中考冲刺:代几综合问题

合集下载

江苏版2021年中考数学热点专题冲刺4实际应用问题

江苏版2021年中考数学热点专题冲刺4实际应用问题

热点专题4 实际应用问题考向1一次方程(组)的实际应用1. (2019 江苏省宿迁市)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.【解析】设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.2. (2019 江苏省淮安市)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?【解析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;点评本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.3. (2019 江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【解析】(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.考向2分式方程的实际应用1. (2019 江苏省苏州市)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x =+B .15243x x =-C .15243x x =+D .15243x x=- 【解析】 找到等量关系为两人买的笔记本数量15243x x ∴=+ 故选A2. (2019 江苏省常州市)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?【解析】 设甲每小时做x 个零件,则乙每小时做(30﹣x )个零件,由题意得:=,解得:x =18,经检验:x =18是原分式方程的解,则30﹣18=12(个).答:甲每小时做18个零件,则乙每小时做12个零件.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意检验.3. (2019 江苏省扬州市) “绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?【解析】设甲工程队每天修x 米,则乙工程队每天修(1500﹣x )米,根据题意可得:=,解得:x=900,经检验得:x=900是原方程的根,故1500﹣900=600(m),答:甲工程队每天修900米,乙工程队每天修600米.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.考向3函数的实际运用1. (2019 江苏省连云港市)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【解析】如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE=BC=6﹣x,∴AD=CE=BE=6﹣x,AB=AE+BE=x+6﹣x=x+6,∴梯形ABCD面积S=(CD+AB)•CE=(x+x+6)•(6﹣x)=﹣x2+3x+18=﹣(x﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点评】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.2. (2019 江苏省淮安市)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x 之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【解析】(1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135;(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3. (2019 江苏省连云港市)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【解析】(1)y=0.3x+0.4(2500﹣x)=﹣0.1x+1000因此y与x之间的函数表达式为:y=﹣0.1x+1000.(2)由题意得:∴1000≤x≤2500又∵k=﹣0.1<0∴y随x的增大而减少∴当x=1000时,y最大,此时2500﹣x=1500,因此,生产甲产品1000吨,乙产品1500吨时,利润最大.【点评】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.4. (2019 江苏省泰州市)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?【解析】(1)设线段AB所在直线的函数表达式为y=kx+b,根据题意得,解得,∴线段AB所在直线的函数表达式为y=﹣0.01x+6(100≤x≤300);(2)设小李共批发水果m吨,则单价为﹣0.01m+6,根据题意得:﹣0.01m+6=,解得m=200或400,经检验,x=200,x=400(不合题意,舍去)都是原方程的根.答:小李用800元一次可以批发这种水果的质量是200千克.【点评】本题主要考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.5. (2019 江苏省宿迁市)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【解析】(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,∵a=﹣<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.6. (2019 江苏省镇江市)学校数学兴趣小组利用机器人开展数学活动.在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B 之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、在端点处相遇这两种.观察①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;发现设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.兴趣小组成员发现了y与x 的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示).①a=;②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;拓展设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)【解析】观察①∵相遇地点与点A之间的距离为30个单位长度,∴相遇地点与点B之间的距离为150﹣30=120个单位长度,设机器人甲的速度为v,∴机器人乙的速度为v=4v,∴机器人甲从相遇点到点B所用的时间为,机器人乙从相遇地点到点A再返回到点B所用时间为=,而,∴设机器人甲与机器人乙第二次迎面相遇时,机器人乙从第一次相遇地点到点A,返回到点B,再返回向A时和机器人甲第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,30+150+150﹣m=4(m﹣30),∴m=90,故答案为:90;②∵相遇地点与点A之间的距离为40个单位长度,∴相遇地点与点B之间的距离为150﹣40=110个单位长度,设机器人甲的速度为v,∴机器人乙的速度为v=v,∴机器人乙从相遇点到点A再到点B所用的时间为=,机器人甲从相遇点到点B所用时间为,而,∴设机器人甲与机器人乙第二次迎面相遇时,机器人从第一次相遇点到点A,再到点B,返回时和机器人乙第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,40+150+150﹣m=(m﹣40),∴m=120,故答案为:120;发现①当点第二次相遇地点刚好在点B时,设机器人甲的速度为v,则机器人乙的速度为v,根据题意知,x+150=(150﹣x),∴x=50,经检验:x=50是分式方程的根,即:a=50,故答案为:50;②当0<x≤50时,点P(50,150)在线段OP上,∴线段OP的表达式为y=3x,当v<v时,即当50<x<75,此时,第二次相遇地点是机器人甲在到点B返回向点A时,设机器人甲的速度为v,则机器人乙的速度为v,根据题意知,x+y=(150﹣x+150﹣y),∴y=﹣3x+300,即:y=,补全图形如图2所示,拓展如图,由题意知,x+y+150+150=(150﹣x+150﹣y),∴y=﹣5x+300,∵第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,∴﹣5x+300≤60,∴x≥48,∵x<75,∴48≤x<75,故答案为48≤x<75.【点评】本题考查了一次函数的应用,两点间的距离,分式方程的应用,一元一次方程的应用,正确的理解题意是解题的关键.考向4不等式的实际运用1. (2019 江苏省无锡市)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为() A.10 B.9 C.8 D.7【解析】设原计划m天完成,开工n天后有人外出,则15am=2160,am=144,15an+12(a+2)(m-n)<2160,化简可得:an+4am+8m-8n<720,将am=144 代入得an+8m-8n<144,an+8m-8n<am,a(n-m)<8(n-m),其中n-m<0,a>8,至少为 9 ,因此本题选B。

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

2021年九年级中考数学第三轮冲刺:列方程或方程组解应用题 综合性专题复习(一)

2021年九年级中考数学第三轮冲刺:列方程或方程组解应用题  综合性专题复习(一)

2021年中考数学第三轮冲刺:列方程或方程组解应用题综合性专题复习(一)1、某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.2、新冠肺炎疫情期间,部分小区出现防疫物资紧缺,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种防疫物品共2000件送往各小区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种防疫物品每件的价格各是多少元?(2)经调查,各小区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?3、某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万千克与3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克. 如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?4、某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?5、从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h,试问在高铁列车准点到达的情况下他能在开会之前到达吗?6、端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?7、某学校举行“青春心向党建功新时代”演讲比赛活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.(1)求甲、乙两种奖品的单价各是多少元?(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍,问购买多少个甲种奖品,才使得总购买费用最少?8、某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?9、同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?10、新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A 种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?11、某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?12、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.13、某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.14、某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.15、清明时节“雨后绿初见,择艾作青团”.“元祖“推出一款鲜花青团和一款芒果青团,鲜花青团每个售价是芒果青团的54倍,4月份鲜花青团和芒果青团总计销售6000个.鲜花青团销售额为250000元,芒果青团销售额为280000元.(1)求鲜花青团和芒果青团的售价?(2)5月份正值“元祖”店庆,计划再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花青团个数的32,且不多于鲜花青团的2倍,其中,鲜花青团每个让利3元销售,芒果青团售价不变,问:“元祖”如何设计生产方案?可使总销售额最大,并求出总销售额的最大值.16、2020年全民抗疫期间,抗疫志士莫小贝购进一条生产线生产抗疫物质. 已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人. 由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让所有工人到供给站的距离总和最小;方案二:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和.(1)若按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)在(2)的条件下,若甲平台的工人数增加a 人(22 a ),那么随着a 的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.17、国务院新闻办公室举行新闻发布会,经过7年多的精准扶贫,4年多的脱贫攻坚战,全国现行标准下的贫困人口减少了9348万人。

