小学六年级doc分数的巧算_9

合集下载

六年级分数巧算裂项拆分

六年级分数巧算裂项拆分
1 1 1 1
1 , 11、1(丄丄
2(1315
1
13)
1
用裂项法求
9 111113
型分数求和:
n(n k)
n n k n(n k) n(n k) n(n k)
13
分析:型(n,k均为自然数)
n(n k)
k
所以一-
n(n k) n n k
【例3】
的和
97 99
98
99
(四)
1
3)(35
1 1
)(5
1
7)
1 1
1
99
用裂项法求型分数求和:
n(n k)Leabharlann n 2k)分析:2k
n(n k)(n 2k)
【例4】
计算:
4
4
4
4
1
3
5
3 5 7
93 95
97
95
97
99
(13
15)
(315
517)…(
1
1
)(1 1)
3
93
95
95
9/V95 9797 99,
1
1
(n,k均为自然数)
1 3 97 99
3200
思维训练分类为:浓度问题、分数比大小问题、行程问题、分数巧算、逻辑推理、工程问 题、牛顿问题、数字的巧算问题。
分数裂项求和方法总结
(一)用裂项法求
1一型分数求和分析:因为
n(n1)
1n(n1)
n(n 1)
(n为自然数)所以有裂项公式:
n(n1)
【例1】
求丄
10 11
11 12
1的和。
59 60

(小学奥数)分数乘除法速算巧算

(小学奥数)分数乘除法速算巧算

分數乘除法速算巧算教學目標分數是小學階段的關鍵知識點,在小學的學習有分水嶺一樣的階段性標誌,許多難題也是從分數的學習開始遇到的。

分數基本運算的常考題型有(1)分數的四則混合運算(2)分數與小數混合運算,分化小與小化分的選擇(3)複雜分數的化簡(4)繁分數的計算知識點撥分數與小數混合運算的技巧在分數、小數的四則混合運算中,到底是把分數化成小數,還是把小數化成分數,這不僅影響到運算過程的繁瑣與簡便,也影響到運算結果的精確度,因此,要具體情況具體分析,而不能只機械地記住一種化法:小數化成分數,或分數化成小數。

技巧1:一般情況下,在加、減法中,分數化成小數比較方便。

技巧2:在加、減法中,有時遇到分數只能化成循環小數時,就不能把分數化成小數。

此時要將包括循環小數在內的所有小數都化為分數。

技巧3:在乘、除法中,一般情況下,小數化成分數計算,則比較簡便。

技巧4:在運算中,使用假分數還是帶分數,需視情況而定。

技巧5:在計算中經常用到除法、比、分數、小數、百分數相互之間的變,把這些常用的數互化數表化對學習非常重要。

【例 1】 58的分母擴大到32,要使分數大小不變,分子應該為__________。

【考點】分數乘除法 【難度】2星 【題型】填空【關鍵字】走美杯,五年級,初賽【解析】 根據分數的基本性質:分母擴大倍數,要使分數大小不變,分子應該為擴大相同的倍數。

分母擴大:328=4÷(倍),分子為:45=20⨯。

【答案】20【巩固】 小虎是個粗心大意的孩子,在做一道除法算式時,把除數56看成了58來計算,算出的結果是120,這道算式的正確答案是__________ 。

【考點】分數乘除法 【難度】2星 【題型】填空【關鍵字】走美杯,初賽,六年級【解析】 根據題意可知,被除數為5120758⨯=,所以正確的答案為575906÷=。

【答案】90【例 2】 將下列算式的計算結果寫成帶分數: 0.523659119⨯⨯ 【考點】分數乘除法 【難度】2星 【題型】計算【解析】 原式=0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=5860119 【答案】6058119【例 3】 計算330.245.841.38⨯⨯ 【考點】分數乘除法 【難度】2星 【題型】計算【關鍵字】希望杯,1試【解析】 3330.2584314614673445.841.381381384623⨯⨯⨯⨯==== 【答案】7323【巩固】 計算2 2.524231 1.055⨯⨯ 例題精講890919909091919+个个 【難度】題用是重複數字的拆分和分數計算的綜合,71113abc =⨯⨯⨯,ababab 810810101019101011239191010119191919⨯++=++++⨯个个4519=,。

