⎪⎩定义域(0,40]D =.(2)由(1)知,当030x <≤时,01200y <≤;当3040x <≤时,2266953610361076()55333y x x x =-=--+≤,当且仅当953x =时,等号成立. 因此,y 的最大值为36103. 答:先在DE 上截取线段953DM cm =,然后过点M 作DE 的垂线交BA 于点P ,再过点P 作DE 的平行线交DC 于点N ,最后沿MP 与PN 截铁皮,所得矩形面积最大,最大面积为361032cm .22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.(理科) 解(1)对任意*N m p ∈、都有m p m p a a a +=⋅成立,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈.∴数列{}n a (*N n ∈)的递推公式是1*111,2, N .n na a a a n +⎧=⎪⎨⎪=⋅∈⎩ (2)由(1)可知,数列{}n a (*N n ∈)是首项和公比都为12的等比数列,于是*1()2N n n a n =∈. 由131223(1)21212121n n n nb b b b a +=-+-++-++++(*N n ∈),得 31121231(1)21212121n n n n b b b ba ---=-+-++-++++(2n ≥).故111(1)(1)(1)(2)212n n n n n n nn b a a b n +--=-⇒=-+≥+. 当1n =时,1113212b a b =⇒=+.所以*31)21(1)(1).(2,)2 ( N n n nn b n n ⎧=⎪⎪=⎨⎪-+≥∈⎪⎩,(3) ∵2n n n c b λ=+,∴当3n ≥时,12(1)(1)2nnn nc =+-+λ, 111112(1)(1)2n n n n c ----=+-+λ,依据题意,有1132(1)(2)02n nn n n c c λ---=+-+>,即12(1)322n nnλ-->-+.1 当n 为大于或等于4的偶数时,有12322n n λ->-+ 恒成立,又12322n n-+ 随n 增大而增大,则 1min2128(4)33522n n n -⎛⎫⎪== ⎪ ⎪+⎝⎭,故λ的取值范围为12835λ>-; 02 当n 为大于或等于3的奇数时,有12322n nλ-<+恒成立,故λ的取值范围为3219λ<;03 当2n =时,由22153(2)(2)042c c λλ-=+-+>,得8λ<.综上可得,所求λ的取值范围是128323519λ-<<. (文科)解(1)对任意*N m p ∈、都有m p m p a a a +=⋅成立,12a =,∴令,1m n p ==,得*11,N n n a a a n +=⋅∈. ∴数列{}n a (*N n ∈)是首项和公比都为2的等比数列.∴1*122(N )n n n a a n -=⋅=∈. (2) 由31223+21212121n n n b b b ba =+++++++(*N n ∈),得 31121231+21212121n n n b b b ba ---=+++++++(2n ≥).故121112(21)22(2)21n n n n n n n n n b a a b n -----=⇒=+=+≥+. 当1n =时,111621ba b =⇒=+.于是,211*1)22.(2,)n n n n b n n --=⎧=⎨+≥∈⎩( N 6,当1n =时,116B b ==; 当2n ≥时,123221231241212131411311 =6+(2+2+2++2)+(2+2+2++2)2(14)2(12) =6+141224 =42.33n nn n n n n n B b b b b ⋅-⋅-⋅-⋅-------=++++--+--⋅++ 又1n =时,112442633n B =⋅++=,综上,有*2442N .33n n n B n =⋅++∈,(3)2nn n B c =,11132B c ==, ∴24121332n n n c =⋅+⋅+,*N n ∈.1111124124121(21)33233221=(2)0(2).32n n n n n n n n c c n -----∴-=⋅+⋅+-⋅+⋅+->≥∴数列{}n c (*N n ∈)是单调递增数列,即数列{}n c 中数值最小的项是1c ,其值为3.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.解(1)依据题意,动点(,)P x y 满足2222(2)(2)4x y x y -++++=.又12||224F F =<,因此,动点(,)P x y 的轨迹是焦点在x 轴上的椭圆,且24,2222a b c =⎧⎪⇒=⎨=⎪⎩. 所以,所求曲线C 的轨迹方程是22142x y +=. (2) 设00(,)M x y 是曲线C 上任一点.依据题意,可得,MG MN NG MH MN NH =+=+.GH 是直径,∴NH NG =-.又||=1NG ,22=()()=()() =||||.MG MH MN NG MN GH MN NG MN NG MN NG ∴⋅+⋅++⋅--∴22200||(3)(0)MN x y =-+- =201(6)72x --. 由22142x y +=,可得22x -≤≤,即022x -≤≤.2221||25||||24M N M NN G ∴≤≤≤-≤,0.∴M G M H ⋅的取值范围是024MG MH ≤⋅≤. (另解21||25MN ≤≤:结合椭圆和圆的位置关系,有||||||||||||OM ON MN OM ON -≤≤+(当且仅当M N O 、、共线时,等号成立),于是有1||5MN ≤≤.)(理科)(3)证明 因A B 、是曲线C 上满足OA OB ⊥的两个动点,由曲线C 关于原点对称,可知直线AB 也关于原点对称.若直线AB 与定圆相切,则定圆的圆心必在原点.因此,只要证明原点到直线AB 的距离(d )是定值即可.设12||,||OA r OB r ==,点11(cos ,sin )A r r θθ,则 2222(c o s (),s i n ())(s i n ,c o s )22B r rr rππθθθθ++=-. 利用面积相等,有11||||||22OA OB AB d ⋅=⋅,于是2221222122211111r r d r r r r ==++. 又A B 、两点在曲线C 上,故222211222222cos sin 1,42sin cos 1.42r r r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 可得22212222cos sin 1,42sin cos 1.42r r θθθθ⎧+=⎪⎪⎨⎪+=⎪⎩ 因此,22121134r r +=.所以,243d =,即d 为定值233. 所以,直线AB 总与定圆相切,且定圆的方程为:2243x y +=. (文科)(3)证明 设原点到直线AB 的距离为d ,且A B 、是曲线C 上满足OA OB ⊥的两个动点.01若点A 在坐标轴上,则点B 也在坐标轴上,有11||||||22OA OB AB d =⋅,即22233ab d a b==+.02若点(,)A A A x y 不在坐标轴上,可设1:,:OA y kx OB y x k==-. 由221,42.x y y kx ⎧+=⎪⎨⎪=⎩ 得222224,124.12A Ax k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩设点(,)B B B x y ,同理可得,222224,24.2B B k x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩于是,221||212k OA k +=+,221||22k OB k +=+,2222223(1)||(2)(12)k AB OA OB k k +=+=++ . 利用11||||||22OA OB AB d =⋅,得233d =. 综合012和可知,总有233d =,即原点O 到直线AB 的距离为定值233. (方法二:根据曲线C 关于原点和坐标轴都对称的特点,以及OA OB ⊥,求出A B 、的一组坐标,再用点到直线的距离公式求解,也可以得出结论)。
2015年上海市十三校联考高考数学二模试卷(理科)含详解

2015年上海市十三校联考高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=.2.(4分)函数的定义域是.3.(4分)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.4.(4分)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=.5.(4分)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=.6.(4分)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是.7.(4分)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为.8.(4分)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?.(只需写出一个答案即可)9.(4分)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.10.(4分)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为.11.(4分)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为.12.(4分)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有个.13.(4分)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=.14.(4分)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要16.(5分)用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D.a 不能被5 整除17.(5分)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.218.(5分)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,]B.[2﹣2,2+2]C.[,]D.[3﹣2,3+2]三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.20.(14分)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n 项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n}的前n项和S n=2n2+2n+2,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.21.(14分)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.22.(16分)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.23.(18分)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f (x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上Γ,求正方形ABCD的面积;(2)设曲线Γ与x轴的交点是M、N,抛物线Γ′:y=x2+1与y轴的交点是G,直线MG与曲线Γ′交于点P,直线NG与曲线Γ′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线Γ与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线Γ在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i(i=1,2,…,255),将Y i中的所有元素相加(若iY中只有一个元素,则其是其自身)得到255个数y1,y2,…,y255求所有的正整数n的值,使得y1n+y2n+…+y255n是与变数a及变数x i(i=1,2,…8)均无关的常数.2015年上海市十三校联考高考数学二模试卷(理科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m= 0.【考点】4U:幂函数的概念、解析式、定义域、值域;4Y:幂函数的单调性、奇偶性及其应用.【专题】11:计算题;51:函数的性质及应用;59:不等式的解法及应用.【分析】根据幂函数的性质,可得m2+2m﹣3<0,解不等式求得自然数解,即可得到m=0.【解答】解:由幂函数y=x m2+2m﹣3在(0,+∞)为减函数,则m2+2m﹣3<0,解得﹣3<m<1.由于m∈N,则m=0.故答案为:0.【点评】本题考查幂函数的性质,主要考查二次不等式的解法,属于基础题.2.(4分)函数的定义域是(0,1] .【考点】33:函数的定义域及其求法;4K:对数函数的定义域.【专题】11:计算题.