新民市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载

新民市高中2018-2019学年高二上学期第二次月考试卷数学

新民市高中2018-2019学年高二上学期第二次月考试卷数学

新民市高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位 D .向右平移个长度单位2. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形3. 下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α4. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .5. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .26. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.7. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-8. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 9.在二项式的展开式中,含x 4的项的系数是( )A .﹣10B .10C .﹣5D .510.长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )A .30°B .45°C .60°D .120°11.设等比数列{a n }的公比q=2,前n 项和为S n,则=( )A .2B .4C.D.12.如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A. B. C. D.二、填空题13.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.14.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 15.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.16.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.17.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .18.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .三、解答题19.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa (t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标; (II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.20.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a2. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .3. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( )①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0;③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤4. 函数是周期为4的奇函数,且在上的解析式为,则()()f x x R Î02[,](1),01()sin ,12x x x f x x x ì-££ï=íp <£ïî( )1741()()46f f +=A . B . C . D .71691611161316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.5. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是()A .a >0B .﹣1<a <0C .a >1D .0<a <16. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .3007. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )A .(¬p )∨qB .p ∨qC .p ∧qD .(¬p )∧(¬q )8. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件9. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( )A .a <0,△<0B .a <0,△≤0C .a >0,△≥0D .a >0,△>010.已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .13231211.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .12.=()A .﹣iB .iC .1+iD .1﹣i二、填空题13.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .14.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 . 15.函数f (x )=的定义域是 .16.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h17.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .18.函数()2log f x x =在点()1,2A 处切线的斜率为▲ .三、解答题19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=(a 1x xe -.∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在上无零点,求a 的最小值;10,2⎛⎫⎪⎝⎭(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 的值. 序号(i )分组(分数)组中值(Gi )频数(人数)频率(Fi )1[60,70)65①0.102[70,80)7520②3[80,90)85③0.204[90,100)95④⑤合计50121.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围. 22.(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上1C O 1l 062=+-y x A一动点,轴于点,且动点满足,设动点的轨迹为曲线.⊥AM x M N OM ON )2133(-=N C (1)求曲线的方程;C (2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,2l m kx y +=C )0,1(1-F )0,1(2F 21l P F ⊥,垂足分别为,,且记为点到直线的距离,为点到直线的距离,为点21l Q F ⊥P Q 1d 1F 2l 2d 2F 2l 3d P到点的距离,试探索是否存在最值?若存在,请求出最值.Q 321)(d d d ⋅+23..(1)求证:(2),若.24.19.已知函数f (x )=ln.新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C2.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.3.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.4.【答案】C5.【答案】A【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)∴f′(x)≤0,x∈(,)恒成立即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立∵1﹣3x2≥0成立∴a>0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.6.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.7. 【答案】B【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题,可推出¬p 为假命题,q 为假命题,故为真命题的是p ∨q ,故选:B .【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真. 8. 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。