备战中考数学(人教版)综合能力冲刺练习(含解析)

备战中考数学(人教版)综合能力冲刺练习(含解析)

2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。

2020年数学《冲刺中考》真题(2019年)培优训练: 《方程与不等式综合》(全国通用)(含答案)

2020年数学《冲刺中考》真题(2019年)培优训练: 《方程与不等式综合》(全国通用)(含答案)

《冲刺中考》真题(2019年)训练: 《方程与不等式》姓名:___________班级:___________考号:___________第Ⅰ卷(选择题)一.选择题1.(2019•绥化)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种2.(2019•镇江)下列各数轴上表示的x 的取值范围可以是不等式组的解集的是( ) A .B .C .D .3.(2019•鄂州)关于x 的一元二次方程x 2﹣4x +m =0的两实数根分别为x 1、x 2,且x 1+3x 2=5,则m 的值为( ) A .B .C .D .04.(2019•乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) A .1,11B .7,53C .7,61D .6,505.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.7 6.(2019•本溪)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140 D.﹣140=7.若关于x的不等式组恰有三个整数解,则a的取值范围是()A.1≤a<B.1<a≤C.1<a<D.a≤1或a>8.(2019•赤峰)某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=900C.900(1﹣x)2=400 D.400(1+x)2=9009.(2019•永州)某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁10.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89 11.(2019•重庆)若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣2 C.﹣1 D.1 12.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种第Ⅱ卷(非选择题)二.填空题13.(2019•鞍山)为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为.14.(2019•莱芜区)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)15.(2019•铜仁市)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.16.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.17.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.18.(2019•宿迁)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.19.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.20.(2019•重庆)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三.解答题21.(2019•无锡)(1)解方程:2x2﹣x﹣5=0;(2)解不等式组:.22.(2019•抚顺)为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉2m2,乙种花卉3m2,共需430元;种植甲种花卉1m2,乙种花卉2m2,共需260元.(1)求:该社区种植甲种花卉1m2和种植乙种花卉1m2各需多少元?(2)该社区准备种植两种花卉共75m2且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?23.(2019•铁岭)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?24.(2019•莱芜区)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?25.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲25 35乙35 48 求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?26.(2019•阜新)节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?27.(2019•呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.参考答案一.选择题1.解:设小明购买了A 种玩具x 件,则购买的B 种玩具为件,根据题意得,,解得,3<x ≤8, ∵x 为整数,也为整数,∴x =4或6或8, ∴有3种购买方案. 故选:C .2.解:由x +2>a 得x >a ﹣2,A .由数轴知x >﹣3,则a =﹣1,∴﹣3x ﹣6<0,解得x >﹣2,与数轴不符;B .由数轴知x >0,则a =2,∴3x ﹣6<0,解得x <2,与数轴相符合;C .由数轴知x >2,则a =4,∴7x ﹣6<0,解得x <,与数轴不符;D .由数轴知x >﹣2,则a =0,∴﹣x ﹣6<0,解得x >﹣6,与数轴不符;故选:B . 3.解:∵x 1+x 2=4,∴x 1+3x 2=x 1+x 2+2x 2=4+2x 2=5, ∴x 2=,把x 2=代入x 2﹣4x +m =0得:()2﹣4×+m =0, 解得:m =, 故选:A .4.解:设有x 人,物价为y ,可得:,解得:,故选:B.5.解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得ax+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.6.解:设甲型机器人每台x万元,根据题意,可得:,故选:A.7.解:解不等式+>0,得:x>﹣,解不等式3x+5a+4>4(x+1)+3a,得:x<2a,∵不等式组恰有三个整数解,∴这三个整数解为0、1、2,∴2<2a≤3,解得1<a≤,故选:B.8.解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:D.9.解:∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2,设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨,∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3,设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米,设运输的运费每吨为z元/千米,①设在甲处建总仓库,则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库,∵a+d=5y,b+c=7y,∴a+d<b+c,则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库,则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库,则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适,故选:A.10.解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.11.解:由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴﹣≤a<3;由关于y的分式方程﹣=﹣3得1﹣2y+a=﹣3(y﹣1),∴y=2﹣a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴﹣≤a<2,且a≠1,∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3.故选:A.12.解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.二.填空题(共8小题)13.解:设A种树苗的单价为x元,则B种树苗的单价为(x﹣10)元,所以用600元购买A种树苗的棵数是,用450元购买B种树苗的棵数是.由题意,得=.故答案是:=.14.解:①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③[2a]<[2a]+1,故③正确;④当a=2时,a2=2[a]=4;当a=时,a2=2[a]=2;原题说法是错误的.故答案为:①②③.15.解:设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.16.解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.17.解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.18.解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.19.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.20.解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.三.解答题(共7小题)21.解:(1)∵a=2,b=﹣1,c=﹣5,∴△=(﹣1)2﹣4×2×(﹣5)=41>0,则x=;(2)解不等式3(x+1)>x﹣1,得:x>﹣2,解不等式≥2x,得:x≤2,则不等式组的解集为﹣2<x≤2.22.解:(1)设该社区种植甲种花卉1m2需x元,种植乙种花卉1m2需y元,依题意,得:,解得:.答:该社区种植甲种花卉1m2需80元,种植乙种花卉1m2需90元.(2)设该社区种植乙种花卉mm2,则种植甲种花卉(75﹣m)m2,依题意,得:80(75﹣m)+90m≤6300,解得:m≤30.答:该社区最多能种植乙种花卉30m2.23.解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,=112∴y最大值答:该超市用不超过2100元最多可以采购甲玩具112件.24.解:(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:,解得:.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:,解得:≤m≤.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.25.解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.26.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100﹣y)≤50,解得:y≥60,所以至少需要用电行驶60千米.27.解:(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代入①得x=37∴小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.。