【分析】令被开方数大于等于0,然后利用对数函数的单调性及真数大于0求出x的范围,写出集合区间形式即为函数的定义域.【解答】解:∴0<x≤1∴函数的定义域为(0,1]故答案为:(0,1]【点评】求解析式已知的函数的定义域应该考虑:开偶次方根的被开方数大于等于0;对数函数的真数大于0底数大于0小于1;分母非0.3.(4分)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.【考点】HR:余弦定理.【专题】11:计算题.【分析】先通过BC=8,AC=5,三角形面积为12求出sinC的值,再通过余弦函数的二倍角公式求出答案.【解答】解:∵已知BC=8,AC=5,三角形面积为12,∴•BC•ACsinC=12∴sinC=∴cos2C=1﹣2sin2C=1﹣2×=故答案为:【点评】本题主要考查通过正弦求三角形面积及倍角公式的应用.属基础题.4.(4分)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】把n代入方程,利用复数相等的条件,求出m,n,即可.【解答】解:关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,可得n2﹣(2+i)n+1+mi=0所以,所以m=n=1,故答案为:1.【点评】本题考查复数相等的条件,考查计算能力,是基础题.5.(4分)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】首先分两种情况:①焦点在x轴上.②焦点在y轴上,分别求出a的值即可.【解答】解:∵椭圆的焦距为4.∴2c=4,即c=2∵在椭圆中,a2=b2+c2①焦点在x轴上时:10﹣a﹣(a﹣2)=4解得:a=4.②焦点在y轴上时a﹣2﹣(10﹣a)=4解得:a=8故答案为:4或8.【点评】本题考查的知识要点:椭圆方程的两种情况:焦点在x轴或y轴上,考察a、b、c的关系式,及相关的运算问题.6.(4分)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【专题】5F:空间位置关系与距离.【分析】易得圆锥侧面展开图的弧长,除以2π即为圆锥的底面半径,圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.【解答】解:圆锥的侧面展开图的弧长为:=2π,∴圆锥的底面半径为2π÷2π=1,∴此圆锥的表面积=π×(1)2+π×1×3=4π.故答案为:4π.【点评】本题考查扇形的弧长公式为;圆锥的侧面展开图的弧长等于圆锥的底面周长,圆锥的表面积的求法.7.(4分)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为﹣3≤a≤9.【考点】51:函数的零点.【专题】11:计算题;51:函数的性质及应用.【分析】由题意,x2+ax﹣10=0在x∈[1,5]上有解,可得a=﹣x在x∈[1,5]上有解,利用a=﹣x在x∈[1,5]上单调递减,即可求出实数a的取值范围.【解答】解:由题意,x2+ax﹣10=0在x∈[1,5]上有解,所以a=﹣x在x∈[1,5]上有解,因为a=﹣x在x∈[1,5]上单调递减,所以﹣3≤a≤9,故答案为:﹣3≤a≤9.【点评】本题主要考查方程的根与函数之间的关系,考查由单调性求函数的值域,比较基础.8.(4分)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解答】解:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的整数倍,可得:233﹣105×2=23.或105k+23(k为正整数).故答案为:23,或105k+23(k为正整数).【点评】本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键.[可以原文理解为:三个三个的数余二,七个七个的数也余二,那么,总数可能是三乘七加二,等于二十三.二十三用五去除余数又恰好是三]9.(4分)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】由直线的极坐标方程为ρsin(θ+)=,展开并利用即可得出直角坐标方程,再利用点到直线的距离公式即可得出.【解答】解:由直线的极坐标方程为ρsin(θ+)=,展开为,化为x+y﹣1=0,∴极点O到这条直线的距离d==.故答案为:.【点评】本题考查了直线的极坐标方程化为直角坐标方程、点到直线的距离公式、两角和差的正弦公式,考查了推理能力与计算能力,属于基础题.10.(4分)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为3.【考点】CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,由Eξ=,得×,由此能求出口袋中白球的个数.【解答】解:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,∵Eξ=,∴×,解得x=3.∴口袋中白球的个数为3.故答案为:3.【点评】本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.11.(4分)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量的数量积公式分别判断x,y,z的符号,得到大小关系.【解答】解:由题意,x=•=AB×ACcos∠BAC>0,y=•=AB×ADcos∠BAD≈AB×ACcos∠BAD,又∠BAD>∠BAC所以cos∠BAD<cos∠BAC,所以x>y>0z=•=AB×AEcos∠BAE<0,所以x>y>z.故答案为:x>y>z.【点评】本题考查了向量的数量积的公式;属于基础题.12.(4分)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.【考点】3C:映射.【专题】51:函数的性质及应用;5J:集合.【分析】分别求出sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=利用排列组合知识求解得出这样的函数共有:(C+C)()()即可.【解答】解:∵函数f(x)的定义域为D,D⊆[0,4π],∴它的对应法则为f:x→sin x,f(x)的值域为{0,﹣,1},sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=这样的函数共有:(C+C)()()=31×15×3=1395故答案为:1395【点评】本题考查了映射,函数的概念,排列组合的知识,难度不大,但是综合性较强.13.(4分)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=0.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据等式,确定a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,即可得出结论.【解答】解:根据(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,可得x1999•x2000的系数a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,所以a1+a3+a5+…+a2011+a2013+a2015=0,故答案为:0.【点评】本题考查二项式定理的运用,考查学生分析解决问题的能力,属于中档题.14.(4分)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.【考点】IR:两点间的距离公式.【专题】11:计算题;35:转化思想;5M:推理和证明.【分析】由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).可得|AM|+|BN|=+,设2a=x,进而可以理解为(x,0)与(﹣,)和(﹣1,)的距离和,即可得出结论.【解答】解:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).∴|AM|+|BN|=+设2a=x,则|AM|+|BN|=+,可以理解为(x,0)与(﹣5,)和(﹣1,)的距离和,∴|AM|+|BN|的最小值为(﹣5,)和(﹣1,﹣)的距离,即2.故答案为:2.【点评】本题考查两点间距离公式的应用,考查学生分析解决问题的能力,有难度.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要【考点】29:充分条件、必要条件、充要条件.【专题】5J:集合;5L:简易逻辑.【分析】可举个例子来判断:比如A={1},B={1,2},α:x>0,β:x<3,容易说明此时命题α是命题β的既非充分又非必要条件.【解答】解:命题α是命题β的既非充分又非必要条件;比如A={1},α:x>0;B={1,2},β:x<3;显然α成立得不到β成立,β成立得不到α成立;∴此时,α是β的既非充分又非必要条件.故选:D.【点评】考查真子集的概念,以及充分条件、必要条件、既不充分又不必要条件的概念,以及找一个例子来说明问题的方法.16.(5分)用反证法证明命题:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D.a 不能被5 整除【考点】FC:反证法.【专题】5M:推理和证明.【分析】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故选:B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.17.(5分)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.2【考点】7F:基本不等式及其应用.【专题】56:三角函数的求值.【分析】x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).化简利用三角函数的单调性即可得出.【解答】解:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).则(x﹣y)2=(x+y)2﹣4xy=4cos2θ﹣4sinθ=5﹣4(sinθ+)2≤5,∴x﹣y.故选:C.【点评】本题考查了平方法、三角函数代换方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.18.(5分)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,]B.[2﹣2,2+2]C.[,]D.[3﹣2,3+2]【考点】MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】确定直线BC与动点O的空间关系,得到最大距离为AD到球心的距离+半径,最小距离为AD到球心的距离﹣半径.【解答】解:由题意,直线BC与动点O的空间关系:点O是以BC为直径的球面上的点,所以O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,最大距离为AD到球心的距离(即BC与AD的公垂线)+半径=2+2.最小距离为AD到球心的距离(即BC与AD的公垂线)﹣半径=2﹣2.∴点O到直线AD的距离的取值范围是:[2﹣2,2+2].故选:B.【点评】本题考查点、线、面间的距离计算,考查学生分析解决问题的能力,属于中档题,解题时要注意空间思维能力的培养.三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤.19.(12分)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP两两垂直,能求出四面体C1PQR 的体积.【解答】(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.【点评】本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.(14分)已知数列{b n}满足b1=1,且b n+1=16b n(n∈N),设数列{}的前n 项和是T n.(1)比较T n+12与T n•T n+2的大小;(2)若数列{a n}的前n项和S n=2n2+2n+2,数列{c n}=a n﹣log d b n(d>0,d≠1),求d的取值范围使得{c n}是递增数列.【考点】82:数列的函数特性;8H:数列递推式.【专题】11:计算题;54:等差数列与等比数列.【分析】(1)由数列递推式可得数列{b n}为公比是16的等比数列,求出其通项公式后可得,然后由等比数列的前n项和求得T n,再由作差法证明T n+12>T n•T n+2;(2)由S n=2n2+2n+2求出首项,进一步得到n≥2时的通项公式,再把数列{a n},{b n}的通项公式代入c n=a n﹣log d b n=4n+(4﹣4n)log d2=(4﹣4log d2)n+4log d2,然后由一次项系数大于0求得d的取值范围.【解答】解:(1)由b n+1=16b n,得数列{b n}为公比是16的等比数列,又b1=1,∴,因此,则=,∵T n+12﹣T n•T n+2=.于是T n+12>T n•T n+2;(2)由S n=2n2+2n+2,当n=1时求得a1=S1=6;当n≥2时,=4n.a1=6不满足上式,∴a n=.