小学六年级doc分数的巧算

小学六年级doc分数的巧算

分数的巧算1.计算1091541431321⨯++⨯+⨯+⨯ ⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-109943332221115131971751531⨯++⨯+⨯+⨯4196625.920032002839200312÷⎪⎭⎫ ⎝⎛⨯+⨯()268.13.443252114.0⨯⎥⎦⎤⎢⎣⎡-⨯÷⨯分数的应用85,如果从第一车间调出15人到第二车间,这时第一车间的人数与第二车间的人数相等。

原来两个车间的各有多少人?2.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。

后来又有几名女生来看书?3.兄弟四人一起买一台电视机,老大付的钱是另外三人所付总钱数的一半,老二付的钱是另外三人所付总钱数的31,老三付的钱是另外三人所付总钱数的41,老四付了91元。

这台电视机的价格是多少元你?32。

如果小芳给小明3本课外书,那么小明的课外书本数的就是小芳的43。

小明、小芳原来各有课外书多少本?5.为了加固河堤,需要向河中打入木桩。

一根防洪木桩长7米,插入河中后,51露出水面,其余的72在河底的泥土中。

河水深多少米?比与比例的应用1. 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积比是2 :5,另一个瓶中的酒精和水的体积比是3 :7。

若将两瓶酒精溶液混合,求混合酒精中酒精和水的体积之比。

2.小芳爱读书,她读一本少年英雄故事的书,读了几天后已读页数与未读页数的比是3 :5,后来又读了27页,这时已读页数与未读页数的比是9 :7。

这本书共有多少页?3.一批零件,平均分给甲、乙两人加工,甲已加工的与剩下的个数比是2 :1,乙已加工的和剩下的个数比是5 :2.已经加工这批零件的几分之几?4.小惠读一本书,已读的页数和未读的页数之比是1 :5,如果再读30页,则已读的页数和未读的页数之比是3 :5,求这本书共有多少页?5. 一次演出,原来参加唱歌和跳舞的人数比是3 :2,后因节目变动,7名唱歌的同学改为跳舞,现在唱歌的人数占跳舞人数的31。

六年级奥数分数乘法的巧算

六年级奥数分数乘法的巧算

分数乘法简便运算分数简便运算常见题型第一种:连乘——乘法交换律的应用例题:11474135⨯⨯ 256153⨯⨯ 3266831413⨯⨯ 涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算; 第二种:乘法分配律的应用例题:127)27498(⨯+ 24)41101(⨯+ 316)2143(⨯+第三种:乘法分配律的逆运算例题:1213115121⨯+⨯ 261959565⨯+⨯ 3751754⨯+⨯第四种:添加因数“1”例题:1759575⨯- 29216792⨯- 323233117233114+⨯+⨯涉及定律:乘法分配律逆向运算基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算;第五种:数字化加式或减式例题:116317⨯219718⨯ 3316967⨯将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化; 第六种:带分数化加式例题:14161725⨯ 2351213⨯ 3135127⨯基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算;第七种:乘法交换律与乘法分配律相结合例题:1247174249175⨯+⨯ 21981361961311⨯+⨯ 31381137138137139⨯+⨯基本方法:将各项的分子与分子或分母与分母互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算;注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换;不能分子和分母互换,也不能出现一组中的其中一个分子或分母和另一组乘式中的分子或分母进行互换;分数简便运算课后练习一能简算的简算共32题,满分96错误!× 错误!+错误!× 错误! 17× 错误! 错误!错误!+错误!×32 错误!× 错误!×16错误!+ 错误!× 错误! 44-72×错误! 52×214×10 ×51+51× )325(61-⨯32+43-21×12 46×4544 125×41×24 42×65-74 69765⨯⨯32+21×76 53×914-94×53 2008×错误! 错误!+ 错误!+ 错误!×错误!149×14×92 错误!×错误!×错误! 12× 错误!- 错误! 错误!×错误!+错误!× 错误!36×错误! 错误!-错误!×错误! 错误!- 错误!× 错误! 错误!-×错误!43×52+43× 257×101-257 508310019⨯⨯ 95739574⨯+⨯。

