高数导数的概念PPT课件
高等数学导数的概念教学ppt课件.ppt

h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
高中物理课件-高数第二章-导数与微分--课件

例2.已知 f x0 存在,求
lim f x0 ah f x0 bh
h0
h
3、导数的意义
函数 y f x在点x0 处的导数f x0
是因变量 y在点x0处的变化率,它反
映了 在点x0 处因变量随自变量的变
化而变化的快慢程度。
(二)导函数
1、定义:如果函数 y f x 在开区间
四、基本求导法则与导数公式
(一)常数和基本初等函数的导数公式
1. C 0
2. x x1
3. sin x cos x
4. cos x sin x
5. ta n x sec2 x 6. cot x csc2 x
7. sec x sec x tan x 8. csc x csc x cot x
则
k0
lim xx0
f
x f x0 就是曲线C
x x0
在 M0 x0, y0 点处切线的斜率。
二、导数的定义 (一)函数在一点处的导数
1、定义:设函数 y f x在点x0的某个
邻域内有定义,当自变量 x在x0 处取得
增量 x(点 x0
时 , 相应地函数
x 仍在该邻域内)
y 取得增量
chx shx
thx
1 ch2
x
arshx 1 archx 1
1 x2
x2 1
arthx
1
1 x2
例18.求
y cos x2 sin 1 arctan thx x
的导数。
例19.
y sin nxsinn xn为常数,求y
§2-3 高阶导数
(一)二阶导数
1、定义:把 y f x 的导数叫做函数
x xx0 x0
导数的概念-课件-导数的概念

导数的计算 练习
通过计算导数的练 习,我们可以巩固 导数的基本计算方 法。
导数与几何 问题的练习
通过几何问题的练 习,我们可以将导 数与图形之间的关 系运用到实际问题 中。
导数与极值 的练习
通过极值问题的练 习,我们可以运用 导数的概念来解决 优化问题。
导数与凹凸 性的练习
通过凹凸性问题的 练习,我们可以运 用导数的凹凸性判 定方法来分析函数 图像。
2 作用
导数用于研究函数的局部特性、极值、凹凸性和切线斜率等。
3 符号与表示方法
导数通常用f'(x)、dy/dx或y'表示,其中f为函数,x为自变量。
导数的定义
导数的定义涉及函数的极限,几何和物理意义的理解。通过导数的定义,我们能够深入了解导数的本质 和作用。
函数的极限与导数 的定义
通过极限的概念,导数的定 义表达了函数在某一点的切 线斜率的极限值。
总结
导数作为数学的重要概念,具有广泛的应用前景和未来发展趋势。通过深入理解导数的概念和应用,我 们能够提升数学思维和问题解决能力。
参考文献
计算数学导论,陈红,2019 导数在现代物理中的应用,张立,2020 从函数到导数,王海,2018
导数的概念-课件-导数的 概念
导数的概念课件将带领我们深入探索导数的世界。我们将了解导数的定义、 计算方法和应用,以及导数在几何和物理中的意义。
什么是导数
导数是函数在某一点上的变化率,表示了函数的极小变化量与自变量的极小变化量之间的关系。 导数帮助我们理解函数的变化规律。
1 定义
导数是函数变化率的极限,衡量了函数在某一点上的变化速度。
导数的几何意义
导数代表了函数图像在某一 点的切线斜率,可以帮助我 们理解函数的曲线特征。
高中数学-导数的概念课件

(1)求函数 y= x在点 x=1 处的导数;
(2)求函数 y=x2+ax+b 在点 x=x0 处的导数. [解析] (1)Δy= 1+Δx-1,
ΔΔyx=
1+ΔΔxx-1=
1 1+Δx+1.
liΔmx→0 1+1Δx+1=12,所以 y′|x=1=12.
(2)y′|x=x0
=liΔmx→0
(x0+Δx)2+a(x0+Δx)+b-(x20+ax0+b) Δx
f[x0+(-k)]-f(x0) -k
=-12f′(x0)=-12×2=-1,故应选 A.
35
• 二、填空题 • 4. 自由 落体运 动在 t= 4s的 瞬 时速度 是
________. • [答案] 39.2m/s
[解析] s=12gt2
ΔΔst=12g(t+ΔΔt)t2-12gt2=gt+12g·Δt
16
=liΔmx→0
x20+2x0Δx+(Δx)2+ax0+aΔx+b-x20-ax0-b Δx
=liΔmx→0
2x0Δx+aΔx+(Δx)2 Δx
=liΔmx→0 (2x0+a+Δx)=2x0+a.
17
[例 3] 若函数 f(x)在 x=a 处的导数为 A,求:
(1)liΔmx→0 f(a+Δx)Δ-xf(a-Δx);
21
已知 f′(x0)=A,则 liΔmx→0 f(x0-2ΔΔxx)-f(x0)=____.
[解析]
liΔmx→0
f(x0-2Δx)-f(x0) Δx
=-2liΔmx→0 f[x0+(--22ΔΔxx)]-f(x0)=-2A.
• [答案] -2A
22
[例 4] 若一物体运动方程如下:(位移:m,时间:
《高数四导数与微分》课件