新民市一中2018-2019学年上学期高二数学12月月考试题含解析

新民市一中2018-2019学年上学期高二数学12月月考试题含解析

新民市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}2. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}x B x x R =≤∈,则集合U A C B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.3. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .4. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .5. 集合{}{}2|ln 0,|9A x x B x x =≥=<,则AB =( )A .()1,3B .[)1,3C .[]1,+∞D .[],3e 6. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .77. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.8. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.9. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=x ﹣1B .y=lnxC .y=x 3D .y=|x|10.如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A .B .C .D .11.已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣12.已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 二、填空题13.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .14.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .15.方程(x+y ﹣1)=0所表示的曲线是 .16.(sinx+1)dx 的值为 .17.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .18.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.三、解答题19.(本题满分15分)设点P 是椭圆14:221=+y x C 上任意一点,过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.(1)求证:PB PA =;(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.20.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100. (1)求数列{a n },{b n }的通项公式(2)当d >1时,记c n =,求数列{c n }的前n 项和T n .21. (本题满分12分)在如图所示的几何体中,四边形ABCD 为矩形,直线⊥AF 平面ABCD ,AB EF //,12,2====EF AF AB AD ,点P 在棱DF 上.(1)求证:BF AD ⊥;(2)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (3)若FD FP 31=,求二面角C AP D --的余弦值.22.(1)计算:(﹣)0+lne ﹣+8+log 62+log 63;(2)已知向量=(sin θ,cos θ),=(﹣2,1),满足∥,其中θ∈(,π),求cos θ的值.23.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.新民市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M ∩N , ∵全集U=R ,M={x|x >2},N={0,1,2,3}, ∴∁M ={x|x ≤2}, ∴∁M ∩N={0,1,2}, 故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.2. 【答案】C.【解析】由题意得,[11]A =-,,(,0]B =-∞,∴(0,1]U AC B =,故选C.3. 【答案】A【解析】解:∵∴,即△PF 1F 2是P 为直角顶点的直角三角形.∵Rt △PF 1F 2中,,∴=,设PF 2=t ,则PF 1=2t∴=2c ,又∵根据椭圆的定义,得2a=PF 1+PF 2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.4. 【答案】D【解析】解:∵ =(1,1,0),=(﹣1,0,2),∴k +=k (1,1,0)+(﹣1,0,2)=(k ﹣1,k ,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k +与2﹣互相垂直,∴3(k ﹣1)+2k ﹣4=0,解得:k=.故选:D .【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.5. 【答案】B 【解析】试题分析:因为{}{}|ln 0|1A x x A x x =≥==≥,{}{}2|9|33B x x B x x =<==-<<,所以A B ={}|13x x ≤<,故选B.考点:1、对数函数的性质及不等式的解法;2、集合交集的应用. 6. 【答案】【解析】解析:选B.程序运行次序为 第一次t =5,i =2; 第二次t =16,i =3; 第三次t =8,i =4;第四次t =4,i =5,故输出的i =5. 7. 【答案】C8. 【答案】A9. 【答案】D【解析】解:选项A :y=在(0,+∞)上单调递减,不正确;选项B :定义域为(0,+∞),不关于原点对称,故y=lnx 为非奇非偶函数,不正确;选项C :记f (x )=x 3,∵f (﹣x )=(﹣x )3=﹣x 3,∴f (﹣x )=﹣f (x ),故f (x )是奇函数,又∵y=x 3区间(0,+∞)上单调递增,符合条件,正确;选项D :记f (x )=|x|,∵f (﹣x )=|﹣x|=|x|,∴f (x )≠﹣f (x ),故y=|x|不是奇函数,不正确. 故选D10.【答案】A【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R ,长半轴为:=,∵a 2=b 2+c 2,∴c=,∴椭圆的离心率为:e==. 故选:A .【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.11.【答案】B【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B12.【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性.二、填空题13.【答案】 1 .【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.14.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.15.【答案】两条射线和一个圆.【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.16.【答案】2.【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.17.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 18.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内三、解答题19.【答案】(1)详见解析;(2)详见解析.∴点P 为线段AB 中点,PB PA =;…………7分(2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分若直线AB 斜率存在,由(1)可得148221+-=+k km x x ,144422221+-=k t m x x ,141141222212+-+=-+=k t k x x k AB ,…………11分点O 到直线AB 的距离2221141kk km d ++=+=,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 20.【答案】【解析】解:(1)设a 1=a,由题意可得,解得,或,当时,a n =2n ﹣1,b n =2n ﹣1;当时,a n=(2n+79),b n =9•;(2)当d >1时,由(1)知a n =2n ﹣1,b n =2n ﹣1,∴c n ==,∴T n =1+3•+5•+7•+9•+…+(2n ﹣1)•,∴T n =1•+3•+5•+7•+…+(2n ﹣3)•+(2n ﹣1)•,∴T n =2+++++…+﹣(2n ﹣1)•=3﹣,∴T n =6﹣.21.【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为⊥AB 平面ADF ,所以平面ADF 的一个法向量)0,0,1(1=n .由31=知P 为FD 的三等分点且此时)32,32,0(P .在平面APC 中,)32,32,0(=,)0,2,1(=.所以平面APC 的一个法向量)1,1,2(2--=n .……………………10分所以36|||||,cos |212121==><n n n n ,又因为二面角C AP D --的大小为锐角,所以该二面角的余弦值为36.……………………………………………………………………12分 22.【答案】【解析】(本小题满分12分)解析:(1)原式=1+1﹣5+2+1=0; …(6分)(2)∵向量=(sin θ,cos θ),=(﹣2,1),满足∥,∴sin θ=﹣2cos θ,①…(9分)又sin 2θ+cos 2θ+=1,②由①②解得cos 2θ=,…(11分)∵θ∈(,π),∴cos θ=﹣. …(12分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.23.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义 【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根 等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即24.【答案】【解析】解:(1)由|2x﹣1|+|2x+2|<x+3,得:①得x∈∅;②得0<x≤;③得…综上:不等式f(x)<g(x)的解集为…(2)∵a>,x∈[,a],∴f(x)=4x+a﹣1…由f(x)≤g(x)得:3x≤4﹣a,即x≤.依题意:[,a]⊆(﹣∞,]∴a≤即a≤1…∴a的取值范围是(,1]…。