分数巧算六年级奥数题

分数巧算六年级奥数题

分数巧算六年级奥数题分数巧算六年级奥数题作为小学数学中的重要组成部分,分数一直是让学生头疼的难题。

今天,我们就来挑战一组六年级奥数题,通过巧妙计算让分数的运算变得轻松愉快。

1、1/3 + 2/9 = ?解题思路:想要让这两个分数相加,需要先找到它们的通分。

1/3是3的倍数,2/9是9的倍数,所以我们可以将2/9化成3的倍数再进行运算,即2/9 = 2/9 * 3/3 = 6/27。

现在,两个分数分别为9分之3和27分之6,可以进行相加,结果为9分之5。

2、5/8 - 3/16 = ?解题思路:同样需要先找到这两个分数的通分。

5/8是8的倍数,3/16是16的倍数,可以将5/8化成16的倍数,即5/8 * 2/2 = 10/16。

现在,两个分数分别为16分之10和16分之3,可以进行相减,结果为16分之7。

3、2/5 × 5/7 = ?解题思路:分数乘法可以直接将分子相乘,分母相乘。

2/5 × 5/7 =10/35。

但需要注意,分数应该尽量化简,所以我们可以将10/35化简为2/7,这就是最简分数形式的答案。

4、3/4 ÷ 6/5 = ?解题思路:在进行除法运算时,需要将除号转化成乘号,即3/4 ÷ 6/5 = 3/4 × 5/6。

现在,我们可以直接相乘,结果为15/24。

同样需要化简,所以可以将15/24化简为5/8。

5、8 1/6 ÷ 2 1/2 = ?解题思路:在整数与分数的运算中,需要将整数转化成分数,并将除号转化成乘号。

8 1/6可以转化成49/6,2 1/2可以转化成5/2。

所以,81/6 ÷ 2 1/2 = 49/6 × 2/5 = 49/15。

通过这几道奥数题,我们可以发现,分数的运算并不难,只需要耐心地找到通分、化简、转化运算符号,再进行计算,就能得出正确的答案。

相信在以后的数学学习中,我们都可以运用这些巧妙的计算方法,轻松解决分数的运算难题。

六年级奥数分数巧算类型

六年级奥数分数巧算类型

六年级奥数分数巧算类型六年级奥数分数巧算类型 1
学好分数速算巧算除了掌握好整数运算涉及到的要点:
1、交换律、结合律;
2、提取公因数;
3、凑整。

首先要掌握好分数运算基础:
1、分数加减法:同分母分数加减法,异分母分数加减法;
2、分数乘除法:分数乘分数,整数乘分数,分数除法
接下来我们看几道题
1.分组、同分母分数加法
分组求和中往往涉及到等差数列相关内容
2.凑整、同分母分数加减法
这个问题的直接计算会比较复杂。

我们可以从每个数字的华颂的整数十中减去另一个数字,然后计算它。

这个问题就简单多了。

这是四舍五入的概念。

3.分数除法
一般来说,分数除法要先把除法变成乘法,这个题目也可以应用除法的思想。

这题可以注意到5/3其实就是1又2/3,那么被除数就可以分拆成(50+5/3)
4.提取公因数
这题乍看之下完全没有思路,但是其实我们观察一下可以发现,6×4014是3×4014的两倍,1/2是1/4 的两倍,那么中间9×4016是不是可以变换一下形式呢?然后就可以利用提取公因数思想来解题。

