2014年山东省烟台市中考数学试卷(教与学)
2014年山东省烟台市中考数学模拟题讲解

2014年山东省烟台市中考数学模拟题一卷 选择题(共36分) 一、选择题(本题共12个小题,每小题3分,满分36分) 1.(4分)(2013•烟台模拟)的平方根是( )2.代数式与x ﹣2的差是负数,那么x 的取值范围是( )3.下列图形不是轴对称图形的是( ) .C4.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )BCD .5.下列说法正确的是( )分,方差分别是=5,6.在△ABC 中,∠A 、∠B 均为锐角,且,则△ABC 是( )7.二次函数y=ax 2+bx 的图象如图,若一元二次方程ax 2+bx+m=0有实数根,则m 的最大值为( ) A.-3 B.3 C. -6 D.98.如图,在直角梯形ABCD 中,AD∥BC,∠C=90°,AD=5,BC=9,以A 为中心将腰AB 顺时针旋转90°至9.已知梯形ABCD 的四个顶点的坐标分別为A (﹣1,0),B (5,0),C (2,2),D (0,2),直线y=kx+2将梯形分成面积相等的两部分,则k 的值为( )BD .7题图 8题图 9题图10.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD∥OB,则图中休闲区(阴影部分)的面积是( ) )米﹣)米11.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE ,BD ;④DE,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ) 12.在平面直角坐标系中,第1个正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作第2个正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作第3个正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为( )C10题图 11题图 12题图二卷非选择题(共84分)二、填空题(本题共6个小题,每小题3分共18分)13.如果单项式﹣3x2a y3与是同类项,则这两个单项式的积为.14.如图母亲节那天很多同学给妈妈准备了鲜花和礼物,从图中信息可知则买5束鲜花和5个礼盒的总价为元.15.如图一小虫从P点出发绕边长为10cm的等边三角形ABC爬行一圈回到点P,在小虫爬行过程中,始终保持与三角形ABC的边的距离是2cm,求小虫爬过的路径的长是.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为.18.如图,在平面直角坐标系中,矩形OEFG的顶点F的坐标为(4,2),将矩形OEFG绕点O逆时针旋转,使点F落在y轴上,得到矩形OMNP,OM与GF相交于点A.若经过点A的反比例函数的图象交EF于点B,则点B的坐标为.15题图16题图17题图18题图三、解答题(本大题共8个小题,满分66分.)19.(6分)化简分式(﹣)÷,并从﹣1≤ x ≤3中选一个你认为合适的整数x代入求值.20.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)21. (9分)2012年,某地开始实施农村义务教育学校营养计划“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?22.(9分)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积。
2014年山东中考数学试题汇编

山东省日照市2014年中考数学试卷参考答案与试题解析一、选择题(共大题共12小题,其中1-8题每小题3分,9-12题每小题3分,满分40分.每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)(2014•日照)在已知实数:﹣1,0,,﹣2中,最小的一个实数是()4.(3分)(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均没千克比第一季度又上升了20%,则第三季度初这家养殖场的生6.(3分)(2014•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意7.(3分)(2014•日照)关于x的一元二次方程x+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为(),拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠运动的路径长为:++++=解方程组得两直线的交点坐标,由解:解方程组得,两直线的交点坐标为(,所以>∴∴x=11.(4分)(2014•日照)如图,是抛物线y=ax+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x 轴的一个交点是(﹣1,0).有下列结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.∴﹣=2第1个数:﹣(1+);第2个数:﹣(1+)×(1+)×(1+);第3个数:﹣(1+)×(1+)×(1+)×(1+)×(1+);…))×(1+)×(1+)×()﹣(1+[1+…[1+﹣,,﹣,﹣,﹣,其中最大的数为﹣,32了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角随机查阅的总天数是:=30则空气质量为优的扇形的圆心角的度数为:×360°=108°;的值为 1 .=∴=过程或演算步骤)17.(8分)(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程=15丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.===把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;)∵AB=3,∠BAE=30°,∠tan30°=BE=AB•tan30°=3×,∴CF=.知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;解得,,平方米.