【中考冲刺】2020中考数学题型专项(十二)几何综合题

【中考冲刺】2020中考数学题型专项(十二)几何综合题

题型专项(十二)几何综合题几何综合题是近年来中考的热点题型,2019年云南中考(全省统考)第23题,2018年云南中考第23题,2018年昆明中考第23题,2017年云南中考(全省统考)第23题,都是几何综合题作为压轴题.几何综合题通常把三角形、四边形、圆、方程和函数等知识综合起来,辅以平移、旋转、轴对称等变换,或实践操作探究,或类比探究,对有关数学问题进行证明和计算,考查同学们应用所学数学知识解决综合问题的能力.题目往往综合性较强,计算量较大,很容易造成同学们丢分,复习时应予以重视.类型1 与“三点定圆”有关的几何综合题【例1】 (2019·云南T23·12分)如图,AB 是⊙C 的直径,M ,D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB ·DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED =45.(1)求证:△DEB ∽△DAE ;【思路点拨】 由∠D =∠D ,DE 2=DB ·DA ,根据“两边对应成比例且夹角相等,两三角形相似”,证得△DEB ∽△DAE.证明:∵DE 2=DB ·DA , ∴DE DA =DBDE.1分 又∵∠BDE =∠EDA , ∴△DEB ∽△DAE.3分 (2)求DA ,DE 的长;【思路点拨】 先利用圆周角定理的推论、线段垂直平分线的性质、三角函数的概念等,求出AB ,AE ,BE 的长,然后根据△DEB ∽△DAE 得出对应边成比例而列出关于DA ,DE 的方程组求解.解:∵AB 是⊙O 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF.又∵AE =BF ,BF =10,∴AB =BF =10. ∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8, ∴BE =AB 2-AE 2=6.5分 ∵△DEB ∽△DAE , ∴DE DA =DB DE =EB AE =68=34. ∵DB =DA -AB =DA -10,∴⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34,解得⎩⎪⎨⎪⎧DA =1607,DE =1207.经检验,⎩⎪⎨⎪⎧DA =1607,DE =1207是⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34的解.∴⎩⎪⎨⎪⎧DA =1607,DE =1207.8分【一题多解】 解法2:∵AB 是⊙C 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF. 又∵AE =EF ,BF =10, ∴AB =BF =10.∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED.∴cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8,BE =AB 2-AE 2=6.连接CE ,设ED 与BF 交于点G.∵∠DBF =∠A +∠AFB =2∠A ,∠DCE =2∠A , ∴∠DBF =∠DCE.∴BF ∥CE.∵∠CED =∠CEB +∠BED =∠CEB +∠A =∠CEB +∠AEC =90°,∴∠BGE =∠CED =90°. 在Rt △BEG 中,sin ∠BED =sin ∠EAD =BG BE =BE AB =610=35,∴BG =185.∵BF ∥CE ,∴△DBG ∽△DCE.∴BG CE =DB DC ,即1855=DB DB +5.解得DB =907. 经检验,DB =907是1855=DBDB +5的解.∴DA =907+10=1607.∴DE 2=907×1607.∴DE =1207.(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.【思路点拨】 由于点F 在B ,E ,M 三点确定的圆上,所以F ,B ,E ,M 四点共圆,而∠BEF =90°,所以可知B ,E ,F 三点在以BF 为直径的圆上,所以M 也在以BF 为直径的圆上.要求MD 的长,由于MD =AD -AM ,需先求AM ,这可通过解Rt △AMF 得出.解:连接FM.∵BE ⊥AF ,即∠BEF =90°,∴BF 是B ,E ,F 三点确定的圆的直径.∵点F 在B ,E ,M 三点确定的圆上,即四点F ,E ,B ,M 在同一个圆上. ∴点M 在以BF 为直径的圆上. ∴FM ⊥AB.10分在Rt △AMF 中,由cos ∠FAM =AMAF,得AM =AF ·cos ∠FAM =2AE ·cos ∠EAB =2×8×45=645.11分∴MD =DA -AM =1607-645=35235.∴MD =35235.12分(1)求线段长度的方法有:①将线段放到直角三角形中利用勾股定理和三角函数概念求解;②将线段放到相似三角形中求解;③通过设未知量构造方程(组)求解.(2)“三点定圆”问题:①不在同一直线上的三点确定一个圆,圆心为顺次连接三点所形成的三角形三边垂直平分线的交点.锐角三角形外接圆的圆心在三角形内部,直角三角形外接圆的圆心在斜边中点处,钝角三角形外接圆的圆心在三角形外部;②解决“三点定圆”问题,通常先根据已知三点确定圆的圆心和直径(或半径),再由第四点也在该圆上用圆周角定理及其推论,以及其他知识解决问题.1.(2018·云南)如图,在▱ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC ,▱ABCD 的面积为S ,由A ,E ,F 三点确定的圆的周长为l.(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.解:(1)S =60.(2)证明:延长AE 与BC 的延长线交于点H. ∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠ADE =∠HCE ,∠DAE =∠CHE. ∵点E 为CD 的中点,∴CE =ED. ∴△ADE ≌△HCE (AAS ).∴AD =HC ,AE =HE.∴AD +FC =HC +FC ,即AF =FH. ∴∠FAE =∠CHE. 又∵∠DAE =∠CHE ,∴∠DAE =∠FAE.∴AE 平分∠DAF. (3)连接EF. ∵AE =BE ,AE =HE , ∴AE =BE =HE.∴∠BAE =∠ABE ,∠HBE =∠BHE. ∵∠DAE =∠CHE ,∴∠BAE +∠DAE =∠ABE +∠HBE ,即∠DAB =∠CBA. ∵∠DAB +∠CBA =180°.∴∠CBA =90°.∴AB 2+BF 2=AF 2,即16+(5-FC )2=(FC +AD )2=(FC +5)2,解得FC =45.∴AF =FC +AD =45+5=295.∵AE =HE ,AF =FH ,∴FE ⊥AH. ∴AF 是△AEF 的外接圆的直径. ∴△AEF 的外接圆的周长l =29π5. 2.如图,在矩形ABCD 中,AB =4,BC =8,E ,F 分别为AD ,BC 边上的点,将矩形ABCD 沿EF 折叠,使点A 落在BC 边的点G 处,点B 落在点H 处,AG 与EF 交于点O.(1)如图1,求证:以A ,F ,G ,E 为顶点的四边形是菱形;(2)如图2,当△ABG 的外接圆与CD 相切于点P 时,求证:点P 是CD 的中点; (3)如图2,在(2)的条件下,求AGEF的值.