四川省雅安市新民中学2018-2019学年高二数学文上学期期末试卷含解析

四川省雅安市新民中学2018-2019学年高二数学文上学期期末试卷含解析

四川省雅安市新民中学2018-2019学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 过双曲线x2﹣y2=1的右焦点且与右支有两个交点的直线,其倾斜角范围是( ) A.[0,π)B.(,)C.(,)∪(,)D.(0,)∪(,π)参考答案:B【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】把直线方程与双曲线方程联立消去y,根据x1x2>0,x1+x2>0和判别式大于0求得k的范围,从而可得倾斜角范围.【解答】解:设直线y=k(x﹣),与双曲线方程联立,消去y,可得(1﹣k2)x2+2k2x﹣2k2﹣1=0∵x1x2>0∴>0,∴k2>1,即k>1或者k<﹣1①又x1+x2>0,∴>0,可得k>1或者k<﹣1,②又△=(8k4)﹣4(1﹣k2)(﹣2k2﹣1)>0解得k∈R③由①②③知k的取值范围是k<﹣1或k>1.又斜率不存在时,也成立,∴<α<.故选:B.【点评】本题主要考查了直线与圆锥曲线的综合问题.当直线与圆锥曲线相交,涉及交点问题时常用“韦达定理法”来解决.2. 若对于函数图象上任意一点处的切线,在函数的图象上总存在一条切线,使得,则实数a的取值范围为( )A. B.C. D.参考答案:A【分析】求得f(x)的导数,可得切线l1的斜率k1,求得g(x)的导数,可得切线l2的斜率k2,运用两直线垂直的条件:斜率之积为﹣1,结合正弦函数的值域和条件可得,?x1,?x2使得等式成立,即(,0)?[﹣1|a|,﹣1|a|],解得a的范围即可.【详解】解:函数f(x)=1n(x+1)+x2,∴f′(x)2x,(其中x>﹣1),函数g(x)a sin cos x a sin x﹣x,∴g′(x)a cos x﹣1;要使过曲线f(x)上任意一点的切线为l1,总存在过曲线g(x)=上一点处的切线l2,使得l1⊥l2,则[2x1)(a cos x2﹣1)=﹣1,a cos x2﹣1,∵2x12(x1+1)﹣2≥2 2∵?x1,?x2使得等式成立,∴(,0)?[﹣1|a|,﹣1|a|],解得|a|,即a的取值范围为a或a.故选:A.【点睛】本题考查导数的应用:求切线的斜率,考查两直线垂直的条件:斜率之积为﹣1,以及转化思想的运用,区间的包含关系,考查运算能力,属于中档题.3. 已知空间四边形OABC中,,点M在OA上,且OM=2MA,N为BC中点,则= () A.B. C. D.参考答案:B4. 已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点,若,则椭圆的离心率为( )A. B. C. D.参考答案:D5. 若复数满足(是虚数单位),则的共轭复数是()A. B.C. D.参考答案:B考点:复数的运算及共轭复数的概念.6. 在下列条件下,可判断平面α与平面β平行的是()A. α、β都垂直于平面γB. α内不共线的三个点到β的距离相等C. L,m是α内两条直线且L∥β,m∥βD. L,m是异面直线,且L∥α,m∥α,L∥β,m∥β参考答案:D略7. 下列函数求导运算正确的有()①(3x)′=3x log3e;②(log2x)′=;③(e x)′=e x;④()′=x;⑤(x?e x)=e x(1+x)A.1个B.2个C.3个D.4个参考答案:C【考点】导数的运算.【分析】根据(a x)′=a x lna,(log a x)′=,(lnx)′=即可作出判断.【解答】解:①(3x)′=3x ln3,故错误;②(log2x)′=,故正确;③(e x)'=e x,故正确;④()′=﹣,故错误;⑤(x?e x)′=e x+x?e x,故正确.故选:C.8. 若复数满足(其中i为虚数单位),则的共轭复数为A. B. C.D.参考答案:A略9. 已知,若,则等于A.0.1 B.0.2 C.0.3 D.0.4参考答案:C10. 已知是可导的函数,且对于恒成立,则()A、 B、C、 D、参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 若函数的定义域为,则的取值范围是。

新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a2. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .3. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤4. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.5.若函数f(x)=﹣a(x﹣x3)的递减区间为(,),则a的取值范围是()A.a>0 B.﹣1<a<0 C.a>1 D.0<a<16.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为()A.720 B.270 C.390 D.3007.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)8.已知向量,,其中.则“”是“”成立的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件9.不等式ax2+bx+c<0(a≠0)的解集为R,那么()A.a<0,△<0 B.a<0,△≤0 C.a>0,△≥0 D.a>0,△>010.已知一三棱锥的三视图如图所示,那么它的体积为()A.13B.23C.1D.211.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是()A.B.C.D.12.=()A.﹣i B.i C.1+i D.1﹣i二、填空题13.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.14.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.15.函数f(x)=的定义域是.16.图中的三个直角三角形是一个体积为20的几何体的三视图,则h __________.17.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 18.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .三、解答题19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题: (1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S合计21.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)﹣log2(a2﹣3a)>2恒成立,求实数a的取值范围.22.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.23..(1)求证:(2),若.24.19.已知函数f (x )=ln .新民市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C2.【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A.【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.3.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.4.【答案】C5.【答案】A【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)∴f′(x)≤0,x∈(,)恒成立即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立∵1﹣3x2≥0成立∴a>0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.6.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C.【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q , 故选:B .【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真.8. 【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。