当n=1时,c1=a1﹣log d b1=6﹣log d1=6,当n≥2时,可得c n=a n﹣log d b n=4n+(4﹣4n)log d2=(4﹣4log d2)n+4log d2,要使数列{c n}是递增数列,则,解得:0<d<1或d>4.综上,d∈(0,1)∪(4,+∞).【点评】本题考查了等比关系的确定,考查了数列的函数特性,考查了对数不等式的解法,是中档题.21.(14分)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.【考点】F1:归纳推理;GP:两角和与差的三角函数.【专题】15:综合题;57:三角函数的图像与性质;5M:推理和证明.【分析】(1)根据定义可求得f1(x)+f2(x)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,则振幅是=,由=1,即可求得φ1﹣φ1的值.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=0恒成立,可解得cosφ1=﹣,可取φ2=(或φ2=﹣等),证明f1(x)+f2(x)+f3(x)=0.(3)由题意可得f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,从而可求f n(x)=Asin(x+),这n个波叠加后是平波.【解答】解:(1)f1(x)+f2(x)=sin(x+φ1)+sin(x+φ2)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,振幅是=则=1,即cos(φ1﹣φ2)=﹣,所以φ1﹣φ2=2kπ±,k ∈Z.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=Asinx+Asin(x+φ1)+Asin(x+φ2)=Asinx(1+cosφ1+cosφ2)+Acosx(sinφ1+sinφ2)=0恒成立,则1+cosφ1+cosφ2=0且sinφ1+sinφ2=0,即有:cosφ2=﹣cosφ1﹣1且sinφ2=﹣sinφ1,消去φ2可解得cosφ1=﹣,若取φ1=,可取φ2=(或φ2=﹣等),此时,f2(x)=Asin(x+),f3(x)=Asin(x+)(或f3(x)=Asin(x﹣)等),则:f1(x)+f2(x)+f3(x)=A[sinx+(sinx+cosx)+(﹣sinx﹣cosx)]=0,所以是平波.(3)f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,f n(x)=Asin(x+),这n个波叠加后是平波.【点评】本题主要考查了两角和与差的正弦函数公式的应用,考查了归纳推理的常用方法,综合性较强,考查了转化思想,属于中档题.22.(16分)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.【考点】3H:函数的最值及其几何意义;53:函数的零点与方程根的关系.【专题】15:综合题;51:函数的性质及应用.【分析】(1)求出a=0的解析式,再由一次函数的单调性,得到不等式,即可得到范围;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1),运用函数的定义即可得到结论;(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0,即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.【解答】解:(1)当a=0时,f(x)=(2b+1)x﹣2,当x∈[,1]时恒有f(x)≥0,则f()≥0且f(1)≥0,即b﹣≥0且2b﹣1≥0,解得b≥;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1)由函数定义可知函数图象一定不过A(1,y1)(y1≠﹣3)和B(﹣1,y2)(y2≠﹣1);(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.令g(t)=,t∈[3,4]设u=t﹣2,u∈[1,2],则g(t)=f(u)==∴u=1,即t=3时,g(t)取最小值,∴t=3时,a2+b2的最小值为.【点评】本题考查不等式的恒成立问题转化为求函数的值域问题,主要考查一次函数的单调性,运用主元法和直线和圆有交点的条件是解题的关键.23.(18分)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线Γ:f (x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上Γ,求正方形ABCD的面积;(2)设曲线Γ与x轴的交点是M、N,抛物线Γ′:y=x2+1与y轴的交点是G,直线MG与曲线Γ′交于点P,直线NG与曲线Γ′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线Γ与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线Γ在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Y i(i=1,2,…,255),将Y i中的所有元素相加(若iY中只有一个元素,则其是其自身)得到255个数y1,y2,…,y255求所有的正整数n的值,使得y1n+y2n+…+y255n是与变数a及变数x i(i=1,2,…8)均无关的常数.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,由于f(x,y)表示两条平行线,之间的距离是2,为一个正方形,即可得出面积S.(2):在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.分别与抛物线方程联立可得P,Q.直线PQ的方程为:,令x=0,可得y=3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=0.恒表示平行线x﹣y=,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Y i=1,2,…,255),取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Y p,Y q),Y p∪Y q=X,Y p∩Y q=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足y p+y q=0.可以利用扇形归纳法证明:对于Y p的元素和y p与Y q的元素和y q,当n为奇数时,=0.即可得出.【解答】解:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,∴f(x,y)=0表示两条平行线,之间的距离是2,此为一个正方形的一个边长,其面积S=4.(2)证明:在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.联立,解得P,同理可得Q.∴直线PQ的方程为:令x=0,则y===3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=(x﹣y)2+a(x﹣y)﹣1=0.恒表示平行线x﹣y=,如图所示,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,则=,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Y i,取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Y p,Y q),Y p∪Y q=X,Y p∩Y q=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足y p+y q=0.以下证明:对于Y p的元素和y p与Y q的元素和y q,当n为奇数时,=0.先证明:n为奇数时,x+y能够整除x n+y n,用数学归纳法证明.1°当n=1时,成立;2°假设当n=k(奇数)时,x+y能够整除x k+y k,则当n=k+2时,x k+2+y k+2=x k+2﹣x k y2+x k y2+y k+2=x k(x2﹣y2)+y2(x k+y k),因此上式可被x+y整除.由1°,2°可知:n为奇数时,x+y能够整除x n+y n.又∵当n为奇数时,=(y p+y q)M,其中M是关于y p,y q的整式,∵Y p∪Y q=X,Y p∩Y q=∅,∴每一个集合“对”(Y p,Y q)都满足y p+y q=0.则一定有=(x+y)M=0,M∈N*,于是可得y1n+y2n+…+y255n=0是常数.【点评】本题考查了平行直线系、直线的交点、一元二次方程的根与系数的关系、集合的性质、中点坐标公式、对称性、扇形归纳法,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.。
上海市杨浦区2015届高三数学二模考试试卷理(含解析)

上海市杨浦区2015届高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.函数f(x)=的定义域是__________.2.若集合A=,则A∩B的元素个数为__________.3.若,则x的值是__________.4.(2x﹣)6展开式中常数项为__________(用数字作答).5.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为__________.6.对数不等式(1+log3x)(a﹣log3x)>0的解集是,则实数a的值为__________.7.极坐标方程所表示的曲线围成的图形面积为__________.8.如图,根据该程序框图,若输出的y为2,则输入的x的值为__________.9.(1999•广东)若正数a,b满足ab=a+b+3,则ab的取值范围是__________.10.已知是不平行的向量,设,则与共线的充要条件是实数k等于__________.11.已知方程x2﹣px+1=0(p∈R)的两根为x1、x2,若|x1﹣x2|=1,则实数p的值为__________.12.已知从上海飞往拉萨的航班每天有5班,现有甲、乙、丙三人选在同一天从上海出发去拉萨,则他们之中正好有两个人选择同一航班的概率为__________.13.已知n∈N*,在坐标平面中有斜率为n的直线l n与圆x2+y2=n2相切,且l n交y轴的正半轴于点P n,交x轴于点Q n,则的值为__________.14.对于自然数N*的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交替地加减各数,例如{1,2,4,6,9}的交替和是9﹣6+4﹣2+1=6;则集合{1,2,3,4,5,6,7}的所有非空子集的交替和的总和为__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.“a≤﹣2”是“函数f(x)=x2+ax+1(x∈R)只有一个零点”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.在复平面中,满足等式|z+1|﹣|z﹣1|=2的z所对应点的轨迹是( )A.双曲线B.双曲线的一支C.一条射线D.两条射线17.设反比例函数f(x)=与二次函数g(x)=ax2+bx的图象有且仅有两个不同的公共点A (x1,y1),B(x2,y2),且x1<x2,则=( )A.2或B.﹣2或C.2或D.﹣2或18.如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( )A.B.C.D.三.解答题(本大题满分74)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图,一条东西走向的大江,其河岸A处有人要渡江到对岸B处,江面上有一座大桥AC,已知B在A的西南方向,C在A的南偏西15°,BC=10公里.现有两种渡江方案:方案一:开车从大桥AC渡江到C处,然后再到B处;方案二:直接坐船从A处渡江到对岸B处.若车速为每小时60公里,船速为每小时45公里(不考虑水流速度),为了尽快到达B处,应选择哪个方案?说明理由.20.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D1E⊥平面AB1F时,求二面角C1﹣EF﹣A的大小(结果用反三角函数值表示).21.已知函数f(x)=是奇函数.(1)求t的值;(2)求f(x)的反函数f﹣1(x);(3)对于任意的m>0,解不等式:f﹣1(x)>log3.22.数列{a n}满足a1=1,a2=r(r>0),令b n=a n•a n+1,{b n}是公比为q(q≠0,q≠﹣1)的等比数列,设c n=a2n﹣1+a2n.(1)求证:c n=(1+r)•q n﹣1;(2)设{c n}的前n项和为S n,求的值;(3)设{c n}前n项积为T n,当q=﹣时,T n的最大值在n=8和n=9的时候取到,求n为何值时,T n取到最小值.23.已知抛物线C:y2=2px(p>0)的焦点F,线段PQ为抛物线C的一条弦.(1)若弦PQ过焦点F,求证:为定值;(2)求证:x轴的正半轴上存在定点M,对过点M的任意弦PQ,都有为定值;(3)对于(2)中的点M及弦PQ,设,点N在x轴的负半轴上,且满足,求N点坐标.上海市杨浦区2015届高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.函数f(x)=的定义域是﹣2<x≤1.考点:函数的定义域及其求法.