解:(1)证明:连接AF.由折叠性质可知,OA =OG ,EA =EG ,FA =FG ,∠AOE =∠GOF =90°. ∵四边形ABCD 是矩形, ∴AD ∥BC.∴∠AEO =∠GFO. 在△AEO 和△GFO 中, ⎩⎪⎨⎪⎧∠AEO =GFO ,∠AOE =∠GOF =90°,OA =OG ,∴△AEO ≌△GFO (AAS ).∴EA =FG. ∴EA =EG =FA =FG.∴四边形AFGE 是菱形. (2)证明:连接OP.∵四边形ABCD 是矩形, ∴∠B =∠D =∠C =90°.∵OA =OG ,∴点O 是Rt △ABG 的外接圆圆心. ∵⊙O 与CD 相切于点P ,∴OP ⊥CD. ∴ED ∥OP ∥FC.∴OE OF =PD PC .∵△AEO ≌△GFO ,∴OE =OF. ∴PD =PC ,即点P 是CD 的中点.(3)延长PO 交AB 于点Q ,则AQ =QB =12AB =2,∠AQO =90°.设⊙O 的半径为x ,则OG =OA =OP =x ,OQ =8-x. 在Rt △AQO 中,AQ 2+OQ 2=OA 2, ∴22+(8-x )2=x 2.解得x =174.∴OA =OG =OP =174,AG =172,OQ =154.∵OP ∥FC ,∴∠AOQ =∠FGO.又∵∠AQO =∠FOG =90°,∴△AQO ∽△FOG.∴AQ OF =OQ OG .∴2OF =154174,解得OF =3415. ∴EF =6815.∴AG EF =158.3.【发现】如图1,∠ACB =∠ADB =90°,那么点D 在经过A ,B ,C 三点的圆上.【思考】如图2,如果∠ACB =∠ADB =α(α≠90°)(点C ,D 在AB 的同侧),那么点D 还在经过A ,B ,C 三点的⊙O 上吗?我们知道,如果点D 不在经过A ,B ,C 三点的圆上,那么点D 要么在⊙O 外,要么在⊙O 内,以下该同学的想法说明了点D 不在⊙O 外.请结合图4证明点D 也不在⊙O 内.【结论】综上可得结论,如果∠ACB =∠ADB =α(点C ,D 在AB 的同侧),那么点D 在经过A ,B ,C 三点的圆上,即A ,B ,C ,D 四点共圆.【应用】利用上述结论解决问题:如图5,已知△ABC 中,∠C =90°,将△ACB 绕点A 顺时针旋转α(α为锐角)得△ADE ,连接BE ,CD ,延长CD 交BE 于点F.(1)用含α的代数式表示∠ACD 的度数; (2)求证:点B ,C ,A ,F 四点共圆; (3)求证:点F 为BE 的中点.解:【思考】证明:如图,假设点D 在⊙O 内,延长AD 交⊙O 于点E ,连接BE ,则∠AEB =∠ACB ,∵∠ADB 是△BDE 的外角,∴∠ADB >∠AEB. ∴∠ADB >∠ACB ,这与条件∠ACB =∠ADB 矛盾.∴点D 也不在⊙O 内.∴点D 即不在⊙O 内,也不在⊙O 外,点D 在⊙O 上. 【应用】(1)由题意可知,AC =AD ,∠CAD =α, ∴∠ACD =90°-12α.(2)证明:∵AB =AE ,∠BAE =α, ∴∠ABE =90°-12α.∴∠ACD =∠ABE.∴B ,C ,A ,F 四点共圆.(3)证明:∵B ,C ,A ,F 四点共圆, ∴∠BFA +∠BCA =180°.又∵∠ACB =90°,∴∠BFA =90°.∴AF ⊥BE. ∵AB =AE ,∴BF =EF ,即点F 为BE 的中点.类型2 与图形变换有关的几何综合题【例2】 (2019·昆明模拟)在矩形ABCD 中,AB =8,P 是AB 边上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,CG 交AD 于点E ,且BE ∥PG ,BE 交PC 于点F.(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;【思路点拨】 由AB =DC ,∠A =∠D =90°,AE =DE ,即可证明△AEB ≌△DEC. 【自主解答】 证明:∵四边形ABCD 为矩形, ∴AB =DC ,∠A =∠D. 又∵E 为AD 的中点, ∴AE =DE.∴△AEB ≌△DEC (SAS ).(2)如图2,请判断△PBF 的形状,并说明理由;【思路点拨】 结论:△PBF 为等腰三角形,证明∠BPF =∠BFP. 【自主解答】 解:△PBF 为等腰三角形.理由如下: 在矩形ABCD 中,∠ABC =90°, ∵△BPC 沿PC 折叠得到△GPC , ∴∠BPF =∠GPF .∵BE ∥PG , ∴∠GPF =∠BFP. ∴∠BPF =∠BFP. ∴BP =BF.∴△PBF 为等腰三角形.(3)如图2,①当AD =20时,求BP 的长;②当BP =5时,求BE ·EF 的值.【思路点拨】 ①根据△ABE ∽△DEC 得出比例式,列方程求出AE ,DE 的长,继而求出CE ,BE 的长,再由△ECF ∽△GCP 得出比例式,列方程求出BP 的长.②连接FG ,证出△GEF ∽△EAB ,得出比例式EF GF =ABBE ,从而把求BE ·EF转化为求AB ·GF.【自主解答】 解:①∵BE ∥PG ,∴∠BEC =∠PGC =90°. ∴∠AEB +∠CED =90°.∵∠AEB +∠ABE =90°,∴∠CED =∠ABE. 又∵∠A =∠D =90°,∴△ABE ∽△DEC. ∴AB AE =DE DC. 设AE =x ,则DE =20-x.∴8x =20-x8.解得x 1=4,x 2=16.经检验,x 1=4和x 2=16是原方程的解. ∵P 在AB 上,当P 与A 重合时AE 最大为11.6. 当G 在AD 上时,G 与E 重合,AE 最小为20-421, ∴AE =4,DE =16. ∴CE =85,BE =4 5. 由折叠的性质得,BP =PG , ∴BP =BF =PG.∵BE ∥PG ,∴△ECF ∽△GCP. ∴EF PG =ECGC. 设BP =BF =PG =y ,∴45-y y =8520.∴y =205-40.∴BP =205-40. ②连接FG ,∵BF ∥PG ,BF =PG ,∴四边形BFGP 为平行四边形. ∴BP =GF ,BP ∥GF. ∴∠GFE =∠ABE.又∵∠GEF =∠BAE =90, ∴△GEF ∽△EAB.∴EF GF =ABBE.∴BE ·EF =AB ·GF =AB ·BP =8×5=40.与图形变换有关的几何综合题,常涉及特殊三角形和特殊四边形的判定,线段之间的数量关系和位置关系探究,图形之间的关系探究等,解决这类问题,首先应熟练掌握图形的平移、旋转及轴对称的性质,明确图形变换前后哪些是不变的量,哪些是变化的量,然后用全等、相似、解直角三角形、方程和函数等数学模型求解.1.(2018·昆明T23·12分)如图1,在矩形ABCD 中,P 为CD 边上一点(DP<CP ),∠APB =90°.将△ADP 沿AP 翻折得到△AD ′P ,PD ′的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N.(1)求证:AD 2=DP ·PC ;(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC ,分别交PM ,PB 于点E ,F.若DP AD =12,求EFAE的值.解:(1)证明:在矩形ABCD 中, ∵AD =BC ,∠C =∠D =90°, ∴∠DAP +∠APD =90°. ∵∠APB =90°, ∴∠CPB +∠APD =90°. ∴∠DAP =∠CPB.∴△ADP ∽△PCB.