新民市高中2018-2019学年高二上学期数学期末模拟试卷含解析

新民市高中2018-2019学年高二上学期数学期末模拟试卷含解析


”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应 耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事” ,逐条分析、验证、运算, 使问题得以解决.本题的解答就是根据新结论性质求出 f x 性和的. 第Ⅱ卷(非选择题共 90 分) 9. 【答案】D 【解析】 试题分析:当公比 q 1 时, S 4 5S 2 0 ,成立.当 q 1 时, S 4 , S 2 都不等于,所以
考 点:等差数列. 4. 【答案】C 【解析】解:对于 A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确; 对于 C,0 是集合中的一个元素,表述正确. 对于 D,是元素与集合的关系,错用集合的关系,所以不正确. 故选 C 【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用 5. 【答案】C 【解析】解:函数 f(x)= +6x﹣1,可得 f′(x)=x2﹣8x+6,
C.3 C.8
D.4 ) D.10
12.二项式 ( x +1) (n Î N ) 的展开式中 x 项的系数为 10,则 n = ( B.6 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
二、填空题

13.如图,在正方体 ABCD﹣A1B1C1D1 中,P 为 BD1 的中点,则△PAC 在该正方体各个面上的射影可能是
新民市高中 2018-2019 学年高二上学期数学期末模拟试卷含解析 班级__________ 一、选择题
1. 已知 d 为常数,p:对于任意 n∈N*,an+2﹣an+1=d;q:数列 {an}是公差为 d 的等差数列,则¬p 是¬q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2. 下列给出的几个关系中:① a, b ;② ④ 0 ,正确的有( A.个 )个 B.个 ) C. ) +6x﹣1 的极值点,则 log2( C.个 D.个

新民市第一中学2018-2019学年高二上学期数学期末模拟试卷含解析

新民市第一中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=12. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .43.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π4. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A B D .345. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<6. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.257. 设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)8. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =9. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]10.若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -11.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形12.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .213.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°14.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .415.已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)二、填空题16.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 17.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .18.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)19.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是 三、解答题20.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?21.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.22.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f (x )的零点个数;(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.24.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名55(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌213.841 6.635附:K2=.25.已知等差数列{a n}满足a1+a2=3,a4﹣a3=1.设等比数列{b n}且b2=a4,b3=a8(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}前n项的和S n.新民市第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.2.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.3.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r×2r+12)×2+5×2r×2+5×2r+πr×5=92+14π,2πr即(8+π)r2+(30+5π)r-(92+14π)=0,即(r-2)[(8+π)r+46+7π]=0,∴r=2,∴该几何体的体积为(4×4+12)×5=80+10π.2π×24.【答案】D【解析】考点:异面直线所成的角. 5. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 6. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =310.7. 【答案】A【解析】解:f (1)=3,当不等式f (x )>f (1)即:f (x )>3 如果x <0 则 x+6>3可得 x >﹣3,可得﹣3<x <0.如果 x ≥0 有x 2﹣4x+6>3可得x >3或 0≤x <1综上不等式的解集:(﹣3,1)∪(3,+∞) 故选A .8. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.9. 【答案】D【解析】解:依题意,不等式化为,解得﹣1<x ≤2, 故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.10.【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 11.【答案】A 【解析】解:∵,又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形. 故选:A .12.【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得 这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C13.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.15.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.二、填空题16.【答案】【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒=a b +=考点:指对数式运算17.【答案】 114 .【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114. 故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.18.【答案】 真命题【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.19.【答案】【解析】试题分析:设,由题设可知存在唯一的整数0x ,使得在直线的下方.因为,故当时,,函数单调递减;当时,,函数单调递增;故,而当时,,故当且,解之得,应填答案3,12e ⎡⎫⎪⎢⎣⎭. 考点:函数的图象和性质及导数知识的综合运用.【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线的下方.然后再借助导数的知识求出函数的最小值,依据题设建立不等式组求出解之得.三、解答题20.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x ,由频率分布直方图得, (0.0015+0.019)×20+(x ﹣140)×0.025=0.5, 解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人. (Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B (3,),∴E (ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P (η=0)=,P (η=1)=,P (η=2)=,P (η=3)=,∴Eη=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.21.【答案】【解析】解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.∵∠BOD=∠A,∴△OBD∽△AOC.∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.∴∠AOD=180°﹣∠A﹣∠ODC=180°﹣∠COD﹣∠OCD=∠ADO.∴AD=AO …【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.22.【答案】【解析】解:(1),令f'(x)>0,则;令f'(x)<0,则.∴f(x)在x=a时取得最大值,即①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞∴f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;②当,即a=1时,f(x)有1个零点;③当,即a>1时f(x)没有零点;(2)由得(0<x 1<x 2),=,令,设,t ∈(0,1)且h (1)=0则,又t ∈(0,1),∴h ′(t )<0,∴h (t )>h (1)=0即,又,∴f'(x 0)=<0.【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a <1进行研究时,一定要注意到f (x )的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.23.【答案】(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2). 【解析】试题分析:(1)由公式cos sin xy ρθρθ=⎧⎨=⎩可化极坐标方程为直角坐标方程,利用消参法可化参数方程为普通方程;考点:极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,点到直线的距离公式.24.【答案】100人中,“歌迷”有25人,从而完成2×2列联表如下:将2×2列联表中的数据代入公式计算,得:K2==≈3.030因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2.Ω由10个等可能的基本事件组成.…用A表示“任选2人中,至少有1个是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成.∴P(A)= (12)【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.25.【答案】【解析】解:(1)设等差数列{a n}的公差为d,则由,可得,…解得:,∴由等差数列通项公式可知:a n=a1+(n﹣1)d=n,∴数列{a n}的通项公式a n=n,∴a4=4,a8=8设等比数列{b n}的公比为q,则,解得,∴;(2)∵…∴,=,=,∴数列{c n}前n项的和S n=.。