分数的巧算

分数的巧算

分数的速算与巧算(一)分数巧算(求和)分数求和的常用方法:1、公式法,直接运用一些公式来计算,如等差数列求和公式等。

2、图解法,将算式或算式中的某些部分的意思,用图表示出来,从而找出简便方法。

3、裂项法,在计算分数加、减法时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以互相抵消,从而使计算简便。

4、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。

5、代入法,将算式中的某些部分用字母代替并化简,然后再计算出结果。

典型例题一、公式法: 计算:20081+20082+20083+20084+…+20082006+20082007二、图解法: 计算:21 +41+81+161+321+641三、裂项法1、计算:21+61+121+201+301+……+901+1101 分析:由于每个分数的分子均为1,先分解分母去找规律:2=1×2,6=2×3,12=3×4,20=4×5,30=5×6,……110=10×11,这些分母均为两个连续自然数的乘积。

再变数型:因为21=211⨯=1-21,61=321⨯=21-31,121=431⨯=31-41,……,1101=11101⨯=101-111。

这样将连加运算变成加减混合运算,中间分数互相抵消,只留下头和尾两个分数,给计算带来方便。

21+61+121+201+301+……+901+1101 =1-21+21-31+31-41+……+91-101+101-111 =1-111 =11102、计算:511⨯+951⨯+1391⨯+……+33291⨯+37331⨯3、计算:21-34-154-354-634-994-1434-1954-25544、计算:21+65+1211+2019+3029+……+97029701+990098995、计算:1+432113211211+++++++++……+100......3211++++6、计算:+⨯⨯+⨯⨯+⨯⨯543143213211…+10099981⨯⨯四、分组法:计算20041+20042-20043-20044+20045+20046-20047-20048+20049+200410-……-20041999-20042000+20042001+20042002五、代入法:计算(1+413121++)×(51413121+++)-(1+51413121+++)×(413121++)热点习题计算:1、49134911499497495493491++++++【1】2、12816413211618141211-------【1281】3、4213012011216121+++++【76】4、200920081200820071......199119901199019891198919881⨯+⨯++⨯+⨯+⨯4、3937137351......191711715115131⨯+⨯++⨯+⨯+⨯6、2+421133011120171215613++++7、565542413029201912116521++++++8、3994003233242552561951961431449910063643536151634+++++++++9、1102190197217561542133011209127651-+-+-+-+-10、20021+20022+20023+20024-20025-20026-20027-20028+20029+200210+…+20021995+20021996-20021997-20021998-20021999-20022000+20022001+2002200211、(1+51413121+++)×(6151413121++++)-(1+6151413121++++)×(51413121+++)12、)54535251()434241()3231(21++++++++++…+(20192018...203202201+++++)13、2001年是中国共产党建党80周年,20011921是个有特殊意义的分数。

六年级分数的速算与巧算(完整资料).doc

六年级分数的速算与巧算(完整资料).doc

【最新整理,下载后即可编辑】六年级分数的速算与巧算——教师版〖书海导航〗分数的速算与巧算是小学数学的重要内容,也是各类数学竞赛的重要内容之一。

分数的速算与巧算既有知识要求,也有能力要求,法则、定律、性质是进行计算的依据,要使计算快速、准确,关键在于掌握运算技巧,对算式进行认真观察,剖析算式的特点及各数之间的关系,巧妙地、灵活地运用运算定律,合理改变运算顺序,使计算简便易行,既快又准,这对开拓知识、启迪思维、培养学生综合分析、推理能力和灵活、快速、准确的运算能力,使智能得到协调发展,都有很大的帮助。