∴AD PC =DPCB .∴AD ·CB =DP ·PC. ∵AD =BC ,∴AD 2=DP ·PC.(2)四边形PMBN 为菱形,理由如下: 在矩形ABCD 中,CD ∥AB. ∵BN ∥PM ,∴四边形PMBN 为平行四边形. ∵△ADP 沿AP 翻折得到△AD ′P.∴∠APD =∠APM.∵CD ∥AB ,∴∠APD =∠PAM. ∴∠APM =∠PAM.∵∠APB =90°,∴∠PAM +∠PBA =90°, ∠APM +∠BPM =90°. ∴∠PBA =∠BPM. ∴PM =MB.∴四边形PMBN 为菱形. (3)解法一: ∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB. ∵四边形ABCD 为矩形, ∴CD ∥AB 且CD =AB. 设DP =a ,则AD =2DP =2a , 由AD 2=DP ·PC ,得PC =4a , ∴DC =AB =5a.∴MA =MB =5a2.∵CD ∥AB ,∴∠ABF =∠CPF ,∠BAF =∠PCF. ∴△BFA ∽△PFC. ∴AF CF =AB CP =5a 4a =54.∴AF AC =59. 同理△MEA ∽△PEC. ∴AE CE =AM CP =5a24a =58. ∴AE AC =513. ∴EF AC =AF AC -AE AC =59-513=20117. ∵EF AC ∶AE AC =EF AE , ∴EF AE =20117∶513=49. 解法二:图3如图3,过点F 作FG ∥PM 交MB 于点G.∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB.∵四边形ABCD 为矩形,∴CD ∥AB 且CD =AB.设DP =a ,则AD =2DP =2a ,由AD 2=DP ·PC ,得PC =4a ,∴DC =AB =5a.∴MA =MB =5a 2. ∵CD ∥AB ,∴∠CPF =∠ABF ,∠PCF =∠BAF.∴△PFC ∽△BFA.∴PF BF =CP AB =4a 5a =45. ∵FG ∥PM ,∴MG BG =PF BF =45. ∴MG MB =49. ∵AM =MB ,∴MG AM =49. ∵FG ∥PM ,∴EF AE =MG AM =49.2.(2019·曲靖麒麟区模拟)已知,正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点M ,N ,AH ⊥MN 于点H.(1)如图1,当∠MAN 绕点A 旋转到BM =DN 时,请你直接写出AH 与AB 的数量关系:AH =AB ;(2)如图2,当∠MAN 绕点A 旋转到BM ≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立,请写出理由,如果成立,请证明;(3)如图3,已知∠MAN =45°,AH ⊥MN 于点H ,且MH =2,NH =3,求AH 的长.(可利用(2)得到的结论)解:(2)数量关系成立.理由如下:延长CB 至E ,使BE =DN.∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABE =90°.在Rt △AEB 和Rt △AND 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADN ,BE =DN ,∴Rt △AEB ≌Rt △AND (SAS ).∴AE =AN ,∠EAB =∠NAD.∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =∠EAM =45°.∴∠EAM =∠NAM.在△AEM 和△ANM 中,⎩⎪⎨⎪⎧AE =AN ,∠EAM =∠NAM ,AM =AM ,∴△AEM ≌△ANM (SAS ).∴S △AEM =S △ANM ,EM =MN.∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH.(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴BM =2,DN =3,AB =AH =AD ,∠B =∠D =90°.∵∠BAM =∠MAH ,∠HAN =∠DAN ,∴∠BAD =2∠MAH +2∠HAN =2∠MAN =90°.分别延长BM 和DN 相交于点C ,可得正方形ABCD ,∴AH =AB =BC =CD =AD.设AH =x ,则MC =x -2,NC =x -3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴52=(x -2)2+(x -3)2.解得x 1=6,x 2=-1(不符合题意,舍去).∴AH =6.3.(2019·天津)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.(1)如图1,求点E 的坐标;(2)将矩形CODE 沿x 轴向右平移,得到矩形C ′O ′D ′E ′,点C ,O ,D ,E 的对应点分别为C ′,O ′,D ′,E ′.设OO ′=t ,矩形C ′O ′D ′E ′与△ABO 重叠部分的面积为S.①如图2,当矩形C ′O ′D ′E ′与△ABO 重叠部分为五边形时,C ′E ′,E ′D ′分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当3≤S ≤53时,求t 的取值范围(直接写出结果即可).解:(1)∵点A (6,0),∴OA =6.∵OD =2,∴AD =OA -OD =6-2=4.∵四边形CODE 是矩形,∴CE ∥OD ,CE =OD =2,DE ∥OC.∴∠AED =∠ABO =30°.在Rt △AED 中,AE =2AD =8,ED =AE 2-AD 2=82-42=4 3.∴点E 的坐标为(2,43).(2)①由平移的性质得O ′D ′=2,E ′D ′=43,ME ′=OO ′=t ,D ′E ′∥O ′C ′∥OB ,∴∠E ′FM =∠ABO =30°.∴在Rt △MFE ′中,MF =2ME ′=2t ,FE ′=MF 2-ME ′2=(2t )2-t 2=3t.∴S △MFE ′=12ME ′·FE ′=12×t ×3t =3t 22. ∵S 矩形C ′O ′D ′E ′=O ′D ′·E ′D ′=2×43=83,∴S =S 矩形C ′O ′D ′E ′-S △MFE ′=83-3t 22. ∴S =-32t 2+83,其中t 的取值范围是0<t <2. ②当2≤t<4时,如图3所示,O ′A =6-t ,D ′A =6-t -2=4-t.∴O ′G =3(6-t ),D ′F =3(4-t ).∴S =12[3(6-t )+3(4-t )]×2=-23t +10 3. ∵-23<0,∴S 随t 增大而减小,∴23<S ≤6 3.∴令S =53,即-23t +103=5 3.解得t =52. ∴当52≤t<4时,23<S ≤53;当4≤t<6时,如图4所示,O ′A =OA -OO ′=6-t.∵∠AO ′F =90°,∠AFO ′=∠ABO =30°,∴O ′F =3O ′A =3(6-t ).∴S =12(6-t )×3(6-t )=32(t -6)2(4≤t<6). 又∵当4≤t<6时,S 随t 增大而减小,∴0<S ≤2 3. ∴令S =3,即32(t -6)2= 3. 解得t 1=6-2,t 2=6+2(舍去).∴t =6- 2.∴当4≤t ≤6-2时,3≤S ≤2 3.