2018-2019学年辽宁省沈阳市新民高级中学 高二数学文联考试卷含解析

2018-2019学年辽宁省沈阳市新民高级中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设f(x)是定义在(﹣∞,+∞)上的奇函数,且在区间(0,+∞)上单调递增,若,三角形的内角满足f(cosA)<0,则A的取值范围是()A.B.C.D.参考答案:C【考点】3N:奇偶性与单调性的综合.【分析】由题意结合函数的性质得到三角不等式,求解三角不等式即可求得最终结果.【解答】解:∵f(x)是定义在R上的奇函数,在区间(0,+∞)上单调递增,且,∴f(x)的草图如图,由图知:若f(cosA)<0,则,或,又∵A为△ABC内角,∴A∈(0,π)∴.故选:C.2. 集合则是“”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A3. 对任意实数a、b、c,在下列命题中,真命题是()A.“ac>bc”是“a>b”的必要条件B.“ac=bc”是“a=b”的必要条件C.“ac>bc”是“a>b”的充分条件D.“ac=bc”是“a=b”的充分条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】当a=b时,一定有ac=bc.但ac=bc时,且c=0时,a,b可以不相等.即“ac=bc”是“a=b”的必要条件.【解答】解:A、C当c<0时,“ac>bc”即不是“a>b”的必要条件也不是充分条件,故A,C不成立;B、∵当a=b时∴一定有ac=bc.但ac=bc时,且c=0时,a,b可以不相等.即“ac=bc”是“a=b”的必要条件.D、当c=0时,“ac=bc”是“a=b”的充分条件不成立;故选B.4. 一个命题与他们的逆命题、否命题、逆否命题这4个命题中()A.真命题与假命题的个数相同B.真命题的个数一定是奇数C.真命题的个数一定是偶数D.真命题的个数一定是可能是奇数,也可能是偶数参考答案:C略5. 若偶函数满足,则不等式的解集是A. B.C. D.参考答案:D略6. 已知函数在定义域内是增函数,则实数的取值范围为()A. B.C. D.参考答案:C略7. 下列命题中是假命题的是()A.若a>0,则2a>1B.若x2+y2=0,则x=y=0C.若b2=ac,则a,b,c成等比数列D.若a+c=2b,则a,b,c成等差数列参考答案:C【考点】命题的真假判断与应用.【分析】A,由指数函数y=2x可得,当a>0,2a>1;B,∵x2≥,y2≥0对任意实数恒成立,∴当x2+y2=0时,一定有x=y=0;C,当b2=ac时,a,b,c可能同时为0,此时a,b,c不是等比数列;D,当a+c=2b,一定有b﹣a=c﹣b,则a,b,c一定成等差数列.【解答】解:对于A,由指数函数y=2x可得,当a>0,2a>1,故正确;对于B,∵x2≥,y2≥0对任意实数恒成立,∴当x2+y2=0时,一定有x=y=0,故正确;对于C,当b2=ac时,a,b,c可能同时为0,此时a,b,c不是等比数列,故错;对于D,当a+c=2b,一定有b﹣a=c﹣b,则a,b,c一定成等差数列,故正确.故选:C.8. 已知向量满足,且关于x的函数在R上有极值,则与的夹角的取值范围为()A. (]B. []C. (0,]D.(]参考答案:A9. f/(x)是f(x)的导函数,f/(x)的图象如右图所示,则f(x)的图象只可能是()(A)(B)(C)(D)参考答案:D略10. 不等式组表示的平面区域是 ( )A. 矩形B. 三角形C. 直角梯形D. 等腰梯形参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 在下列命题中,所有正确命题的序号是____________.①三点确定一个平面;②两个不同的平面分别经过两条平行直线,则这两个平面互相平行;③过高的中点且平行于底面的平面截一棱锥,把棱锥分成上下两部分的体积之比为;④平行圆锥轴的截面是一个等腰三角形.参考答案:③略12. 已知a>0,b>0,0<c<2,ac2+b﹣c=0,则+的取值范围是.参考答案:[4,+∞)利用基本不等式的性质即可得出.解:a>0,b>0,0<c<2,ac2+b﹣c=0,∴1=ac+≥2,当ac=时,等号成立,∴ab≤,∵+≥2≥2=4,当a=b时等号成立,此时c=1∈(0,2),综上所述,+的取值范围是[4,+∞),故答案为:[4,+∞)13. 已知命题,是假命题,则实数a的取值范围是__________.参考答案:.由题意得命题的否定为.∵命题是假命题,∴命题为真命题,即在R上恒成立.①当时,不恒成立;②当时,则有,解得.综上可得实数的取值范围是.答案:点睛:不等式的解是全体实数(或恒成立)的条件是当时,;当时,;不等式的解是全体实数(或恒成立)的条件是当时,;当时,.14. 已知随机变量服从正态分布,若,则等于.参考答案:0.36.15. 一圆锥的母线长2cm,底面半径为1cm,则该圆锥的表面积是cm2.参考答案:3π【考点】旋转体(圆柱、圆锥、圆台).【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×1×2÷2=2π.底面积为π该圆锥的表面积是为:2π+π=3π.故答案为:3π16. 设F1,F2是椭圆的两个焦点,P在椭圆上,且满足,则的面积是.参考答案:由题意,得,即,则,即,所以的面积为.17. 抛物线被直线所截得的弦长为。