〖孤岛寻宝〗[例1] 计算:11×2+12×3+13×4+…..+199×100寻宝路线图:原式=(1-12)+(12-13)+(13-14)+…..+(199-1100)=1-12+12-13+13-14+…..+199-1100=1-1 100=99 100〖巧练密笈〗1.14×5+15×6+16×7+…..+139×402.110×11+111×12+112×13+113×14+114×15〖孤岛寻宝〗[例2] 计算:12×4+14×6+16×8+…..+148×50寻宝路线图:原式=(22×4+24×6+26×8+…..+248×50)×12=【(12-14)+(14-16)+(16-18)…..+ (148-150)】×12=【12 -150 】×12=625〖巧练密笈〗1. 13×5 +15×7 +17×9 +…..+ 197×992. 11×4 +14×7 +17×10 +…..+ 197×100〖孤岛寻宝〗[例3] 计算:113 -712 +920 -1130 +1342 -1556寻宝路线图:原式=113 -(13 +14 )+(14 +15 )-(15 +16)+(16 +17 )-(17 +18) =113 -13 -14 +14 +15 -15 -16 +16 +17 -17 -18=1-18=78〖巧练密笈〗1. 112 +56 -712 +920 -11302. 114 -920 +1130 -1342 +1556〖孤岛寻宝〗[例4] 计算:12 +14 +18 +116 +132 +164寻宝路线图:原式=(12 +14 +18 +116 +132 +164 +164 )-164=1-164=6364〖巧练密笈〗1. 12 +14 +18 +………+12562. 23 +29 +227 +281 +2243〖孤岛寻宝〗[例5] 计算:(1+12 +13 +14 )×(12 +13 +14 +15 )-(1+12 +13 +14+15 )×(12 +13 +14) 寻宝路线图:设1+12 +13 +14 =a 12 +13 +14=b 原式=a ×(b+15 )-(a+15)×b =ab+15 a -ab -15b =15(a -b ) =15〖巧练密笈〗1. (12 +13 +14 +15 )×(13 +14 +15 +16 )-(12 +13 +14 +15 +16 )×(13 +14 +15)2.(18+19+110+111)×(19+110+111+112)-(18+19+110+111+112)×(19+110+111)〖笑傲题海〗(A:初试锋芒)1.12+16+112+120+130+1422.1-16+142+156+1723.11×5+15×9+19×13+…..+133×374. 14 +128 +170 +1130 +12085.19981×2 +19982×3 +19983×4 + 19984×5 +19985×66.6×712 -920 ×6+ 1130 ×67.(1+11999 +12000 +12001 )×(11999 +12000 +12001 +12002 )-(1+11999 +12000 +12001 +12002 )×(11999 +12000 +12001 )(B :再战成名)1.12 +16 +112 +120 + 130 +1422.1-16 +142 +156 +1723.411⨯+741⨯+1071⨯+ (100971)4.4321⨯⨯+5431⨯⨯+…+10981⨯⨯5.4513612812111511016131+++++++6.33333...144771022252528+++++⨯⨯⨯⨯⨯7.11111111312111098742870130208304418++++++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的巧算1.计算 1091541431321⨯++⨯+⨯+⨯2.计算⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-1099433322211 3.计算15131971751531⨯++⨯+⨯+⨯ 4.计算4196625.920032002839200312÷⎪⎭⎫⎝⎛⨯+⨯5.计算()268.13.443252114.0⨯⎥⎦⎤⎢⎣⎡-⨯÷⨯分数的应用1.东方机械制造厂第二车间的人数是第一车间人数的85,如果从第一车间调出15人到第二车间,这时第一车间的人数与第二车间的人数相等。

原来两个车间的各有多少人?2.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。

后来又有几名女生来看书?3.兄弟四人一起买一台电视机,老大付的钱是另外三人所付总钱数的一半,老二付的钱是另外三人所付总钱数的31,老三付的钱是另外三人所付总钱数的41,老四付了91元。

这台电视机的价格是多少元你?4.小明的课外书的本数是小芳的32。

如果小芳给小明3本课外书,那么小明的课外书本数的就是小芳的43。

小明、小芳原来各有课外书多少本?5.为了加固河堤,需要向河中打入木桩。

一根防洪木桩长7米,插入河中后,51露出水面,其余的72在河底的泥土中。

河水深多少米?比与比例的应用1. 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积比是2 :5,另一个瓶中的酒精和水的体积比是3 :7。