综上所述,当3≤S ≤53时,t 的取值范围为52≤t ≤6- 2.拓展类型 其他问题1.(2019·眉山)如图,正方形ABCD 中,AE 平分∠CAB ,交BC 于点E ,过点C 作CF ⊥AE ,交AE 的延长线于点G ,交AB 的延长线于点F.(1)求证:BE =BF ;(2)如图2,连接BG ,BD ,求证:BG 平分∠DBF ;(3)如图3,连接DG 交AC 于点M ,求AE DM的值.解:(1)证明:在正方形ABCD 中,∠ABC =90°,AB =BC ,∴∠EAB +∠AEB =90°.∵AG ⊥CF ,∴∠BCF +∠CEG =90°.又∵∠AEB =∠CEG ,∴∠EAB =∠BCF.在△ABE 和△CBF 中,⎩⎪⎨⎪⎧∠EAB =∠BCF ,AB =CB ,∠ABE =∠CBF ,∴△ABE ≌△CBF (ASA ).∴BE =BF.(2)∵AE 平分∠CAB ,CF ⊥AE 于G ,∴∠CAG =∠FAG =22.5°,∠AGC =∠AGF.在△AGC 和△AGF 中,⎩⎪⎨⎪⎧∠CAG =∠FAG ,AG =AG ,∠AGC =∠AGF ,∴△AGC ≌△AGF (ASA ).∴CG =GF ,∠ACG =∠AFG.又∵∠CBF =90°,∴GB =GC =GF ,∠GBF =∠GFB =90°-∠GAF =90°-22.5°=67.5°.∴∠DBG =180°-67.5°-45°=67.5°,即∠GBF =∠DBG.∴BG平分∠DBF.(3)连接BG.∵∠DCG=90°+22.5°=112.5°,∠ABG=180°-67.5°=112.5°,∴∠DCG=∠ABG.又∵DC=AB,CG=BG,∴△DCG≌△ABG(SAS).∴∠CDG=∠GAB=22.5°.∴∠CDG=∠CAE.又∵∠DCM=∠ACE=45°,∴△DCM∽△ACE.∴AEDM=ACDC= 2.2.(2019·红河弥勒市二模)问题背景:折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B′E的位置,得到折痕MN,B′E与AB交于点P,则P即为AB的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)设正方形边长为1,求线段MC的长度;(3)利用线段MC的长度,证明P点是AB的三等分点(即证明AP∶PB=2∶1).发现感悟若改变E点在正方形纸片ABCD的边AD上的位置,重复“问题背景”中操作2的折纸过程,请你根据上面得到的结论,思考并解决如下问题:(不写过程,直接回答)(4)如图2.若DE∶AE=2∶1,则AP∶PB=4∶1;(5)如图3,若DE∶AE=3∶1,则AP∶PB=6∶1;解:(1)证明:由折叠可得,CM=EM,CQ=EQ,∠CMQ=∠EMQ,四边形CDEF是矩形,∴CD ∥EF.∴∠CMQ =∠EQM.∴∠EQM =∠EMQ.∴ME =EQ.∴CM =ME =EQ =CQ.∴四边形EQCM 是菱形.(2)设CM =x ,则EM =x ,DM =1-x ,在Rt △DEM 中,由勾股定理得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x )2.解得x =58.∴MC =58. (3)设正方形边长为1,由(2)得CM =58,则DM =38. ∵∠PEM =∠D =90°,∴∠AEP +∠DEM =90°,∠DEM +∠EMD =90°.∴∠AEP =∠DME.又∵∠A =∠D =90°,∴△AEP ∽△DME.∴AP AE =DE DM ,即AP 12=1238.解得AP =23. ∴PB =13.∴AP ∶PB =2∶1.3.(2019·昆明西山区二模)如图1,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,如果点P 由B 出发沿PA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4),解答下列问题:(1)当t 为何值时,PQ ∥BC?(2)设△APQ 面积为S (单位:cm 2),当t 为何值时,S 取得最大值?并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)如图2,把△AQP 沿AP 翻折,得到四边形AQPQ ′,那么是否存在某时刻t ,使四边形AQPQ ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.解:∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角.(1)BP =AQ =2t ,则AP =10-2t.∵PQ ∥BC ,∴AP AB =AQ AC ,即10-2t 10=2t 8,解得t =209. ∴当t =209s 时,PQ ∥BC.答图1(2)如答图1所示,过点P 作PD ⊥AC 于点D.∴PD ∥BC.∴AP AB =PD BC ,即10-2t 10=PD 6,解得PD =6-65t. S =12×AQ ·PD =12×2t ×(6-65t ) =-65t 2+6t =-65(t -52)2+152. ∴当t =52 s 时,S 取得最大值,最大值为152cm 2. (3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP =12S △ABC ,而S △ABC =12AC ·BC =24, ∴此时S △AQP =12.由(2)可知,S △AQP =-65t 2+6t , ∴-65t 2+6t =12,化简得t 2-5t +10=0. ∵Δ=(-5)2-4×1×10=-15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.答图2(4)方法1,假设存在时刻t ,使四边形AQPQ ′为菱形,则有AQ =PQ =BP =2t.如答图2所示,过P 点作PD ⊥AC 于点D ,则有PD ∥BC ,∴AP AB =PD BC =AD AC ,即10-2t 10=PD 6=AD 8. 解得PD =6-65t ,AD =8-85t.∴QD =AD -AQ =8-85t -2t =8-185t. 在Rt △PQD 中,由勾股定理得QD 2+PD 2=PQ 2,即(8-185t )2+(6-65t )2=(2t )2, 化简得13t 2-90t +125=0,解得t 1=5,t 2=2513. ∵t =5 s 时,AQ =10 cm>AC ,不符合题意,舍去,∴t =2513s. 由(2)可知,S AQP =-65t 2+6t , ∴S 菱形AQPQ ′=2S △AQP =2×(-65t 2+6t )=2×[-65×(2513)2+6×2513]=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2. (或连接QQ ′交AB 于N ,利用相似三角形的性质,求出QN ,菱形的面积等于△AQN 面积的4倍)答图3方法2,如答图3.过点Q 作QH ⊥AB 于H ,∵四边形AQPQ ′是菱形,∴AQ =PQ =2t.∴AH =12AP =12(10-2t )=5-t. ∵∠AHQ =∠ACB =90°,∠HAQ =∠CAB ,∴△AHQ ∽△ACB.∴AH AC =AQ AB =QH BC. ∴5-t 8=2t 10=QH 6. ∴t =2513,QH =3013. ∴S 菱形AQPQ ′=2S △AQP =2×12(10-2×2513)×3013=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2.。