新民市三中2018-2019学年高二上学期数学期末模拟试卷含解析

新民市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是()A.(0,1)B.(1,+∞)C.(﹣1,0)D.(﹣∞,﹣1)2.已知函数,函数,其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.B.C.D.3.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件4.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种5.在空间中,下列命题正确的是()A.如果直线m∥平面α,直线n⊂α内,那么m∥nB.如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC.如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥αD.如果平面α⊥平面β,任取直线m⊂α,那么必有m⊥β201636.年月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20350500150名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为,,,按分层抽样的方法,应从青年职工中抽取的人数为()56710A. B. C. D.【命题意图】本题主要考查分层抽样的方法的运用,属容易题.7.等差数列{a n}中,已知前15项的和S15=45,则a8等于()A.B.6C.D.38. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+ B.(1)++∞ C. (1,3)D .(3,)+∞9. 已知空间四边形,、分别是、的中点,且,,则()ABCD M N AB CD 4AC =6BD =A .B .C .D .15MN <<210MN <<15MN ≤≤25MN <<10.过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1C .﹣=1D .﹣=111.双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )A .13B .15C .12D .1112.在正方体中, 分别为的中点,则下列直线中与直线 EF相交1111ABCD A B C D -,E F 1,BC BB 的是()A .直线B .直线C. 直线D .直线1AA 11A B 11A D 11B C 二、填空题13.已知、、分别是三内角的对应的三边,若,则a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________.3cos(4A B π-+【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.14.定义在上的函数满足:,,则不等式(其R )(x f 1)(')(>+x f x f 4)0(=f 3)(+>xxe xf e 中为自然对数的底数)的解集为 .15.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .16.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 . 17.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m ∈Z ,有f (2m )=0;②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n +1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k ,2k+1)”;其中所有正确结论的序号是 . 18.已知||=1,||=2,与的夹角为,那么|+||﹣|= .三、解答题19.(本题满分14分)已知函数.x a x x f ln )(2-=(1)若在上是单调递减函数,求实数的取值范围;)(x f ]5,3[a (2)记,并设是函数的两个极值点,若,x b x a x f x g )1(2ln )2()()(--++=)(,2121x x x x <)(x g 27≥b 求的最小值.)()(21x g x g -20.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.(Ⅰ)当时,求f (x )的最值;(Ⅱ)若,求的值.21.(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.P ABCD -ABCD PA ⊥ABCD E PD (1)证明:平面;//PB AEC(2)设,的体积,求到平面的距离.1AP =AD =P ABD -V =A PBC111]22.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?23.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的1(1)n n a b n =+n S {}n b n n S t <*n ∈N t 取值范围.24.某城市100户居民的月平均用电量(单位:度),以,,,[)160,180[)180,200[)200,220,,,分组的频率分布直方图如图.[)220,240[)240,260[)260,280[]280,300(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]新民市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k∈(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A2.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键. 3.【答案】B【解析】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,若a⊥b,则α⊥β不一定成立,故“α⊥β”是“a⊥b”的充分不必要条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.4.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.5.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.6.【答案】C7.【答案】D【解析】解:由等差数列的性质可得:S15==15a8=45,则a8=3.故选:D.8.【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m 的范围.9. 【答案】A【解析】试题分析:取的中点,连接,,根据三角形中两边之和大于第三边,两边之BC E ,ME NE 2,3ME NE ==差小于第三边,所以,故选A .15MN <<考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题.10.【答案】A【解析】解:设所求双曲线方程为﹣y 2=λ,把(2,﹣2)代入方程﹣y 2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A .【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.11.【答案】A【解析】解:设点P 到双曲线的右焦点的距离是x ,∵双曲线上一点P 到左焦点的距离为5,∴|x ﹣5|=2×4∵x >0,∴x=13故选A .12.【答案】D【解析】试题分析:根据已满治安的概念可得直线都和直线为异面直线,和在同一个平11111,,AA A B A D EF 11B C EF 面内,且这两条直线不平行;所以直线和相交,故选D.11B C EF 考点:异面直线的概念与判断.二、填空题13.【答案】【解析】14.【答案】),0(+∞【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即()()01>-'+x f x f xe ,因此构造函数,求导利用函数的单调性解不等式.另外本题也可()()0>-'+x x x e x f e x f e ()()x x e x f e x g -=以构造满足前提的特殊函数,比如令也可以求解.1()4=x f 15.【答案】 ( 1,±2) .【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.16.【答案】 ②③ .【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,②函数=cosx是偶函数,故②正确,③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数的一条对称轴方程,故③正确,④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,故答案为:②③.【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.17.【答案】 ①②④ .【解析】解:∵x∈(1,2]时,f(x)=2﹣x.∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.18.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵,x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=20.【答案】【解析】(本题满分为13分)解:(Ⅰ)∵=,…∵T=2,∴,…∴,…∵,∴,∴,…∴,…当时,f (x )有最小值,当时,f (x )有最大值2.…(Ⅱ)由,所以,所以,…而,…所以,…即.… 21.【答案】(1)证明见解析;(2【解析】试题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的BD AC O EO ABCD O BD E PD 中点,所以,且平面,平面,所以平面.//EO PB EO ⊂AEC PB ⊄AEC //PB AEC(2),由,可得,作交于.由题设知16V PA AB AD AB ==A A V =32AB =AH PB ⊥PB H BC ⊥平面,所以,故平面,又,所以到平面的距离PAB BC AH ⊥AH ⊥PBC PA AB AH PB ==A A PBC考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.22.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.23.【答案】n【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.24.【答案】(1);(2)众数是,中位数为.0.0075x =230224【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得,(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=∴.0.0075x =考点:频率分布直方图;中位数;众数.。