又查阅到了与圆的切线相关的一个问题:如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠B=∠2.在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以=,即PC2=PA•PB.问题拓展:(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PA•PB,还成立吗?请证明你的结论;综合应用:(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;(1)当AB=PA,且PC=12时,求PA的值;(2)D是BC的中点,PD交AC于点E.求证:=.,由平行线分线段成比例定理即可求得,=,=,=∴所以∴PA=±6∴PA=6.∴==.∴=∴=∴==即.∴==.∴=∴=∴==即.22.(14分)(2014•日照)如图1,在菱形OABC中,已知OA=2,∠AOC=60°,抛物线y=ax+bx+c(a≠0)经过O,C,B三点.(Ⅰ)求出点B、C的坐标并求抛物线的解析式.(Ⅱ)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.(1)当OP+PC的最小值时,求出点P的坐标;(2)在(1)的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角OC=BC=BD=2BC=2,所以,tan∠BGQ=,即∠BGQ=30°,得出△BQC,∠AOC=60°,OC=2,OH=sin60°2=,CH=cos60°2,点的坐标为(,+,顶点为24,2,AP=OAtan30°=2=2OC=BC=BD=2,,,所以,tan∠BGQ==2,22014年山东省泰安市中考数学试卷一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(2014年山东泰安)在,0,﹣1,﹣这四个数中,最小的数是()A.B.0 C.﹣D.﹣1分析:根据正数大于0,0大于负数,可得答案.解:﹣1<﹣<0<,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(2014年山东泰安)下列运算,正确的是()A.4a﹣2a=2 B.a6÷a3=a2C.(﹣a3b)2=a6b2D.(a﹣b)2=a2﹣b2分析:合并同类项时不要丢掉字母a,应是2a,B指数应该是3,D左右两边不相等.解:A、是合并同类项结果是2a,不正确;B、是同底数幂的除法,底数不变指数相减,结果是a3;C、是考查积的乘方正确;D、等号左边是完全平方式右边是平方差,所以不相等.故选C.点评:这道题主要考查同底数幂相除底数不变指数相减以及完全平方式和平方差的形式,熟记定义是解题的关键.3.(2014年山东泰安)下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.解:A、圆柱主视图是矩形,俯视图是圆,故此选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故此选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故此选项错误;D、长方体主视图和俯视图都为矩形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(2014年山东泰安)PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7B.2.5×10﹣6C.25×10﹣7D.0.25×10﹣5分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000025=2.5×10﹣6,故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(2014年山东泰安)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.6.(2014年山东泰安)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A. 1 B. 2 C. 3 D. 4分析:根据轴对称图形及对称轴的定义求解.解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;故选C.点评:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;7.(2014年山东泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣8分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.(2014年山东泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若A B=6,则BF的长为()A.6 B.7 C.8 D.10分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.9.(2014年山东泰安)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.(2014年山东泰安)在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个B.3个C.2个D.1个分析:分别利用相似三角形的判定和全等三角形的判定定理进行判断即可得到正确的选项.解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,正确;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能判定△ABC≌△A1B1C1,错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,正确.故选B.点评:本题考查了命题与定理的知识,解题的关键是掌握三角形全等和相似的判定方法.11.(2014年山东泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.12.(2014年山东泰安)如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm分析:根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△ADE中,DE=BD•tan30°=×=cm.