专题:函数的性质及应用.分析:只需被开方数为非负数、分母不为零同时成立即可.解答:解:根据题意,只需,即,解得﹣2<x≤1,故答案为:﹣2<x≤1.点评:本题考查函数的定义域,属于基础题.2.若集合A=,则A∩B的元素个数为3.考点:交集及其运算.专题:集合.分析:集合A表示长轴为,短轴为1的椭圆内部的点集,B表示整数集,画出相应的图形,如图所示,找出A∩B的元素个数即可.解答:解:如图所示,由图形得:A∩B={(0,0),(﹣1,0),(1,0)},共3个元素.故答案为:3.点评:此题考查了交集及其运算,利用了数形结合的思想,熟练掌握交集的定义是解本题的关键.3.若,则x的值是log23.考点:二阶矩阵;有理数指数幂的化简求值.专题:矩阵和变换.分析:根据矩阵的定义直接计算即可.解答:解:∵,∴4x﹣2×2x=3,化简得(2x)2﹣2×2x﹣3=0,解得2x=3或﹣1(舍),从而,解得x=log23,故答案为:log23.点评:本题考查矩阵的计算,解对数方程,弄清矩阵的涵义是解题的关键,属于基础题.4.(2x﹣)6展开式中常数项为60(用数字作答).考点:二项式定理.分析:用二项展开式的通项公式得展开式的第r+1项,令x的指数为0得展开式的常数项.解答:解:(2x﹣)6展开式的通项为=令得r=4故展开式中的常数项.故答案为60点评:二项展开式的通项公式是解决二项展开式中特殊项问题的工具.5.某射击选手连续射击5枪命中的环数分别为:9.7,9.9,10.1,10.2,10.1,则这组数据的方差为0.032.考点:极差、方差与标准差.专题:概率与统计.分析:先计算数据的平均数后,再根据方差的公式计算.解答:解:数据9.7,9.9,10.1,10.2,10.1的平均数==10,方差=(0.09+0.01+0.01+0.04+0.01)=0.032.故答案为:0.032.点评:本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.对数不等式(1+log3x)(a﹣log3x)>0的解集是,则实数a的值为2.考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:先解出不等式,再结合已知解集,可得结果.解答:解:将对数不等式两边同时乘以﹣1,得(log3x+1)(log3x﹣a)<0,即(log3x﹣)(log3x﹣)<0,所以此不等式的解为:或,∵其解集为解集是,∴=2,故答案为:2.点评:本题考查对数不等式的解法,属于中档题.7.极坐标方程所表示的曲线围成的图形面积为.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:利用把极坐标方程化为直角坐标方程,利用圆的面积计算公式即可得出.解答:解:化为,∴,配方为+=.因此极坐标方程所表示的曲线为圆心为,半径r=的圆.其围成的图形面积S=πr2=.故答案为:.点评:本题考查了圆的极坐标方程化为直角坐标方程、圆的面积计算公式,考查了推理能力与计算能力,属于基础题.8.如图,根据该程序框图,若输出的y为2,则输入的x的值为4.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,得其功能是求分段函数y=的值,由输出的y为2,分情况讨论即可得解.解答:解:模拟执行程序框图,可得其功能是求分段函数y=的值,若输出的y为2,则x>0时,有=2,解得:x=4.当x≤0时,有2x=2,解得x=1(舍去).故答案为:4.点评:本题考查了分支结构的程序框图,根据框图的流程分析得到程序的功能是解题的关键,属于基础题.9.(1999•广东)若正数a,b满足ab=a+b+3,则ab的取值范围是分析:根据所给的方程,当判别式不小于0时和小于0时,用求根公式表示出两个根的差,根据差的绝对值的值做出字母p的值.解答:解:当△=p2﹣4≥0,即p≥2或p≤﹣2,由求根公式得|x1﹣x2|==1,得p=±,当△=p2﹣4<0,即﹣2<p<2,由求根公式得|x1﹣x2|==1,得p=±.综上所述,p=±或p=±.故答案为:±或±.点评:本题考查一元二次方程根与系数的关系,本题解题的关键是对于判别式与0的关系的讨论,方程有实根和没有实根时,两个根的表示形式不同,本题是一个易错题.12.已知从上海飞往拉萨的航班每天有5班,现有甲、乙、丙三人选在同一天从上海出发去拉萨,则他们之中正好有两个人选择同一航班的概率为.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:根据乘法原理得出甲、乙、丙三人选5班航班的总共事件为53,利用排列组合知识得出:他们之中正好有两个人选择同一航班”的有60个,再运用概率知识求解即可.解答:解:设“他们之中正好有两个人选择同一航班”的事件为B,根据题意得出甲、乙、丙三人选5班航班的总共事件为53,∵B事件的基本事件的个数为=60.∴P(B)==,故答案为:点评:本题考查了古典概率问题的事件的求解,关键是确定基本事件的个数,难度不大,属于容易题.13.已知n∈N*,在坐标平面中有斜率为n的直线l n与圆x2+y2=n2相切,且l n交y轴的正半轴于点P n,交x轴于点Q n,则的值为.考点:极限及其运算;直线与圆的位置关系.专题:直线与圆.分析:设切线l n的方程为:y=nx+m,由于直线l n与圆x2+y2=n2相切,可得=n,取m=n.可得切线l n的方程为:y=nx+n,可得P n,Q n,可得|P n Q n|.再利用数列极限的运算法则即可得出.解答:解:设切线l n的方程为:y=nx+m,∵直线l n与圆x2+y2=n2相切,∴=n,取m=n.∴切线l n的方程为:y=nx+n,∴P n,Q n.∴|P n Q n|==1+n2.∴===.故答案为:.点评:本题考查了直线的方程、直线与圆的相切性质、点到直线的距离公式、两点之间的距离公式,数列极限的运算法则,考查了推理能力与计算能力,属于中档题.14.对于自然数N*的每一个非空子集,我们定义“交替和”如下:把子集中的元素从大到小的顺序排列,然后从最大的数开始交替地加减各数,例如{1,2,4,6,9}的交替和是9﹣6+4﹣2+1=6;则集合{1,2,3,4,5,6,7}的所有非空子集的交替和的总和为448.考点:集合的表示法;进行简单的合情推理.专题:新定义;集合.分析:根据“交替和”的定义:求出S2、S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n即可.解答:解:由题意,S2表示集合N={1,2}的所有非空子集的“交替和”的总和,又{1,2}的非空子集有{1},{2},{2,1},∴S2=1+2+2﹣1=4;S3=1+2+3+(2﹣1)+(3﹣1)+(3﹣2)+(3﹣2+1)=12,S4=1+2+3+4+(2﹣1)+(3﹣1)+(4﹣1)+(3﹣2)+(4﹣2)+(4﹣3)+(3﹣2+1)+(4﹣2+1)+(4﹣3+1)+(4﹣3+2)+(4﹣3+2﹣1)=32,∴根据前4项猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和S n=n•2n﹣1,所以S7=7×27﹣1=7×26=448,故答案为:448.点评:本题主要考查了数列的应用,同时考查了归纳推理的能力.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.“a≤﹣2”是“函数f(x)=x2+ax+1(x∈R)只有一个零点”的( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用;简易逻辑.分析:根据充分条件和必要条件的定义结合一元二次函数的性质进行判断即可.解答:解:若函数f(x)=x2+ax+1(x∈R)只有一个零点,则判别式△=a2﹣4=0,解得a=2或a=﹣2,则“a≤﹣2”是“函数f(x)=x2+ax+1(x∈R)只有一个零点”的既非充分又非必要条件,故选:D.点评:本题主要考查充分条件和必要条件的判断,利用一元二次函数的性质是解决本题的关键.16.在复平面中,满足等式|z+1|﹣|z﹣1|=2的z所对应点的轨迹是( ) A.双曲线B.双曲线的一支C.一条射线D.两条射线考点:轨迹方程.专题:计算题;数系的扩充和复数.分析:利用复数的几何意义,即可判断出等式|z+1|﹣|z﹣1|=2的z所对应点的轨迹.解答:解:复数z满足|z+1|﹣|z﹣1|=2,则z对应的点在复平面内表示的是到两个定点F1(﹣1,0),F2(1,0)的距离之差为常数2,所以z对应的点在复平面内表示的图形为以F2(1,0)为起点,方向向右的一条射线.故选:C.点评:熟练掌握复数的几何意义是解题的关键.17.设反比例函数f(x)=与二次函数g(x)=ax2+bx的图象有且仅有两个不同的公共点A (x1,y1),B(x2,y2),且x1<x2,则=( )A.2或B.﹣2或C.2或D.﹣2或考点:二次函数的性质.专题:函数的性质及应用.分析:根据已知条件可以画出f(x),g(x)的图象,由图象可得到方程,即方程ax3+bx2﹣1=0有两个二重根,和一个一重根,所以可设二重根为c,另一根为d.所以上面方程又可表示成:a(x﹣c)2(x﹣d)=ax3﹣(ad+2ac)x2+(2acd+ac2)x﹣ac2d=0,所以便得到2acd+ac2=0,所以c=﹣2d.所以再根据图象可得.解答:解:根据题意可画出f(x),g(x)可能的图象:A,B两点的横坐标便是方程即ax3+bx2﹣1=0的解;由上面图象知道A,B两点中有一个点是f(x),g(x)图象的切点,反应在方程上是方程的二重根;所以可设二重根为c,另一根为d,则上面方程可变成:a(x﹣c)2(x﹣d)=0;将方程展开:ax3﹣(ad+2ac)x2+(2acd+ac2)x﹣ac2d=0;∴2acd+ac2=0;由图象知a,c≠0;∴由上面式子得:c=﹣2d;;∴;∴由图象知x1=c,x2=d,或x1=d,x2=c;∴.故选:B.点评:考查曲线的公共点和两曲线方程形成方程组的解的关系,以及方程二重根的概念,知道了方程的根会把方程表示成因式乘积的形式,两多项式相等时对应系数相等.18.如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为( )A.B.C.D.考点:正弦函数的图象.专题:压轴题;数形结合.分析:根据题意和图形取AP的中点为D,设∠DOA=θ,在直角三角形求出d的表达式,根据弧长公式求出l的表达式,再用l表示d,根据解析式选出答案.解答:解:如图:取AP的中点为D,设∠DOA=θ,则d=2|OA|sinθ=2sinθ,l=2θ|OA|=2θ,∴d=2sin,根据正弦函数的图象知,C中的图象符合解析式.故选:C.点评:本题考查了正弦函数的图象,需要根据题意和弧长公式,表示出弦长d和弧长l的解析式,考查了分析问题和解决问题以及读图能力.三.解答题(本大题满分74)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.如图,一条东西走向的大江,其河岸A处有人要渡江到对岸B处,江面上有一座大桥AC,已知B在A的西南方向,C在A的南偏西15°,BC=10公里.现有两种渡江方案:方案一:开车从大桥AC渡江到C处,然后再到B处;方案二:直接坐船从A处渡江到对岸B处.若车速为每小时60公里,船速为每小时45公里(不考虑水流速度),为了尽快到达B处,应选择哪个方案?说明理由.考点:向量的三角形法则.专题:计算题.分析:分别计算两种方案的时间即可.解答:解:如图,过A作AD垂直BC交于D,根据题意知∠CAD=15°,∠BAD=45°,设CD为x公里,则有AD=,由于tan15°=tan(45°﹣30°)====,故AD===(2)x,∵BC=10公里,∠BAD=45°,∴BD=AD,即(2)x=x+10,解得x=CD=,从而AD=(2)×()=5+,AC===10≈14.14,AB==(5+)=≈19.32,下面分别计算两种方案所要花费的时间:方案一:≈≈0.4023(时);方案二:≈0.4293(时);显然选择方案一.点评:本题考查速度、路程、时间之间的关系,属于基础题.20.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D1E⊥平面AB1F时,求二面角C1﹣EF﹣A的大小(结果用反三角函数值表示).考点:直线与平面垂直的性质;反三角函数的运用;与二面角有关的立体几何综合题.专题:证明题;综合题;压轴题;探究型;向量法.分析:(I)法一:几何法:要D1E⊥平面AB1F,先确定D1E⊥平面AB1F内的两条相交直线,由三垂线定理易证D1E⊥AB1,同理证明D1E⊥AF即可.法二:代数法:建立空间直接坐标系,运用空间向量的数量积等于0,来证垂直.(II)法一:求二面角C1﹣EF﹣A的大小,转化为求C1﹣EF﹣C的大小,利用三垂线定理方法:E、F都是所在线的中点,过C连接AC,设AC与EF交于点H,则CH⊥EF,连接C1H,则CH是C1H在底面ABCD内的射影.∠C1HC是二面角C1﹣EF﹣C的平面角.求解即可.法二:找出两个平面的法向量,运用空间向量数量积公式求出二面角的余弦值,再求其角.解答:解法一:(I)连接A1B,则A1B是D1E在面ABB1A;内的射影∵AB1⊥A1B,∴D1E⊥AB1,于是D1E⊥平面AB1F⇔D1E⊥AF.连接DE,则DE是D1E在底面ABCD内的射影.∴D1E⊥AF⇔DE⊥AF.∵ABCD是正方形,E是BC的中点.∴当且仅当F是CD的中点时,DE⊥AF,即当点F是CD的中点时,D1E⊥平面AB1F.(II)当D1E⊥平面AB1F时,由(I)知点F是CD的中点.又已知点E是BC的中点,连接EF,则EF∥BD.连接AC,设AC与EF交于点H,则CH⊥EF,连接C1H,则CH是C1H在底面ABCD内的射影.C1H⊥EF,即∠C1HC是二面角C1﹣EF﹣C的平面角.