新民市二中2018-2019学年高二上学期数学期末模拟试卷含解析

新民市二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知三棱柱111A B C A B C - 的侧棱与底面边长都相等,1A 在底面A B C 上的射影为B C 的中点, 则异面直线A B 与1C C 所成的角的余弦值为( )A 4B 44D .342. 设为虚数单位,则( )A .B .C .D .3. 在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .214. 已知,,x y z 均为正实数,且22lo g xx =-,22lo g yy -=-,22lo g zz -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<5. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π6. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .97. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件8. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .9. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin co s x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 10.已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C . D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.11.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣312.抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .3二、填空题13.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .14.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.15.计算:×5﹣1= .16.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .17.台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75°方向上的C点,这时观测站与台风中心的距离AC等于km.18.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.三、解答题19.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.20.在直角坐标系x O y中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C交于A,B两点与曲线C交于E,F两点,线段A B,E F的中点分别为M,N,求证:直线M N过定点P,并求出定点P的坐标.21.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.22.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;(Ⅱ)若EF •FC=,求正方形ABCD 的面积.23.已知函数f (x )=,求不等式f (x )<4的解集.24.(本小题满分12分)若二次函数()()20f x a x b x c a =++≠满足()()+12f x f x x -=, 且()01f =.(1)求()f x 的解析式;(2)若在区间[]>+恒成立,求实数m的取值范围.f x x m-上,不等式()21,1新民市二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】考点:异面直线所成的角.2.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C3.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B.4.【答案】A【解析】考点:对数函数,指数函数性质.5.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.6.【答案】B【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;③x=2时,y=0,1,2,∴x﹣y=2,1,0;∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B.7.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.8.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.9.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.10.【答案】A【解析】11.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.12.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.二、填空题13.【答案】.【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题14.【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱V A⊥底面A B C,且A B C∆为直角三角形,且5,,6A B V A h A C===,所以三棱锥的体积为115652032V h h=⨯⨯⨯==,解得4h=.考点:几何体的三视图与体积.15.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.16.【答案】①②④.【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.17.【答案】25【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,由正弦定理可得AC==25km,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.18.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③三、解答题19.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分20.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++,由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k kk ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围.21.【答案】【解析】解:(1)函数f (x )=.f (﹣2)=﹣2+2=0, f (f (﹣2))=f (0)=0.3分 (2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)… 由图可知:f (﹣4)=﹣2,f (﹣1)=1,函数f (x )在区间(﹣4,0)上的值域(﹣2,1].…12分.22.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.23.【答案】【解析】解:函数f (x )=,不等式f (x )<4,当x ≥﹣1时,2x+4<4,解得﹣1≤x <0; 当x <﹣1时,﹣x+1<4解得﹣3<x <﹣1. 综上x ∈(﹣3,0).不等式的解集为:(﹣3,0).24.【答案】(1)()2=+1f x x x -;(2)1m <-. 【解析】试题分析:(1)根据二次函数()()20f x a x b x c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为231m x x <-+,设()2g 31x x x =-+,只需()m inm g x <,即可而求解实数m 的取值范围.试题解析:(1) ()()20f x a x b x c a =++≠ 满足()01,1f c ==()()()()2212,112fx fx x a x b x a x b x x +-=+++--=,解得1,1a b ==-,故()2=+1f x x x -.考点:函数的解析式;函数的恒成立问题.【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新民市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m , (3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β, 其中正确命题是( )A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)2. 已知f (x )=,若函数f (x )是R 上的增函数,则a 的取值范围是( )A .(1,3)B .(1,2)C .[2,3)D .(1,2]3. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1504. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D .5. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .6. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=7. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .8. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为( )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.9. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)10.