若将两瓶酒精溶液混合,求混合酒精中酒精和水的体积之比。

2.小芳爱读书,她读一本少年英雄故事的书,读了几天后已读页数与未读页数的比是3 :5,后来又读了27页,这时已读页数与未读页数的比是9 :7。

这本书共有多少页?3.一批零件,平均分给甲、乙两人加工,甲已加工的与剩下的个数比是2 :1,乙已加工的和剩下的个数比是5 :2.已经加工这批零件的几分之几?4.小惠读一本书,已读的页数和未读的页数之比是1 :5,如果再读30页,则已读的页数和未读的页数之比是3 :5,求这本书共有多少页?5. 一次演出,原来参加唱歌和跳舞的人数比是3 :2,后因节目变动,7名唱歌的同学改为跳舞,现在唱歌的人数占跳舞人数的31。

唱歌和跳舞的人数一共有多少人? 时钟问题1. 8时到9时之间,在什么时刻时针与分针重合?2.现在是3时,再过多长时间,时针和分针恰在“12”字两边,并且与“12”字距离相等?3. 在7时多少分,时针与分针相首次互相垂直?4. 一只钟的时针与分针均指在8与10之间,且钟面上的“9”字恰好在时针与分针的正中央,问这时是什么时刻?5.某人下午6点多外出时,看了看手表两指针夹角为110°,下午7点前回家时发现两指针夹角仍为 110°,问:他外出多长时间?行程问题1.甲、乙、丙三人的行走速度分别为每分钟40米,50米、60米。

甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后5分钟再遇到甲,A、B两地的距离是多少米?2.A、B是一圆形道路的一条直径的两个端点,现有甲、乙两人分别从A、B两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇;当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又多少米?3. 甲、乙两辆汽车分别以不同的速度从A、B两城相对而行,途中相遇,相遇点距A城80千米,相遇后两车继续以原速前进,到达对方的出发地后两车立即返回,在途中第二次相遇,这时相遇点距A城50千米。

求AB两城相距多少千米?4. 甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?5. 大、小两只猴子爬杆树,大猴子的爬的树高8米,小猴子的爬的树高10米。

如果大小两猴子同时从树底下开始往上爬,其爬行的速度之比是2 :1,大猴子爬到另一端立刻下降,下降的速度是上升速度的2倍,问当大猴子下降与小猴子上升到同一时,小猴子上了多少米?利润问题1.某商品每件的成本是72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售的件数提高到原来的2.5倍。

照这样的计算,每天的利润比原来增加多少元?2.某商品打7.5折后,商家仍然可得25%的利润。

如果该商品是以每件16.8元的价格进的,为该商品在货架上的标价是多少?3.某商场在店庆期间将一批商品降价出售,如果减去定价的10%出售,可盈利215元。

如果打八折出售,则亏损125元。

此商品的购入价是多少元?4.商店进了一批圆珠笔,用零售价2元卖出30支与用零售价3元卖出15支的利润相同。

问:这批圆珠笔的进货价是每支多少钱?5. 某商店从某公司批发部购100件A 钟商品,80件B 种商品,共花去2800元,在商店零售时,每件A 种商品加价15%,每件B 种商品加价10%,这样全部售出后共收入3140元,问A 、B 两种商品的买入价各为多少元?工程问题1. 一个水池有甲、乙两个水管,单独开甲管,2小时可以把空水池注满;单独开乙管,3小时可以把空池注满。

如果同时打开甲、乙两管,多少小时可以把空水池注满?2. 一项工程,甲队单独做12天完成,乙队单独做15天完成。

如果按照甲、乙、甲、乙、…的顺序轮流工作,每人每次工作一天时,完成这项工作的三分之一共需要多少天?3. 有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?4. 抄1份书稿,甲每天的工作效率等于乙、丙两人每天工作效率的和;丙的工作效率相当于甲、乙每天工作效率和的51,如果三人合抄只需8天就完成了,那么乙一人单独抄要多少天才能完成?2. 一件工作,甲、乙、丙三人合做6小时可以完成。