在Rt△C1CH中,∵C1C=1,CH=AC=,∴tan∠C1HC=.∴∠C1HC=arctan,从而∠AHC1=π﹣arctan2.故二面角C1﹣EF﹣A的大小为.解法二:以A为坐标原点,建立如图所示的空间直角坐标系(1)设DF=x,则A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B(1,0,1),D1(0,1,1),E,F(x,1,0)∴∴=1﹣1=0,即D1E⊥AB1于是D1E⊥平面AB1F⇔D1E∪AF⇔即x=.故当点F是CD的中点时,D1E⊥平面AB1F(2)当D1E⊥平面AB1F时,F是CD的中点,又E是BC的中点,连接EF,则EF∥BD.连接AC,设AC与EF交于点H,则AH⊥EF.连接C1H,则CH是C1H在底面ABCD内的射影.∴C1H⊥EF,即∠AHC1是二面角C1﹣EF﹣A的平面角.∵,∵.∴,=,即.故二面角C1﹣EF﹣A的大小为π﹣arccos.点评:本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力.空间向量计算法容易出错.21.已知函数f(x)=是奇函数.(1)求t的值;(2)求f(x)的反函数f﹣1(x);(3)对于任意的m>0,解不等式:f﹣1(x)>log3.考点:反函数;函数奇偶性的性质;其他不等式的解法.专题:函数的性质及应用.分析:(1)由函数f(x)=是奇函数,可得f(0)=0,解得t,并验证是否满足条件即可.(2)由(1)可得:y=f(x)==1﹣,可得y∈(﹣1,1).化为3x=(y≠1),把x与y互换可得,两边取对数即可得出反函数.(3)对于任意的m>0,解不等式:f﹣1(x)>log3.(x∈(﹣1,1)).化为>,又x∈(﹣1,1)).化为m>1﹣x,对m分类讨论即可得出.解答:解:(1)∵函数f(x)=是奇函数,∴f(0)==0,解得t=1,经过验证满足条件,∴t=1.(2)由(1)可得:y=f(x)==1﹣,可得y∈(﹣1,1).解得3x=(y≠1),把x与y互换可得,∴y=,(x∈(﹣1,1)).∴f(x)的反函数f﹣1(x)=,(x∈(﹣1,1)).(3)对于任意的m>0,解不等式:f﹣1(x)>log3.(x∈(﹣1,1)).即>log3.∴>,又∵x∈(﹣1,1)).∴m>1﹣x,当0<m≤2时,解得1>x>1﹣m.当m>2时,解得1>x>﹣1.∴不等式:f﹣1(x)>log3的解集为:当0<m≤2时,解集为(1﹣m,1);当m>2时,解集为(﹣1,1).点评:本题考查了反函数的求法、指数函数与对数函数的单调性、不等式的解法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于中档题.22.数列{a n}满足a1=1,a2=r(r>0),令b n=a n•a n+1,{b n}是公比为q(q≠0,q≠﹣1)的等比数列,设c n=a2n﹣1+a2n.(1)求证:c n=(1+r)•q n﹣1;(2)设{c n}的前n项和为S n,求的值;(3)设{c n}前n项积为T n,当q=﹣时,T n的最大值在n=8和n=9的时候取到,求n为何值时,T n取到最小值.考点:等比数列的前n项和;极限及其运算;数列的求和.专题:等差数列与等比数列.分析:(1)根据题意得出=q(n≥2),判断出奇数项,偶数项分别成等比数列,运用等比数列的通项公式求解即可.(2)运用等比数列的求和公式得出q=1时,S n=(1+r)n,=0,q≠1时,S n=,=,分类讨论求解即可(3)利用条件得出(1+r)8(﹣)28=(1+r)9(﹣)36,r=28﹣1=255,T n=(256)n•(﹣2)=(﹣1)•2,再根据函数性质得出最小项,注意符号即可.解答:解:(1)b n=a n•a n+1,{b n}是公比为q(q≠0,q≠﹣1)的等比数列,因为数列{a n a n+1}是一个以q(q≠0,q≠﹣1))为公比的等比数列因此=q,所以=q(n≥2),即=q(n≥2),∴奇数项,偶数项分别成等比数列∵设c n=a2n﹣1+a2n.∴c n=1•q n﹣1+r•q n﹣1=(1+r)•q n﹣1∴bn=(1+r)•qn﹣1(2)q=1时,S n=(1+r)n,=0q≠1时,S n=,=若0<q<1或﹣1<q<0时,=若q>1或q<﹣1时,=0∴=(3)设{c n}前n项积为T n,当q=﹣时,T n=(1+r)n∵T n的最大值在n=8和n=9的时候取到,∴(1+r)8(﹣)28=(1+r)9(﹣)36,r=28﹣1=255,∴T n=(256)n•(﹣2)=(﹣1)•2,根据数列的函数性质得出n=7,n=10时,T n的最小值为﹣235.点评:本题主要考查了利用数列的递推公式构造等比数列求通项公式,等比数列求和公式的应用,数列极限的求解,要注意等比数列求和公式应用时对公比q的讨论,根据函数的性质解析式确定最值.23.已知抛物线C:y2=2px(p>0)的焦点F,线段PQ为抛物线C的一条弦.(1)若弦PQ过焦点F,求证:为定值;(2)求证:x轴的正半轴上存在定点M,对过点M的任意弦PQ,都有为定值;(3)对于(2)中的点M及弦PQ,设,点N在x轴的负半轴上,且满足,求N点坐标.考点:抛物线的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)设出直线PQ的方程,与抛物线方程联立消去y,根据韦达定理求得x1x2的值,由抛物线的定义分别表示出|FP|,|FQ|,代入整理得到定值,最后验证斜率不存在时的情况;(2)设出直线PQ的方程,联立抛物线方程,运用韦达定理和两点的距离公式,化简整理,即可求得定点M和定值;(3)运用向量共线的坐标表示和向量垂直的条件,化简整理即可求得定点N.解答:(1)证明:抛物线的焦点为F(,0),设直线PQ的方程为y=k(x﹣)(k≠0),代入抛物线方程,消去y,得k2x2﹣p(k2+2)x+=0,由根与系数的关系,得x1x2=,x1+x2=p+,由抛物线的定义,知|FP|=x1+,|FQ|=x2+.+=+===为定值.当PQ⊥x轴时,|FA|=|FB|=p,上式仍成立;(2)证明:设M(m,0),当PQ⊥x轴时,令x=m,可得y2=2pm,|MP|=|MQ|=,有+为定值.当PQ斜率存在时,设PQ:x=ty+m,代入抛物线方程可得,y2﹣2pty﹣2pm=0,设P(,y1),Q(,y2)则y1+y2=2pt,y1y2=﹣2pm.即有|MP|2=(m﹣)2+y12=+y12=(1+t2)y12,同理|MQ|2=(m﹣)2+y22=(1+t2)y22.即有+=•,存在m=p即有定点M(p,0)时,上式为•=为定值;(3)解:,可得=,,可得(+λ)•(﹣λ)=0,即为NP2=λ2NQ2,由P(,y1),Q(,y2),M(p,0),设,则y1=﹣λy2,①p﹣=λ(﹣p),②又设N(n,0)(n<0),则(n﹣)2+y12=λ2,即为﹣n=λ(﹣n),③将①平方可得,y12=λ2y22,④,将④代入②③,化简可得n=﹣p.则N(﹣p,0).点评:本题主要考查了抛物线的简单性质,直线与抛物线的关系.同时考查向量垂直的条件和向量共线的坐标表示,注意运用韦达定理和抛物线的定义是解题的关键,具有一定的运算量,属于中档题.。
2015年上海市高考数学试卷(理科)附详细解析
2015年上海市高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥0,m∈N*),则m的最小值为.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD 的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()B17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f (t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).2015年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ= {1,4}.2.(4分)(2015•上海)若复数z满足3z+=1+i,其中i是虚数单位,则z=.,则,则=a=1+i,b=故答案为:3.(4分)(2015•上海)若线性方程组的增广矩阵为解为,则c1﹣c2=16.,是方程组,是方程组4.(4分)(2015•上海)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.•a=16的等边三角形,面积为•a=165.(4分)(2015•上海)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.=16.(4分)(2015•上海)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.=故答案为:.7.(4分)(2015•上海)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.8.(4分)(2015•上海)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).9.(2015•上海)已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q 的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.,即故答案为:.10.(4分)(2015•上海)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.[在[[]11.(4分)(2015•上海)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).1+x+,令.12.(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).1 2 3 4 5(1.42.8 4.2 5.6====(1+2+3+13.(4分)(2015•上海)已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥0,m∈N*),则m的最小值为8.14.(2015•上海)在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=﹣.cosA=,∴,,,∴tanA=,∴,联立,得cosA=,得∴•=.故答案为:二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)(2015•上海)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”16.(5分)(2015•上海)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()B4=,=逆时针旋转,则,)sin)(×+ +6=17.(2015•上海)记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是,)18.(5分)(2015•上海)设P n(x n,y n)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()y=y=,而∴三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)(2015•上海)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.的法向量为,所以,即,,所以,=arcsin20.(14分)(2015•上海)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.=h=PC=时,,<,综合可得当=×千米,=PC==时,乙在,<<,21.(14分)(2015•上海)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ABCD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.xd=|AB|=2|AO|=2的斜率为﹣,可求得的斜率分别为,则,利用xd=|AB|=2|AO|=2的斜率为﹣,消去±==|=的斜率分别为,则,∴(+4+=,.22.(16分)(2015•上海)已知数列{a n}与{b n}满足a n+1﹣a n=2(b n+1﹣b n),n∈N*.(1)若b n=3n+5,且a1=1,求数列{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a≥a n(n∈N*),求证:数列{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(n∈N*),求λ的取值范围,使得{a n}有最大值M与最小值m,且∈(﹣2,2).,求得,然后分﹣∈∴∴)可得,单调递减,有最大值;∴∈∴,23.(18分)(2015•上海)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).=x+sin∴参与本试卷答题和审题的老师有:whgcn;孙佑中;maths;caoqz;刘长柏;翔宇老师;danbo7801;sxs123;雪狼王;lincy;wfy814;wkl197822(排名不分先后)菁优网2015年7月10日第21页(共21页)。
2015年普通高中高三第二次联合考试理科数学附答案
BA BC 2 ,则 ABC 的面积为 (
A. 2
2
) C. 2 2 D. 4 2
B.