故选A.点评:本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.13.(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.14.(2014年山东泰安)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A B C. D分析:分点Q在AC上和BC上两种情况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.点评:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.15.(2014年山东泰安)若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36分析:先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.解:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2014年山东泰安)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10°B.20°C.7.5°D.15°分析:根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解.解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选D.点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB 全等是解题的关键.17.(2014年山东泰安)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B C D.分析:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.18.(2014年山东泰安)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(ASA),进而得出CO=PO=AB;(3)利用全等三角形的判定得出△PCO≌△BCA(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△C PB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.19.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm2分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q 面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.2,∴扇形面积为:=π(cm2),解:∵扇形OAB的圆心角为90°,假设扇形半径为半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.点评:此题主要考查了扇形面积求法,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.2a≠0)中的x与y的部分对应值如下表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.故选B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.二、填空题(本大题共4小题,满分12分。
2014-2015年山东省烟台市九年级上学期数学期中试卷与解析(五四学制)

2014-2015学年山东省烟台市九年级(上)期中数学试卷(五四学制)一、选择题(每小题3分,共36分)1.(3分)下列斜坡最陡的是()A.斜坡AB的坡度为B.斜坡CD的倾斜角是45°C.斜坡EF的坡比为1:3 D.斜坡GH的坡角为α,tanα=2.(3分)已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()A.2 B.4 C.4 D.63.(3分)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.4.(3分)随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定5.(3分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m6.(3分)使得函数y=的函数值为负数的自变量x的取值范围是()A.x>﹣B.x<﹣C.x>D.x<7.(3分)抛物线y=﹣2x2+3x+2与y轴的交点坐标为()A.(2,2) B.(﹣2,2)C.(0,2) D.(2,0)8.(3分)下列各图象中有可能是函数y=ax2+a(a≠0)的图象的是()A.B.C.D.9.(3分)如图是自动温度计记录的某一天气温变化的曲线,它反映了变量T(℃)与t(h)之间的对应关系,这一天中,温差(最高与最低温度的差)是()A.10℃B.﹣10℃C.8℃D.12℃10.(3分)将抛物线y=ax2﹣1(a≠0)的图象向左平移2个单位后,所得抛物线经过(1,﹣4)点,则a等于()A.﹣ B.﹣1 C.﹣3 D.﹣511.(3分)如果△ABC中,sinA=cosB=,则△ABC是()A.等腰直角三角形 B.等边三角形C.锐角三角形D.不能确定12.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是x=3,且经过点(5,0),则a+b+c等于()A.0 B.1 C.3 D.5二、填空题(每小题4分,共24分)13.(4分)已知抛物线y=3(x+1)2﹣6,当x时,y的值随x值的增大而减小.14.(4分)用总长为20cm的铁丝围成一个矩形,此矩形的一边长x(cm)的取值范围是.15.(4分)若a为锐角,比较大小:sinαtanα.16.(4分)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=.17.(4分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是.18.