以通过对弦的长度进行微分得到。
微分在近似计算中的应用
泰勒级数展开
微分可以用来将一个复杂的函数 展开成泰勒级数,从而可以用简 单的多项式来近似复杂的函数。 这在近似计算中非常有用。
误差估计
通过微分,可以估计函数值近似 值的误差大小。例如,在求函数 在某一点的近似值时,可以通过 微分来估计误差的大小。
常数函数的导数
对于常数函数y=c,其导 数为dy/dx=0。
幂函数的导数
对于函数y=x^n,其导数 为dy/dx=nx^(n-1)。
指数函数的导数
对于函数y=a^x,其导数 为dy/dx=a^x*ln(a)。
对数函数的导数
对于函数y=log_a(x),其 导数为dy/dx=(1/x*ln(a)) 。
复合函数的导数
01 复合函数求导法则
对于复合函数y=f(g(x)),其导数为 dy/dx=(dy/du)*(du/dx)。
02 链式法则
对于复合函数y=f(g(x)),其导数为 dy/dx=(dy/du)*(du/dx)。
03 幂函数的链式法则
对于幂函数u=g(x)=x^n,其导数为 du/dx=nx^(n-1)。
导数的几何意义
总结词
导数的几何意义是切线的斜率,即函 数图像上某一点处的切线与x轴正方向 的夹角的正切值。
详细描述
对于可导函数f(x),其在任意点x处的 导数f'(x)表示函数图像上该点处的切 线斜率。具体来说,当函数在某点x处 可导时,该点的切线斜率即为f'(x)。
导数的物理意义
总结词
导数的物理意义是描述物理量随时间变化的速率,如速度、加速度等。
THANKS
感谢观看
03
《数学导数概念》课件

欢迎来到《数学导数概念》的PPT课件。让我们一起探索导数的基本概念、 计算方法、应用和扩展,以及学习建议。
导数的基本概念
1
几何意义
2
探索导数在几何中的含义和应用。
3
定义
了解导数的数学定义和概念。
物理意义
了解导数在物理问题中的作用和解释。
导数的计算方法
基本公式
掌握导数的基本计算公式和规则。
隐函数求导
2
学习如何对隐函数进行求导。
3
参数方程求导
掌握对参数方程进行求导的技巧。
总结
1 概念回顾
回顾导数的基本概念和定义。
2 重点归纳
总结导数的计算方法和应用。
3 学习建议
给出一些建议,如何更好地学习和理解导数的概念。
四则运算法则
学习导数的四则运算法则。
常见函数的导数公式
了解常用函数的导数计算方式。
导数的应用
极值问题
探索导数在寻找函数最大值和 最小值中的应用。
函数图像的绘制方法
了解如何使用导数来绘制函数 的图像。
物理问题中的应用
探索导数在物理问题求解中的 应用。
导数的扩展
1
高阶导数
深入了ห้องสมุดไป่ตู้高阶导数的概念和计算方法。
高中数学《导数的概念》公开课优秀课件