3 2
(10)已知抛物线 y =2px(p>0)与双曲线 2- 2=1(a>0,b>0)有相同的焦点 F,点 A 是两曲线的一个交点,且 AF⊥x 轴,则双曲线的离心率为( ( ) A. 2+2 B. 5+1 C. 3+1
2015 年普通高中高三第二次联合考试理科数学
注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上。 2. 回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框 涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号框。写在本试卷上无效。 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
D. 1,1
第Ⅱ卷
本卷包括必考题和选考题两部分。 第 13 题~第 21 题为必考题, 每个试题考生都必须做 答。第 22 题~第 24 题为选考题,考生根据要求做答。 二、填空题:本大题共 4 小题,每小题 5 分。
(13)若复数 z
(a 2 4) (a 2)i 为纯虚数,则
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的。
(1)设集合 A
x y lg(3 2x),集合 B y y
B. (﹣∞,1] C.
)
A. [ 0, )
3 2
(2) 若命题 p 为真命题,命题 q 为假命题,则以下为真命题的是(
A. p q
2015年高考理科数学上海卷(含答案解析)
数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(上海卷)理科数学注意事项:1.本试卷共6页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.一、填空题:本大题共有14题,满分56分.直接填写结果,每个空格填对得4分,否则一律得零分.1.设全集=U R .若集合={1,2,3,4}A ,{23}B x x ≤≤=,则U AB =ð .2.若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y ,,=⎧⎨=⎩则12c c -= . 4.若正三棱柱的所有棱长均为a,且其体积为,则a = .5.抛物线22(0)y px p =>上的动点Q 到焦点的距离的最小值为1,则p = . 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 7.方程1122log (95)log (32)2x x ---=-+的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C的渐近线方程为y =,则2C 的渐近线方程为 . 10.设1()f x -为2()22x xf x -=+,[0,2]x ∈的反函数,则1()()y f x f x -=+的最大值为 . 11.在1020151(1)x x++的展开式中,2x 项的系数为 (结果用数值表示). 12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12E E ξξ-= 元.13.已知函数()sin f x x =.若存在12,,m x x x 满足1206πm x x x ≤<<<≤,且1|f x ()223-1|||++||=122,m m f x f x f x f x f x m m *N ()()()()()(≥)-+--∈,则m 的最小值为 .14.在锐角三角形ABC 中,1tan 2A =,D 为边BC 上的点,ABD △与ACD △的面积分别为2和4.过D 作DE AB ⊥于E ,DF AC ⊥于F ,则 DE DF = . 二、选择题:本大题共有4题,满分20分.每题有且只有一个正确答案,将正确答案填在题后括号内,选对得5分,否则一律得零分.15.设12,z z C ∈,则“12z z ,中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.已知点A的坐标为(),将OA 绕坐标原点O 逆时针旋转π3至OB ,则点B 的纵坐标为( )ABC .112D .13217.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实数根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根18.设(),n n n P x y 是直线2()1nx y n n *N -=∈+与圆222x y +=在第一象限的交点,则极限 1lim 1n n ny x →∞-=-( ) A .1- B .12- C .1D .2三、解答题:本大题共有5题,满分74分.解答应写出必要的文字说明、证明过程或演算步骤.19.(本小题满分12分)如图,在长方体1111ABCD A B C D -中,11AA =,2AB AD ==,E ,F 分别是棱AB ,BC 的中点.证明:11A C F E ,,,四点共面,并求直线1CD 与平面11A C FE 所成的角的大小.20.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A ,B ,C 三地有直道相通,5AB =千米,3AC =千米,4BC =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f t ()(单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后在原地等待.设1=t t 时,乙到达C 地. (Ⅰ)求1t 与1f t ()的值;(Ⅱ)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求f t ()的表达式,并判断f t ()在1[,1]t 上的最大值是否超过3?说明理由.21.(本小题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)已知椭圆1222=+y x ,过原点的两条直线1l 和2l 分别与椭圆交于点A ,B 和C ,D .记得到的平行四边形ACBD 的面积为S .(Ⅰ)设11(,)A x y ,22(,)C x y .用A ,C 的坐标表示点C 到直线1l 的距离,并证明12212||S x y x y =-;(Ⅱ)设1l 与2l 的斜率之积为21-,求面积S 的值.22.(本小题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,n *N ∈. (Ⅰ)若35n b n =+,且11a =,求{}n a 的通项公式;(Ⅱ)设{}n a 的第0n 项是最大项,即0()n n a a n *N ≥∈.求证:{}n b 的第0n 项是最大项; (Ⅲ)设10a <λ=,()n n b n *N λ=∈.求λ的取值范围,使得{}n a 有最大值M 和最小值m ,且使得(2,2)Mm∈-.23.(本小题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0f =,()4πf T =. (Ⅰ)验证()sin3xh x x =+是以6π为余弦周期的余弦周期函数; (Ⅱ)设a b <.证明对任意[(),()]c f a f b ∈,存在0[,]x a b ∈,使得0()f x c =; (Ⅲ)证明:“0u 为方程cos ()1f x =在[0,]T 上的解”的充要条件是“0+u T 为方程cos ()1f x =在[,2]T T 上的解”,并证明对任意[0,]x T ∈都有()()()f x T f x f T +=+.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)1sin602a a ︒,1sin 601632a a a ⎫︒=⎪⎭1sin 601632a a a ⎫︒=⎪⎭【考点】棱锥的结构特征123270x+=011019102015201511(1)C x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,项的系数.数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【解析】对任意的i x ,j x ,max min |()()|()()2i j f x f x f x f x -≤-=, 欲使m 取最小值,尽可能多的让(1,2,,)i x i m =取最值点,考虑到1206πm x x x ≤<<<≤,*12231|()()||()()||()()|12(2,)m m f x f x f x f x f x f x m m N --+-++-=≥∈,按照下图所示取值可以满足条件,所以m的最小值为8.【提示】对任意的i x ,j x ,|()()|2i j f x f x -=,让i x 取最值点,考虑到1206πm x x x ≤<<<≤,12231|()()||()()||()()|12m m f x f x f x f x f x f x --+-++-=,【解析】解:如图,ABD △与ACD △的面积分别为2和4||||22AB DE =,||||4AC DF =,可得4||||DE AB =,8||||DF AC =,32||||||||DE DF AB AC =.1tan 2A =,∴sin 1cos 2A A =,联立||||sin 2AB AC A ||||12AB AC =85||||15DE DF =8||||||||cos ,DE DF DE DF DE DF ==故答案为:1615-.85||||15DE DF =数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)为坐标原点,、DC 、DD 分别为xyz 轴,建立空间直角坐标系,易求得(0,2,D C =,11(2,2,0)A C =-,(0,1,A E =设平面11AC EF 的法向量为(,y,)n x z =11100n A C n A E ⎧=⎪⎨=⎪⎩,所以,,)(2,2,0)0,)(0,1,1)x y z y z -=-=2-⎧所以(1,1,1)n =,111|||(1,1,1)(0,2,1)||cos ,|||||35n D C n D C n D C -===1CD 与平面11A C FE 所成的角的大小arcsincos AC AP A =上的Q 点,设甲在cos QB PB B22(78)(5t --cos AC AP A ,代值计算可得;由已知数据和余弦定理可得3数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)2(a a +-+2112()b b a +++-112)b a +-2(a a +-+1(22n a b +)n x <<;则1()f x T +,2()f x T +,…,()n f x T +为方程c o s ()f x c =在[,2]T T 上的解;又()(4π8π)f x T +∈,;而1()4πf x +,2()4πf x +,…,()4π(4π,8π)n f x +∈为方程cos ()f x c =在[,2]T T 上的解; ∴()()4π()()i i i f x T f x f x f T +=+=+;∴综上对任意,[]0x T ∈,都有()()()f x T f x f T +=+.【提示】(Ⅰ)根据余弦周期函数的定义,判断(6π)cosg x +是否等于cos ()g x 即可; (Ⅱ)根据()f x 的值域为R ,便可得到存在0x ,使得0()f x c =,而根据()f x 在R 上单调递增即可说明0,[]x a b ∈,从而完成证明;(Ⅲ)只需证明0u T +为方程cos ()1f x =在区间[2]T T ,上的解得出0u 为方程cos ()1f x =在[0]T ,上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意,[]0x T ∈,都有()()()f x T f x f T +=+,可讨论0x =,x T =,(0)x T ∈,三种情况:0x =时是显然成立的;x T =时,可得出cos (2)1f T =,从而得到1(2)2πf T k =,1k ∈Z ,根据()f x 单调递增便能得到12k >,然后根据()f x 的单调性及方程cos ()1f x =在[],2T T 和它在[0]T ,上解的个数的情况说明13k =,和15k ≥是不存在的,而14k =时结论成立,这便说明x T =时结论成立;而对于(0)x T ∈,时,通过考查c o s ()f x c =的解得到()()()f x T f x f T +=+,综合以上的三种情况,最后得出结论即可.【考点】函数与方程的综合运用。
15年高考真题——理科数学(上海卷)
2015年普通高等学校招生全国统一考试(上海)卷数学(理科)一.填空题:共14小题,每小题4分,共56分。
1.设全集U R =,若集合{}1,2,3,4A =,{}23B x x =≤≤,则U A B = ð_________。
2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z =_________。