设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣111.已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=112.设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)13.抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)14.二项式(1)(N )n x n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力. 15.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .二、填空题16.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .17.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .18.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .19.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).三、解答题20.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.21.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直.(1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.22.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且)3(s i n))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆,求c b ,.23.已知函数f (x )=sin2x •sin φ+cos 2x •cos φ+sin (π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f (x )在[0,π]上的单调递减区间;(Ⅱ)若x 0∈(,π),sinx 0=,求f (x 0)的值.24.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.25.(本小题满分12分)已知函数131)(23+-=ax x x h ,设x a x h x f ln 2)(')(-=, 222ln )(a x x g +=,其中0>x ,R a ∈.(1)若函数)(x f 在区间),2(+∞上单调递增,求实数的取值范围; (2)记)()()(x g x f x F +=,求证:21)(≥x F .新民市高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确; ∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.2. 【答案】C 【解析】解:∵f (x )=是R 上的增函数,∴,解得:a ∈[2,3), 故选:C .【点评】本题考查的知识点是分段函数的单调性,正确理解分段函数单调性的含义是解答的关键.3. 【答案】B【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,则其体积V=S ×h=30×5=50.故选B .4. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1 考点:导数与函数的单调性. 5. 【答案】C【解析】解:F1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力.6. 【答案】D 【解析】考点:直线的方程. 7. 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分) 由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小. 即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上, ∴﹣1=﹣2a ,解得a=.故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.8. 【答案】D【解析】∵120PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.12c c =,整理,得2()4ca=+1e =,故选D. 9. 【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .10.【答案】A【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,∴,解得:﹣3<a <﹣1.故选:A .11.【答案】C【解析】解:如图,++().故选C .12.【答案】A【解析】解:令f (x )=x 3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0, f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1). 故答案为:A .13.【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.14.【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A .15.【答案】B【解析】【知识点】线性规划 【试题解析】作可行域:由题知:所以故答案为:B二、填空题16.【答案】.【解析】解:在△ABC中,∵6a=4b=3c∴b=,c=2a,由余弦定理可得cosB===.故答案为:.【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.17.【答案】m>1.【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则命题“∀x∈R,x2﹣2x+m>0”是真命题,即判别式△=4﹣4m<0,解得m>1,故答案为:m>118.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.19.【答案】②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM <0<MP . 故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.三、解答题20.【答案】【解析】解:(1)设抽取x 人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A ,B ,在40:59岁之间为a ,b ,c ,随机选取2人的情况有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ), (a ,b ),(a ,c ),(b ,c ),共10种,年龄都在40:59岁之间的有(a ,b ),(a ,c ),(b ,c ),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.21.【答案】(1)45;(2)4. 【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直, ∴2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 22.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分 由 ①②解得32,2==c b 或2,32==c b . 12分23.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f (x )=+﹣=+=)由f (x )图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.24.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)由已知,点在椭圆上,,解得.所求椭圆方程为(Ⅱ)设,,的垂直平分线过点, 的斜率存在.当直线的斜率时,当且仅当时,当直线的斜率时,设.消去得:由.①,,的中点为由直线的垂直关系有,化简得 ②由①②得又到直线的距离为,时,.由,,解得;即时,;综上:;25.【答案】(1)]34,( .(2)证明见解析. 【解析】试题解析:解:(1)函数131)(23+-=ax x x h ,ax x x h 2)('2-=,1111] 所以函数x a ax x x a x h x f ln 22ln 2)(')(2--=-=,∵函数)(x f 在区间),2(+∞上单调递增,∴0222ln 2)(')('2≥--=-=x a ax x x a x h x f 在区间),2(+∞上恒成立,所以12+≤x x a 在),2(+∞∈x 上恒成立.令1)(2+=x x x M ,则2222)1(2)1()1(2)('++=+-+=x x x x x x x x M ,当),2(+∞∈x 时,0)('>x M , ∴34)2(1)(2=>+=M x x x M ,∴实数的取值范围为]34,(-∞. (2)]2ln )ln ([22ln ln 22)(222222xx a x x a a x x a ax x x F +++-=++--=, 令2ln )ln ()(222x x a x x a a P +++-=,则111]4)ln (4)ln ()2ln (2ln )2ln ()2ln ()(2222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=.令x x x Q ln )(-=,则x x x x Q 111)('-=-=,显然)(x Q 在区间)1,0(上单调递减,在区间),1[+∞上单调递增,则1)1()(min ==Q x Q ,则41)(≥a P ,故21412)(=⨯≥x F .考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数()x F ,通过观察()x F 的解析式的形式,能够想到解析式里可能存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于41即可,从而对新函数求导判单调性求出最值证得成立.。

相关文档
最新文档