高中数学《导数的概念》公开课优秀课件标题:高中数学《导数的概念》公开课优秀课件尊敬的各位老师,大家好!今天我们将一起学习高中数学中一个非常重要的概念——导数的概念。
这个概念在微积分学中占据了重要的地位,对于我们理解函数的变化率,以及在科学、工程、经济和计算机科学等领域都有广泛的应用。
一、导数的定义首先,让我们来看看导数的定义。
假设有一个函数f(x),在某一点x0的附近取一系列的点,这些点的横坐标是x0+Δx。
那么,函数f(x)在点x0的导数就是这一系列点的纵坐标f(x0+Δx)与横坐标之商的极限,记作f'(x0)。
二、导数的几何意义从几何意义上来看,导数表示函数在某一点处的切线的斜率。
当我们把函数在x0附近的点沿着横坐标逐渐移动时,该点的纵坐标会相应地变化,这个变化率就是导数。
三、导数的应用导数的应用非常广泛,它可以用来解决很多实际问题。
例如,在物理学中,导数被用来描述物体的运动学和动力学问题,如速度和加速度;在经济学中,导数被用来分析成本、收益和价格的变化;在计算机科学中,导数被用来研究图像处理和人工智能的问题。
四、导数的计算导数的计算有很多方法,其中最常见的方法是使用导数的定义。
我们可以根据定义来推导出一些基本的导数公式,如常数函数的导数为0,幂函数的导数与其指数有关,三角函数的导数与其角度有关等。
五、总结与复习今天我们学习了导数的概念和计算方法。
导数是微积分学的基础,它描述了函数在某一点处的变化率。
通过学习导数的定义和基本公式,我们可以解决很多实际问题。
六、作业与扩展阅读为了加深对导数概念的理解,请大家完成以下作业:1、复习并熟练掌握导数的基本定义和公式;2、自行寻找并解决一到两个与导数相关的问题(可以从物理、经济或计算机科学等领域寻找)。
同时,我推荐大家阅读《微积分的概念》这本书,作者是著名的数学家Richard Courant。
这本书对微积分的概念有深入且生动的解释,对于我们深入理解导数的概念非常有帮助。
高中数学导数的概念 PPT课件 图文