3.若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭,解为35x y =⎧⎨=⎩,则12c c -=__________。
4.若正三棱柱的所有棱长均为a,且其体积为a =__________。
5.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_______。
6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为_______。
7.方程()()1122log 95log 322x x ---=-+的解为___________。
28.在报名的3名男教师和6名女教师中,选取5参加义务献血,要求男、女教师都有,则不同的选取方式的种数为________(结果用数值表示)。
9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C 。
若1C的渐近线方程为y =,则2C 的渐近线方程为__________。
10.设()1fx -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为_________。
11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为________(结果用数值表示)。
12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年上海市十三校联考高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=0.【考点】:幂函数的单调性、奇偶性及其应用;幂函数的概念、解析式、定义域、值域.【专题】:计算题;函数的性质及应用;不等式的解法及应用.【分析】:根据幂函数的性质,可得m2+2m﹣3<0,解不等式求得自然数解,即可得到m=0.【解析】:解:由幂函数y=xm2+2m﹣3在(0,+∞)为减函数,则m2+2m﹣3<0,解得﹣3<m<1.由于m∈N,则m=0.故答案为:0.【点评】:本题考查幂函数的性质,主要考查二次不等式的解法,属于基础题.2.(4分)(2015•上海模拟)函数的定义域是(0,1].【考点】:函数的定义域及其求法;对数函数的定义域.【专题】:计算题.【分析】:令被开方数大于等于0,然后利用对数函数的单调性及真数大于0求出x的范围,写出集合区间形式即为函数的定义域.【解析】:解:∴0<x≤1∴函数的定义域为(0,1]故答案为:(0,1]【点评】:求解析式已知的函数的定义域应该考虑:开偶次方根的被开方数大于等于0;对数函数的真数大于0底数大于0小于1;分母非0.3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.【考点】:余弦定理的应用.【专题】:计算题.【分析】:先通过BC=8,AC=5,三角形面积为12求出sinC的值,再通过余弦函数的二倍角公式求出答案.【解析】:解:∵已知BC=8,AC=5,三角形面积为12,∴•BC•ACsinC=12∴sinC=∴cos2C=1﹣2sin2C=1﹣2×=故答案为:【点评】:本题主要考查通过正弦求三角形面积及倍角公式的应用.属基础题.4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.【考点】:复数相等的充要条件.【专题】:数系的扩充和复数.【分析】:把n代入方程,利用复数相等的条件,求出m,n,即可.【解析】:解:关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,可得n2﹣(2+i)n+1+mi=0所以,所以m=n=1,故答案为:1.【点评】:本题考查复数相等的条件,考查计算能力,是基础题.5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.【考点】:椭圆的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:首先分两种情况:①焦点在x轴上.②焦点在y轴上,分别求出a的值即可.【解析】:解:①焦点在x轴上时:10﹣a﹣(a﹣2)=4解得:a=4.②焦点在y轴上时a﹣2﹣(10﹣a)=4解得:a=8故答案为:4或8.【点评】:本题考查的知识要点:椭圆方程的两种情况:焦点在x轴或y轴上,考察a、b、c 的关系式,及相关的运算问题.6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.【考点】:棱柱、棱锥、棱台的侧面积和表面积.【专题】:空间位置关系与距离.【分析】:易得圆锥侧面展开图的弧长,除以2π即为圆锥的底面半径,圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.【解析】:解:圆锥的侧面展开图的弧长为:=2π,∴圆锥的底面半径为2π÷2π=1,∴此圆锥的表面积=π×(1)2+π×1×3=4π.故答案为:4π.【点评】:本题考查扇形的弧长公式为;圆锥的侧面展开图的弧长等于圆锥的底面周长,圆锥的表面积的求法.7.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为﹣3≤a≤9.【考点】:函数的零点.【专题】:计算题;函数的性质及应用.【分析】:由题意,x2+ax﹣10=0在x∈[1,5]上有解,可得a=﹣x在x∈[1,5]上有解,利用a=﹣x在x∈[1,5]上单调递减,即可求出实数a的取值范围.【解析】:解:由题意,x2+ax﹣10=0在x∈[1,5]上有解,所以a=﹣x在x∈[1,5]上有解,因为a=﹣x在x∈[1,5]上单调递减,所以﹣3≤a≤9,故答案为:﹣3≤a≤9.【点评】:本题主要考查方程的根与函数之间的关系,考查由单调性求函数的值域,比较基础.8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)【考点】:进行简单的合情推理.【专题】:推理和证明.【分析】:根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解析】:解:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的整数倍,可得:233﹣105×2=23.或105k+23(k为正整数).故答案为:23,或105k+23(k为正整数).【点评】:本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键.[可以原文理解为:三个三个的数余二,七个七个的数也余二,那么,总数可能是三乘七加二,等于二十三.二十三用五去除余数又恰好是三]9.(4分)(2015•上海二模)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:由直线的极坐标方程为ρsin(θ+)=,展开并利用即可得出直角坐标方程,再利用点到直线的距离公式即可得出.【解析】:解:由直线的极坐标方程为ρsin(θ+)=,展开为,化为x+y﹣1=0,∴极点O到这条直线的距离d==.故答案为:.【点评】:本题考查了直线的极坐标方程化为直角坐标方程、点到直线的距离公式、两角和差的正弦公式,考查了推理能力与计算能力,属于基础题.10.(4分)(2015•上海二模)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为3.【考点】:离散型随机变量的期望与方差.【专题】:概率与统计.【分析】:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,由Eξ=,得×,由此能求出口袋中白球的个数.【解析】:解:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,∵Eξ=,∴×,解得x=3.∴口袋中白球的个数为3.故答案为:3.【点评】:本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.11.(4分)(2015•上海模拟)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.【考点】:平面向量数量积的运算;向量在几何中的应用.【专题】:平面向量及应用.【分析】:根据向量的数量积公式分别判断x,y,z的符号,得到大小关系.【解析】:解:由题意,x=•=AB×ACcos∠BAC>0,y=•=AB×ADcos∠BAD≈AB×ACcos∠BAD,又∠BAD>∠BAC所以cos∠BAD<cos∠BAC,所以x>y>0z=•=AB×AEcos∠BAE<0,所以x>y>z.故答案为:x>y>z.【点评】:本题考查了向量的数量积的公式;属于基础题.12.(4分)(2015•上海模拟)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.【考点】:映射.【专题】:函数的性质及应用;集合.【分析】:分别求出sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=利用排列组合知识求解得出这样的函数共有:(C+C)()()即可.【解析】:解:∵函数f(x)的定义域为D,D⊆[0,4π],∴它的对应法则为f:x→sin x,f(x)的值域为{0,﹣,1},sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=这样的函数共有:(C+C)()()=31×15×3=1395故答案为:1395【点评】:本题考查了映射,函数的概念,排列组合的知识,难度不大,但是综合性较强.13.(4分)(2015•上海二模)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=0.【考点】:二项式定理的应用.【专题】:二项式定理.【分析】:根据等式,确定a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,即可得出结论.【解析】:解:根据(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,可得a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,所以a1+a3+a5+…+a2011+a2013+a2015=0,故答案为:0.【点评】:本题考查二项式定理的运用,考查学生分析解决问题的能力,属于中档题.14.(4分)(2015•上海模拟)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.【考点】:两点间距离公式的应用.【专题】:计算题;转化思想;推理和证明.【分析】:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).可得|AM|+|BN|=+,设2a=x,进而可以理解为(x,0)与(﹣,)和(﹣1,)的距离和,即可得出结论.【解析】:解:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).∴|AM|+|BN|=+设2a=x,则|AM|+|BN|=+,可以理解为(x,0)与(﹣5,)和(﹣1,)的距离和,∴|AM|+|BN|的最小值为(﹣5,)和(﹣1,﹣)的距离,即2.故答案为:2.【点评】:本题考查两点间距离公式的应用,考查学生分析解决问题的能力,有难度.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)(2015•上海模拟)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要【考点】:必要条件、充分条件与充要条件的判断.【专题】:集合;简易逻辑.【分析】:可举个例子来判断:比如A={1},B={1,2},α:x>0,β:x<3,容易说明此时命题α是命题β的既非充分又非必要条件.【解析】:解:命题α是命题β的既非充分又非必要条件;比如A={1},α:x>0;B={1,2},β:x<3;显然α成立得不到β成立,β成立得不到α成立;∴此时,α是β的既非充分又非必要条件.故选:D.【点评】:考查真子集的概念,以及充分条件、必要条件、既不充分又不必要条件的概念,以及找一个例子来说明问题的方法.16.(5分)(2015•上海二模)用反证法证明命题:“已知a、b∈N+,如果ab可被5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D. a 不能被5 整除【考点】:反证法.【专题】:推理和证明.【分析】:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解析】:解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故选:B.【点评】:反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.17.(5分)(2015•上海二模)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.2【考点】:基本不等式.