中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。

中考复习备考冲刺方案(精选11篇)

中考复习备考冲刺方案中考复习备考冲刺方案(精选11篇)为了确保我们的努力取得实效,就常常需要事先准备方案,方案可以对一个行动明确一个大概的方向。

那么大家知道方案怎么写才规范吗?下面是小编为大家收集的中考复习备考冲刺方案,希望能够帮助到大家。

中考复习备考冲刺方案篇1一、指导思想以课程标准为指南,以考试说明为依据,以教材为载体,以训练为主线,以考试为渠道,以心理素质和应试能力培养为突破口,面向全体学生,全面提高中考成绩。

二、复习原则1、低起点,小步伐,快反馈,高密度;2、讲练结合,以练代讲;3、面向全体,关注差异;4、培优扶差;5、有效教学,向课堂要质量。

三、复习设计(一)确立目标,结合每次考试成绩比照指标找差距1、学校制定升学指标。

把重点高中一榜、指标到校、普通高中、职高指标确定总数后分解到各班级,张榜公示。

2、班级制定升学指标。

即对分解到班级的指标落实到人头。

要和学生谈话、交流、指导,让学生给自己定位。

3、任课教师制定分数指标。

对每一名学生应该达到多少分定位。

4、学生自我设计目标。

对升入学校,各科理想分数预设。

(二)制订计划1、初三上半年结束全年课程;2、寒假时间同科教师集体研究制订复习计划,体现:(1)复习课时;(2)每课时复习内容;(3)复习方法;(4)实现目标。

制订复习计划要从二个方面入手:(1)资源:课标——对照课标,反复学习,吃透标准,明确方向;考纲——依据考纲,反复研究,定量、定位。

考题——收集近几年中考题,教师做题、析题、研究各知识点,生成的题型、分值和难易度。

教材——不离教材,挖掘教材,提炼升华,熟知教材编写意图、体系,归纳知识点,形成知识网络。

学情——充分了解学生,知根知底,知彼知己,对症下药,因材施教。

信息——及时捕捉中考有关的信息,筛选、疏理,择用和调整。

(2)三轮复习法:第一轮:单元章节复习。

(3月1日——4月20日)复习时重点抓学科知识的单元、章节过关。

每天定量记忆。

复习各知识点、考点时,将其题型化(即设计成题)。

【名师原创】中考数学三轮冲刺:全真模拟试卷(1)及答案解析

中考模拟题1(总分120分120分钟)一.选择题(共8小题,每题3分)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.963.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<25.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C58°D.30°6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=二.填空题(共6小题,每题3分)9.计算:=.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC的长为.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.三.解答题(共10小题)15.(6分)先化简,再求值:(1﹣)÷,其中x=3.16.(6分)有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)17.(6分)甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?18.(7分)如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.19.(7分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.20.(7分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?21.(8分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.22.(9分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.23.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.24.(12分)1.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.中考模拟题1答案一.选择题(共8小题)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个考点:有理数.分析:根据有理数是有限小数或无限循环小数,可得答案.解答:解:,0,,﹣1.414,是有理数,故选:D.点评:本题考查了有理数,有理数是有限小数或无限循环小数.2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.96考点:简单几何体的三视图;几何体的表面积.专题:压轴题.分析:根据AE的长,求底面正六边形的边长,用正六边形的周长×AD,得正六棱柱的侧面积.解答:解:如图,正六边形的边长为AC、BC,CE垂直平分AB,由正六边形的性质可知,∠ACB=120°,∠A=∠B=30°,AE=AB=3,所以,AC===2,正六棱柱的侧面积=6AC×AD=6×2×8=96.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.5.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°考点:平行线的性质;平行公理及推论.专题:计算题.分析:过C作CE∥直线m,根据平行公理的推论得到直线m∥n∥CE,根据平行线的性质得出∠ACE=∠DAC=42°,∠ECB=∠a,由∠ACB=90°即可求出答案.解答:解:过C作CE∥直线m,∵直线m∥n,∴直线m∥n∥CE,∴∠ACE=∠DAC=42°,∠ECB=∠a,∵∠ACB=90°,∴∠a=90°﹣∠ACE=90°﹣42°=48°.故选B.点评:本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能灵活运用性质进行计算是解此题的关键.6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°考点:圆周角定理.分析:首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.点评:本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个考点:坐标与图形性质.分析:分别过A、B点作x轴的垂线,垂足即为所求;以AB的中点为圆心,AB 为直径作圆,交x轴于两点,该两点即为所求.解答:解:如图所示,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,c的值有4个.故选D.点评:考查了坐标与图形性质,注意C(c,0)的点在x轴上,有一定的难度.8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=考点:反比例函数综合题.专题:综合题;压轴题.分析:首先由AC=2BC,可得出A点的横坐标的绝对值是B点横坐标绝对值的两倍.再由|x1﹣x2|=2,可求出A点与B点的横坐标,然后根据点A、点B既在一次函数的图象上,又在反比例函数(k>0)的图象上,可求出k、b的值.解答:解:∵AC=2BC,∴A点的横坐标的绝对值是B点横坐标绝对值的两倍.∵点A、点B都在一次函数的图象上,∴可设B(m,m+b),则A(﹣2m,﹣m+b).∵|x1﹣x2|=2,∴m﹣(﹣2m)=2,∴m=.又∵点A、点B都在反比例函数(k>0)的图象上,∴(+b)=(﹣)(﹣+b),∴b=;∴k=(+)=.故选D.点评:此题综合考查了反比例函数、一次函数的性质,注意通过解方程组求出k、b的值.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.二.填空题(共6小题)9.计算:=.考点:二次根式的混合运算.分析:按照运算规则先算乘法,再算减法,即合并同类二次根式.解答:解:原式=﹣=2﹣=.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).考点:列代数式.分析:设原价为x,则x×0.9×0.9=y,从而可得出原价的表达式.解答:解:设原价为x,则x×0.9×0.9=y,故x=y,即原价为:y.故答案为:y.点评:本题考查了列代数式的知识,可以设出原价,用方程的思想解决,也可以直接表示出来.11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=35°.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得CE=EF,然后求出EF=BE,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠BAD,根据直角三角形两锐角互余求出∠CDE,再求出∠ADC,然后求出∠BAD,再求解即可.解答:解:∵DE平分∠ADC,∠C=90°,EF⊥AD于点F,∴CE=EF,∵E是BC的中点,∴BE=CE,∴EF=BE,∴AE平分∠BAD,∵∠CED=35°,∴∠CDE=90°﹣35°=55°,∴∠ADC=2∠CDE=2×55°=110°,∵∠B=∠C=90°,∴AB∥CD,∴∠BAD=180°﹣110°=70°,∴∠EAB=∠BAD=×70°=35°.故答案为:35°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质和平行线的判定与性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC 的长为6.考点:垂径定理;勾股定理;三角形中位线定理;圆周角定理.分析:根据垂径定理求出BC,根据圆周角定理求出∠C=90°,根据勾股定理求出即可.解答:解:∵OD⊥BC,OD过O,BD=4,∴BC=2BD=8,∵AB是直径,∴∠C=90°,在Rt△ACB中,AB=10,BC=8,由勾股定理得:AC==6,故答案为:6.点评:本题考查了垂径定理,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.专题:常规题型.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD 的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,1),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.考点:二次函数综合题.分析:根据二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,得出ON=,根据M在反比例函数y=上,得出点M的纵坐标是﹣3a,从而得出NO+MN=+3a,再根据+3a≥2,得出+3a的最小值是2,求出a的值即可.解答:解:∵二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,∴ON=,∵M在反比例函数y=上,∴点M的纵坐标是﹣3a,∴MN=3a,∴NO+MN=+3a,∵+3a≥2,∴+3a≥2,∴+3a的最小值是2,即+3a=2,解得;a=,经检验a=是原方程的解.故答案为:.点评:此题考查了二次函数的综合,用到的知识点是二次函数和反比例函数的图象与性质,关键是求出+3a的最小值是2,列出方程.三.解答题(共10小题)15.先化简,再求值:(1﹣)÷,其中x=3.考点:分式的化简求值.分析:先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.解答:解:原式=(﹣)×=×=.把x=3代入,得==,即原式=.故答案为:.点评:本题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.16.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)考点:列表法与树状图法.专题:数形结合.分析:列举出所有情况,看抽出的两张纸片上的数字之积小于6的情况数占总情况数的多少即可.解答:解:共有16种情况,积小于6的情况有8种,所以P(小于6)==.点评:考查列树状图解决概率问题;找到抽出的两张纸片上的数字之积小于6的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.17.甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?考点:分式方程的应用.专题:应用题.分析:(1)用一个字母表示出甲乙两人的工作量,等量关系为:甲乙和喝10天的工作量=1,把相关数值代入计算即可;(2)易得甲乙喝咖啡的工作效率,喝咖啡用的天数少,算出甲喝咖啡用的天数,进而加上甲乙和喝茶叶用的天数即为两人一起喝完1包茶叶和1罐咖啡需要天数.解答:解:(1)设甲单独x天喝完1包茶叶,则每天喝的茶叶为,乙单独(x+48)天喝完1包茶叶,则每天喝的茶叶为.;解得x=12或x=﹣40(舍去),经检验,x=12是原方程的解,∴x+48=60.答:甲单独12天喝完1包茶叶,乙单独60天喝完1包茶叶;(2)甲单独喝一罐咖啡的时间为:1÷()=30天;∴30天后甲喝完咖啡而乙只喝完茶叶的一半,故剩下的茶叶变成两人合喝,由题意可知,他们两人还能喝5天.∴两人35天才全部喝完.点评:考查分式方程的应用;得到甲乙和喝完茶叶的工作量的等量关系是解决本题的关键.18.如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.考点:解直角三角形的应用.分析:先根据∠ABD=140°,∠D=50°,求出∠E=90°,判断出△BED为直角三角形,再根据锐角三角函数的定义进行求解即可.解答:解:根据题意得:BD=704m,∠ABD=140°,∠D=50°.∵∠EBD=180°﹣∠ABD,∴∠EBD=180°﹣140°=40°.在△BDE中,∠E=180°﹣∠EBD﹣∠D,∴∠E=180°﹣40°﹣50°=90°,∴△BED为直角三角形,在Rt△BED中,∵cos∠D=,∴DE=BD×cos50°=704×0.6=422.4≈422(m).答:开挖点E到点D的距离为422m.点评:本题考查的是解直角三角形在实际生活中的运用,涉及到三角形内角和定理及锐角三角函数的定义,熟知以上知识是解答此题的关键.19.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.专题:压轴题.分析:(1)AF为为圆O的切线,理由为:连接OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF 的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.20.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.22.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.考点:四边形综合题.分析:(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)首先证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF 的长,则OC即可求得.解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.点评:本题考查了正方形与全等三角形的判定与性质的综合应用,证明三角形全等是关键.23.如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:几何综合题;压轴题.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.解答:解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣(﹣c)2+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.24.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC 垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考点:相似形综合题.专题:压轴题.分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC 延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x 轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,。