如果甲工作6小时,乙、丙合做2小时可以完成这件工作的32;如果甲、乙合做3小时,丙做6小时,可完成这件工作的32。

问甲、乙、丙单独完成这件工作各需多长时间? 浓度问题1. 某种溶液由40克食盐浓度15%的溶液和60克食盐浓度10%的溶液混合后再蒸发50克水得到,那么这种溶液的食盐浓度为多少?2.将18%的酒精2升和60%的酒精3升混合,得到的酒精浓度时多少?3.有浓度为55%的酒精溶液若干升,加入1升浓度为80%的酒精溶液后,酒精溶液浓度变为60%,如果要得到70%的酒精溶液需要加入多少升浓度为80%的酒精溶液?4.有两种溶液,甲溶液的酒精浓度为15%,盐浓度为10%,乙溶液中的酒精浓度为45%,盐浓度为5%。

现在有甲溶液1千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍?5.有甲乙两种食盐水,甲含盐150克,含水50克,乙含盐300克,含水75克,现要得到浓度为77%的食盐水200克,问每种应各取多少克?不定方程1.有这样的一个游戏:请用你的出生月份乘以31,用你出生的日期乘以12,将这两个数的和告诉我,我便能算出你的出生年月日。

现在小明算的这个数是189,那么,小明的生日是哪一天?2.甲级铅笔7角钱一支,乙级铅笔3角钱一支。

张明用5元钱可以买两种不同的铅笔共多少支?3.某单位职工到郊外植树,其中有男职工和女职工,并且有三分之一的职工带一个小孩参加。

男职工每人种13棵,女职工每人种10棵,每个小孩子种6棵。

他们一共种了216棵树。

那么其中有多少名男职工?4.甲班有42名学生,乙班有48名学生。

已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分,那么甲班的平均成绩比乙班高多少分?5.装某种产品的盒子有大、小两种,大盒每盒装11个,小盒每盒装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个?圆的面积和圆柱的面积体积1.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B长40厘米, BC长多少厘米?2.在右图中(单位:厘米),两个阴影部分面积的和是多少平方厘米?3.长方形的长是3分米,宽式2分米,把它绕它的长旋转一周,得到一个旋转体。

求这个旋转体的表面积和体积4.一个圆柱体木块,把它平均切成四块,则表面积增加48平方厘米;如果平均切成三块,则表面积增加50.24平方厘米。

求这个圆柱体木块的表面积和体积。

5. 一个底面直径是6cm、高为8cm的圆柱体,叠在底面直径是12cm、高是12cm的圆柱体上,求这个组合体的表面积和体积。

逻辑推理1.甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?2. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.3. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.4. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动项目各个不相同,除此以外,只知道一些零碎情况:(1)张明是球类运动员,不是南方人;(2)胡老纯是南方人,不是球类运动员;(3)李勇和北京运动员、乒乓球运动员三人同住一个房间;(4)郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5)浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方?各参加什么运动?5. 五年级四个班举行数学竞赛,小明猜测(3)班第一名,(2)班第二名,(1)班第三名,(4)班第四名;小华猜测名次排列顺序是(2)班、(4)班、(3)班、(1)班.已知(4)班是第二名,其他各班的名次小明和小华都猜错了,这次竞赛的名次是怎样最大值与最小值1.一次数学考试的满分是100,6名同学在这次考试中平均得分是91分,这6名同学的得分互不相同,其中有一个同学仅得65分,那么得分排第三名的同学至少得多少?2.某公司在A、B两地分别库存了某机器16台和12台,现要运往甲、乙两家客户的所在地,其中甲方15台,乙方13台。

相关文档
最新文档