【专题】:三角函数的求值.【分析】:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).化简利用三角函数的单调性即可得出.【解析】:解:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).则(x﹣y)2=(x+y)2﹣4xy=4cos2θ﹣4sinθ=5﹣4(sinθ+)2≤5,∴x﹣y.故选:C.【点评】:本题考查了平方法、三角函数代换方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.18.(5分)(2015•上海模拟)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,] B.[2﹣2,2+2] C.[,] D.[3﹣2,3+2]【考点】:点、线、面间的距离计算.【专题】:空间位置关系与距离.【分析】:确定直线BC与动点O的空间关系,得到最大距离为AD到球心的距离+半径,最小距离为AD到球心的距离﹣半径.【解析】:解:由题意,直线BC与动点O的空间关系:点O是以BC为直径的球面上的点,所以O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,最大距离为AD到球心的距离(即BC与AD的公垂线)+半径=2+2.最小距离为AD到球心的距离(即BC与AD的公垂线)﹣半径=2+2.∴点O到直线AD的距离的取值范围是:[2﹣2,2+2].故选:B.【点评】:本题考查点、线、面间的距离计算,考查学生分析解决问题的能力,属于中档题,解题时要注意空间思维能力的培养.三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤. 19.(12分)(2015•上海模拟)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.【考点】:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】:空间位置关系与距离;空间角.【分析】:(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q ⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP 两两垂直,能求出四面体C1PQR 的体积.【解析】:(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.【点评】:本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.(14分)(2015•上海模拟)已知数列{bn}满足b1=1,且bn+1=16bn(n∈N),设数列{}的前n项和是Tn.(1)比较Tn+12与Tn•Tn+2的大小;(2)若数列{an} 的前n项和Sn=2n2+2n,数列{cn}=an﹣logdbn(d>0,d≠1),求d的取值范围使得{cn}是递增数列.【考点】:数列递推式;数列的函数特性.【专题】:计算题;等差数列与等比数列.【分析】:(1)由数列递推式可得数列{bn}为公比是16的等比数列,求出其通项公式后可得,然后由等比数列的前n项和求得Tn,再由作差法证明Tn+12>Tn•Tn+2;(2)由Sn=2n2+2n求出首项,进一步得到n≥2时的通项公式,再把数列{an},{bn}的通项公式代入cn=an﹣logdbn=4n+(4﹣4n)logd2=(4﹣4logd2)n+4logd2,然后由一次项系数大于0求得d的取值范围.【解析】:解:(1)由bn+1=16bn,得数列{bn}为公比是16的等比数列,又b1=1,∴,因此,则=,∵Tn+12﹣Tn•Tn+2 =.于是Tn+12>Tn•Tn+2;(2)由Sn=2n2+2n,当n=1时求得a1=S1=4;当n≥2时,=4n.a1=4满足上式,∴an=4n.可得cn=an﹣logdbn=4n+(4﹣4n)logd2=(4﹣4logd2)n+4logd2,要使数列{cn}是递增数列,则4﹣4logd2>0,即logd2<1.当0<d<1时,有logd2<0恒成立,当d>1时,有d>2.综上,d∈(0,1)∪(2,+∞).【点评】:本题考查了等比关系的确定,考查了数列的函数特性,考查了对数不等式的解法,是中档题.21.(14分)(2015•上海二模)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.【考点】:两角和与差的正弦函数;归纳推理.【专题】:综合题;三角函数的图像与性质;推理和证明.【分析】:(1)根据定义可求得f1(x)+f2(x)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,则振幅是=,由=1,即可求得φ1﹣φ1的值.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=0恒成立,可解得cosφ1=﹣,可取φ2=(或φ2=﹣等),证明f1(x)+f2(x)+f3(x)=0.(3)由题意可得f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,从而可求fn(x)=Asin(x+),这n个波叠加后是平波.【解析】:解:(1)f1(x)+f2(x)=sin(x+φ1)+sin(x+φ2)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,振幅是=则=1,即cos(φ1﹣φ2)=﹣,所以φ1﹣φ2=2kπ±,k∈Z.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=Asinx+Asin(x+φ1)+Asin(x+φ2)=Asinx(1+cosφ1+cosφ2)+Acosx(sinφ1+sinφ2)=0恒成立,则1+cosφ1+cosφ2=0且sinφ1+sinφ2=0,即有:cosφ2=﹣cosφ1﹣1且sinφ2=﹣sinφ1,消去φ2可解得cosφ1=﹣,若取φ1=,可取φ2=(或φ2=﹣等),此时,f2(x)=Asin(x+),f3(x)=Asin(x+)(或f3(x)=Asin(x﹣)等),则:f1(x)+f2(x)+f3(x)=A[sinx+(sinx+cosx)+(﹣sinx﹣cosx)]=0,所以是平波.(3)f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,fn(x)=Asin(x+),这n个波叠加后是平波.【点评】:本题主要考查了两角和与差的正弦函数公式的应用,考查了归纳推理的常用方法,综合性较强,考查了转化思想,属于中档题.22.(16分)(2015•上海二模)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b 的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.【考点】:函数的最值及其几何意义;函数的零点与方程根的关系.【专题】:综合题;函数的性质及应用.【分析】:(1)求出a=0的解析式,再由一次函数的单调性,得到不等式,即可得到范围;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f (x)图象一定过点(1,﹣3)和(﹣1,﹣1),运用函数的定义即可得到结论;(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0,即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.【解析】:解:(1)当a=0时,f(x)=(2b+1)x﹣2,当x∈[,1]时恒有f(x)≥0,则f()≥0且f(1)≥0,即b﹣≥0且2b﹣1≥0,解得b≥;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1)由函数定义可知函数图象一定不过A(1,y1)(y1≠﹣3)和B(﹣1,y2)(y2≠﹣1);(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.令g(t)=,t∈[3,4]设u=t﹣2,u∈[1,2],则g(t)=f(u)==∴u=1,即t=3时,g(t)取最小值,∴t=3时,a2+b2的最小值为.【点评】:本题考查不等式的恒成立问题转化为求函数的值域问题,主要考查一次函数的单调性,运用主元法和直线和圆有交点的条件是解题的关键.23.(18分)(2015•上海二模)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线г:f(x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上г,求正方形ABCD的面积;(2)设曲线г与x轴的交点是M、N,抛物线г′:y=x2+1与y 轴的交点是G,直线MG与曲线г′交于点P,直线NG 与曲线г′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线г与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线г在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Yi(i=1,2,…,255),将Yi中的所有元素相加(若i Y 中只有一个元素,则其是其自身)得到255 个数y1,y2,…,y255求所有的正整数n 的值,使得y1n+y2n+…+y255n 是与变数a及变数xi(i=1,2,…8)均无关的常数.【考点】:直线与圆锥曲线的综合问题.【专题】:圆锥曲线中的最值与范围问题.【分析】:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,由于f(x,y)表示两条平行线,之间的距离是2,为一个正方形,即可得出面积S.(2):在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.分别与抛物线方程联立可得P,Q.直线PQ的方程为:,令x=0,可得y=3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=0.恒表示平行线x﹣y=,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Yi=1,2,…,255),取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Yp,Yq),Yp∪Yq=X,Yp∩Yq=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足yp+yq=0.可以利用扇形归纳法证明:对于Yp的元素和yp与Yq的元素和yq,当n为奇数时,=0.即可得出.【解析】:解:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,∴f(x,y)=0表示两条平行线,之间的距离是2,此为一个正方形的一个边长,其面积S=4.(2)证明:在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.联立,解得P,同理可得Q.∴直线PQ的方程为:令x=0,则y===3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=(x﹣y)2+a(x﹣y)﹣1=0.恒表示平行线x﹣y=,如图所示,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,则=,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Yi,取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Yp,Yq),Yp∪Yq=X,Yp∩Yq=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足yp+yq=0.以下证明:对于Yp的元素和yp与Yq的元素和yq,当n为奇数时,=0.先证明:n为奇数时,x+y能够整除xn+yn,用数学归纳法证明.1°当n=1时,成立;2°假设当n=k(奇数)时,x+y能够整除xk+yk,则当n=k+2时,xk+2+yk+2=xk+2﹣xky2+xky2+yk+2=xk(x2﹣y2)+y2(xk+yk),因此上式可被x+y整除.由1°,2°可知:n为奇数时,x+y能够整除xn+yn.又∵当n为奇数时,=(yp+yq)M,其中M是关于yp,yq的整式,∵Yp∪Yq=X,Yp∩Yq=∅,∴每一个集合“对”(Yp,Yq)都满足yp+yq=0.则一定有=(x+y)M=0,M∈N*,于是可得y1n+y2n+…+y255n=0是常数.【点评】:本题考查了平行直线系、直线的交点、一元二次方程的根与系数的关系、集合的性质、中点坐标公式、对称性、扇形归纳法,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.。