导数的定义:
从函数lyim=f(xf )(在x0x=x0x处) 的f瞬( x时0 )变化lim率是f: ,
x0
x
x0 x
我们称它为函数 y f ( x)在x x0
处的导数 , 记作 f ( x0 )或y xx0 ,即 :
f (x0 )
lim
x0
f
( x0
数值的改变量与自变的量改变量之比,即:
y f (x2) f (x1) .
x
x2 x1
我们用它来刻画函数在值区间[x1, x2]上变化的快慢.
对于一般函y数 f (x),在自变量 x从x0变到x1的
过程中,若设x x1 x0,则函数的平均变化:率是
y f (x1) f (x0) f (x0 x) f (x0).
x) x
f
(x0 )
例题讲解
例 1一条水管中流 y(单 过位 :m 的 3)时 水间 x(量 单位 :s) 的函y数 f(x)3x.求函y数 f(x)在x2处的导数 f(2)并 , 解释它的. 实际意义
解:当x从2变到2x时,函数值3从2变
到3(2x),函数值 y关于x的平均变化率 : 为
例2一名食品加工厂的上工班人后开始连续, 工作 生产的食品数 y(单 量位:kg)是其工作时x(间 单位:h) 的函数 y f (x).假设函y数 f (x)在x1和x3处 的导数分别: f为(1) 4和f (3) 3.5,试解释它们 的实际意. 义
如 其 解 4kg:果 生 的 f (保 产 1食) 持 速 品.4(表 这 度 即示 一 工该 生 作工 产 效,人 速 )那 率 为上 4度 么kg班 他/h后 .每 也1工 h时 就的作 可 是时以 说 ,候, 生一 其 产 f(3生 生 )3产 产 .5表 速 速 ,那 示 3.度 度 5么 k该 g为 /他 h工 .也每 人 就时 上 是可 ,如 班 说 33h.以 5的 果 k后g的 生 时 保 工食 产 ,候 持 作 .品 这
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 的斜率 tan
f (x) f (x0 ) x x0
k
lim
x x0
f (x) f (x0 ) x x0Leabharlann 6瞬时速度 切线斜率
f (t0 )
o y
t0
f (t)
t
s
y f (x)
N
CM
T
两个问题的共性:
o x0 x x
17
例5 求函数 y log a x(a 0, a 1)的导数.
解 y lim loga ( x h) loga x
h0
h
lim
log a
(1
h) x
1
h0
h
x
x
1 x
lim
h0
log
a
(1
h
)
x h
x
1 x
log a
e.
即
(log a
x)
1 x
log a
e
1. x ln a
记作 y, f ( x), dy 或 df ( x) . dx dx
即 y lim f ( x x) f ( x)
x 0
x
或 f ( x) lim f ( x h) f ( x) .
h0
h
注意: f ( x0 ) f ( x) . xx0
12
★ 函数在一点的导数是一个局部性概念,它反映 了函数在该点处的变化快慢,而与临近点是否可导 无关。存在仅在某一点可导,而在其余点不可导的 函数。 ★ 导数定义式中的△x必修连续地趋于零。
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
x x0
f (x) x
f (x0 ) . x0
说明: 在经济学中, 边际成本率, 边际劳动生产率和边际税率等从数学角度看就是导数.
9
y f (x) f (x0 ) x x x0
若上述极限不存在 , 就说函数 在点 x0不可导.
(
x )
1
11
x2
2
1. 2x
( x 1 )
(1)x 11
1 x2
.
16
例4 求函数 f ( x) a x (a 0, a 1)的导数.
解 (a x ) lim a xh a x
h0
h
a x lim a h 1 h0 h
a x ln a.
即 (a x ) a x ln a.
(e x ) e x .
本章将通过对实际问题的分析,引出微分学中 两个最重要的基本概念——导数与微分,然后再 建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题。
2
导数和微分是继连续性之后,函数研究的进一步 深化。导数反映的是因变量相对于自变量变化的快 慢程度和增减情况,而微分则是指明当自变量有微 小变化时,函数大体上变化多少。
重点 导数与微分的定义及几何解释
导数与微分基本公式 四则运算法则 复合函数求导的链式法则 高阶导数 隐函数和参量函数求导
难点 导数的实质,用定义求导,链式法则
3
第一节 导数的概念
问题的提出 导数的定义 利用导数定义求导数 左、右导数
导数的几何意义与物理意义 可导与连续的关系 小结
4
一、引出导数概念的两个实例
所求量为函数增量与自变量增量之比的极限 .
类似问题还有:
加速度 是速度增量与时间增量之比的极限 变
角速度 线密度
是转角增量与时间增量之比的极限 是质量增量与长度增量之比的极限
题
化 率
电流强度 是电量增量与时间增量之比的极限 问
7
二、导数的定义
定义1 . 设函数
在点 的某邻域内有定义 ,
若
lim f (x) f (x0 ) lim y
h0
h
h0 h
即 (C ) 0.
14
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
(sin x) x cos x x
设描述质点运动位置的函数为
则 到 的平均速度为
v f (t) f (t0 ) t t0
而在 时刻的瞬时速度为
v lim
t t0
f (t) f (t0 ) t t0
f (t0 )
o t0
f (t)
t
s
5
2. 曲线的切线斜率
y
曲线
在 M 点处的切线
割线 M N 的极限位置 M T
(当
时)
切线 MT 的斜率
13
三、由定义求导数
步骤: (1) 求增量 y f ( x x) f ( x);
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.
解 f ( x) lim f ( x h) f ( x) lim C C 0.
xx0 x x0
x0 x
y f (x) f (x0 ) x x x0
存在, 则称函数
在点 处可导, 并称此极限为
在点 的导数. 记作:
y xx0 ;
f (x0 ) ;
dy dx
x
x0
;
d f (x) dx x x0
即
y
x x0
f (x0 )
lim y x0 x
8
其它形式
f
( x0 )
4
4
2. 2
15
例3 求函数 y xn (n为正整数)的导数.
解 ( x n ) lim ( x h)n x n
h0
h
lim[nx n1 n(n 1) x n2h hn1 ] nx n1
h0
2!
即 ( x n ) nx n1 .
更一般地 ( x ) x1 . ( R)
例如,
第二章
导数思想最早由法国
数学家 Ferma 在研究
导数与微分 极值问题中提出.
微积分学的创始人: 英国数学家 Newton 德国数学家 Leibniz
导数 微分学 微分
描述函数变化快慢 描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
1
在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密度, 比热,化学反应速度及生物繁殖率等,所有这些在 数学上都可归结为函数的变化率问题,即导数。
10
关于导数的说明:
★ 点导数是因变量在点x0处的变化率,它 反映了因变量随自变量的变化而变化的快 慢程度. ★ 如果函数 y f ( x)在开区间I 内的每点 处都可导, 就称函数 f ( x)在开区间I内可导.
11
★ 对于任一 x I,都对应着 f (x)的一个确定的 导数值.这个函数叫做原来函数 f ( x) 的导函数.