2023年中考物理:冲刺中考综合练习(6) 2023年中考物理三轮复习

冲刺中考:综合练习(6)姓名:日期:1、关于中学生的下列数据,符合实际的是()A.身高大约为160m B.质量大约为500gC.体温大约为27℃ D.密度大约为1.0×103kg/m32、下列物态变化现象中,说法正确的是()A.夏天从冰箱取出的冰棍周围冒“白气”,这是空气中水蒸气的凝华现象B.商店售卖“冒烟”的冰激凌,是由于其中的液氮汽化吸热致使水蒸气液化形成C.在饮料中加冰块比加冰水的冰镇效果更好,是因为冰块液化成水的过程中吸热D.手部消毒可以用酒精喷在手上,感到凉爽是因为酒精升华吸热3、江苏首支旅游警察支队在扬州成立,如图是张警官在骑电动平衡车巡逻过程中,张警官认为自己是静止的,他选择的参照物是()A.路边的花草 B.沿途的路灯杆 C.他自己的平衡车 D.迎面走来的游客4、下列有关课本图片描述正确的是()甲乙丁丙A.甲图中按动电火花发生器按钮,盒盖飞出后,盒内气体内能增大B.乙图仪器的名称是压强计,可以测量出橡皮膜处受到液体压强的大小C.利用丙图的加热方式可以避免碘先熔化再汽化D.丁图表面光滑的铅块压在一起,说明分子在不停地做无规则运动5、如图所示,小球在A点由静止开始释放,向右侧摆动.B点是小球摆动的最低点,C点是小球摆到右侧最高点,且A、C两点到B点的竖直距离h A>h C.在小球从B点摆动到C点的过程中,下列说法正确的是()A.小球的机械能总量逐渐变小 B.小球运动状态保持不变C.小球的动能全部转化为重力势能 D.绳的拉力对小球做了功6、以下做法中,符合安全用电原则的是()A.熔丝熔断后,用铜丝来代替 B.将家用电器的金属外壳接地C.用湿布擦抹电器 D.小区停电,不切断总开关就进行电路维修7、小强同学把点光源(S)、凸透镜(L)、光屏(P)放在如图所示位置时,S发射的光线经透镜折射后沿水平方向平行照射到光屏上。

他再用一烛焰S’,在图示位置上取代发光点S,这时如要使烛焰S’在光屏P上成清晰的像,以下几种操作中不可行的是()A.保持烛焰S和光屏P不动,只将透镜L向右移适当距离B.保持透镜L和光屏P不动,只将烛焰S向左移适当距离C.保持透镜L不动,将烛焰S向左移适当距离;再将光屏P向右移适当距离D.保持透镜L不动,将烛焰S向左移适当距离;再将光屏P向左移适当距离8、龙卷风的实质是高速旋转的气流,它能把地面上的物体或人畜“吸”起卷入空中,龙卷风能“吸”起物体的主要原因是()A.龙卷风使物体受到重力变小 B.龙卷风产生了强大的静电,将物体吸上天空C.龙卷风内部的气体流速大,压强小 D.龙卷风增大了空气对物体的浮力9、如图所示的电路中,电源为恒流源,能始终提供大小恒定的电流,R0为定值电阻,移动滑动变阻器R的滑片,则下列表示电压表示数U、电路总功率P随电流表示数I变化的关系图线中,可能正确的是()10、“蝉噪林逾静,鸟鸣山更幽”诗句中,“蝉”和“鸟”叫声的区分依据的是声音的不同;茂密的森林有吸声和消声的作用,这属于在控制噪声.11、如图所示,天鹅从水面起飞向上飞行,它在水中的倒影是由光的形成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考冲刺:代数几何综合问题
一、选择题
1.(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()
A.B. C.D.
2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离
x的变化而变化,那么表示y与x之间函数关系的图象大致为()
二、填空题
3.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC
是直角三角形,则满足条件的C点的坐标为______________.
4.(2016•梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.
类型一、方程与几何综合的问题
1.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.
(1)当t为何值时,PQ∥BC?
(2)设四边形PQCB的面积为y,求y关于t的函数关系式;
(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;
(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)
类型二、函数与几何综合问题
2.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t >0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D (4,0).
⑴求c、b(可以用含t的代数式表示);
⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
⑶在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..
写出t 的取值范围.
类型三、动态几何中的函数问题
3. 如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图象与y 轴交于(0,3)C ,与x 轴交于A 、B 两点,点B 的坐标为(-3,0)
(1)求二次函数的解析式及顶点D 的坐标;
(2)点M 是第二象限内抛物线上的一动点,若直线OM 把四边形ACDB 分成面积为1:2的两部分,求出此时点M 的坐标;
(3)点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标.
【变式】如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-
1
2
x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;
(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
y
x
D
E
C
O
A
B
类型四、直角坐标系中的几何问题
4. 如图所示,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处.
(1)直接写出点E 、F 的坐标;
(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x 轴、y
轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
类型五、几何图形中的探究、归纳、猜想与证明问题
5. 如图所示,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S= ________(n 为正整数).
B 2
B 1
A 1
B
O
A。

相关文档
最新文档