(4分)如图,矩形ABCD的长AB=4cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.以AB、OP所在直线为两轴建立直角坐标系,抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.三、解答题(本题共6小题,共57分)19.(4分)计算:sin30°+cos245°+sin60°•tan60°.20.(6分)在Rt△ABC中,∠C=90°,a=,b=,解这个直角三角形.21.(12分)如图,已知等腰直角三角形ABC的直角边长与正方形DEFG的边长都是4cm,AC与DG在同一直线上,开始时点A与点D重合,△ABC以1cm/s 的速度向右移动,最终点A与点G重合,设重合部分(阴影部分)的面积为y (cm2),移动的时间为x(s).(1)求出y与x的函数关系式;(2)画出(1)中所写出的函数关系式的图象.①完成下表:x/sy/cm2②画出图象.22.(9分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).23.(12分)如图,直角三角形纸片ABC中,∠C=90°,∠BAC=30°,BC=1,将其沿AD折叠,使点C落在AB上的点E处.(1)求AB与AC的长;(2)求tan15°的值.24.(14分)在一次高尔夫比赛中,一队员从山坡下O点打出一球向球洞A飞去,球的飞行路线为抛物线,以点O为原点建立如图所示的直角坐标系,抛物线的表达式为y=﹣x2+2x.已知山坡OA与水平方向x轴的夹角为30°,O,A两点相距8米.(1)当球达到最大高度时,球移动的水平距离是多少米?最大高度是多少米?(2)判断这一杆能否把高尔夫球从O点直接打入球洞A点?请说明理由.(参考数据:≈1.73)2014-2015学年山东省烟台市九年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列斜坡最陡的是()A.斜坡AB的坡度为B.斜坡CD的倾斜角是45°C.斜坡EF的坡比为1:3 D.斜坡GH的坡角为α,tanα=【解答】解:∵斜坡CD的倾斜角是45°,∴斜坡CD的坡比为:1:1,则1>>>,故斜坡最陡的是斜坡CD的倾斜角是45°.故选:B.2.(3分)已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()A.2 B.4 C.4 D.6【解答】解:∵sinA=,∴∠A=30°.∴tan30°=,∴BC=2.故选:A.3.(3分)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.【解答】解:由图可得tan∠AOB=.4.(3分)随着锐角α的增大,cosα的值()A.增大B.减小C.不变D.增大还是减小不确定【解答】解:随着锐角α的增大,cosα的值减小.故选:B.5.(3分)如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB,CD分别表示一楼,二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.m B.4m C.4m D.8m【解答】解:过C作CE⊥AB于E点.在Rt△CBE中,由三角函数的定义可知CE=BC•sin30°=8×=4m.故选:B.6.(3分)使得函数y=的函数值为负数的自变量x的取值范围是()A.x>﹣B.x<﹣C.x>D.x<【解答】解:根据题意,有2x+1≠0,且2x+1<0解可得x≠﹣且x<﹣;故自变量x的取值范围是x<﹣,7.(3分)抛物线y=﹣2x2+3x+2与y轴的交点坐标为()A.(2,2) B.(﹣2,2)C.(0,2) D.(2,0)【解答】解:把x=0代入y=﹣2x2+3x+2,得y=﹣3,则抛物线y=﹣2x2+3x+2与y轴的交点坐标为(0,2).故选:C.8.(3分)下列各图象中有可能是函数y=ax2+a(a≠0)的图象的是()A.B.C.D.【解答】解:当a>0时,开口向上,顶点在y轴的正半轴;当a<0时,开口向下,顶点在y轴的负半轴,故选:B.9.(3分)如图是自动温度计记录的某一天气温变化的曲线,它反映了变量T(℃)与t(h)之间的对应关系,这一天中,温差(最高与最低温度的差)是()A.10℃B.﹣10℃C.8℃D.12℃【解答】解:由纵坐标看出最高温度是12℃,最低温度是2°,由有理数的减法,得12﹣2=10℃,故选:A.10.(3分)将抛物线y=ax2﹣1(a≠0)的图象向左平移2个单位后,所得抛物线经过(1,﹣4)点,则a等于()A.﹣ B.﹣1 C.﹣3 D.﹣5【解答】解:∵抛物线y=ax2﹣1(a≠0)的顶点坐标为(0,﹣1),∴图象向左平移2个单位后,所得抛物线的顶点坐标为(﹣2,﹣1),∴平移后得抛物线的解析式为y=a(x+2)2﹣1,把(1,﹣4)代入得﹣4=a×(1+2)2﹣1,解得a=﹣.故选:A.11.(3分)如果△ABC中,sinA=cosB=,则△ABC是()A.等腰直角三角形 B.等边三角形C.锐角三角形D.不能确定【解答】解:∵sinA=cosB=,∴∠A=45°,∠B=45°,则∠C=180°﹣45°﹣45°=90°.故△ABC为等腰直角三角形.故选:A.12.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴是x=3,且经过点(5,0),则a+b+c等于()A.0 B.1 C.3 D.5【解答】解:∵抛物线y=ax2+bx+c的对称轴为x=3,∴根据二次函数的对称性得:点(5,0)的对称点为(1,0),∵当x=1时,y=a+b+c=0,∴a+b+c的值等于0.故选:A.二、填空题(每小题4分,共24分)13.(4分)已知抛物线y=3(x+1)2﹣6,当x<﹣1时,y的值随x值的增大而减小.【解答】解:抛物线y=3(x+1)2﹣6,可知a=3>0,开口向上,对称轴x=﹣1,∴当x<﹣1时,函数值y随x的增大而减小.故答案为:<﹣1.14.(4分)用总长为20cm的铁丝围成一个矩形,此矩形的一边长x(cm)的取值范围是0<x<10.【解答】解:已知一边长为xcm,则另一边长为(20﹣2x)=10﹣x,0<10﹣x<10,则x的取值范围为:0<x<10.故答案为:0<x<10.15.(4分)若a为锐角,比较大小:sinα<tanα.【解答】解:如图,设α是Rt△ABC的一个锐角,∠C=90°,令∠A=α,则sinα=,tanα=,故sinα<tanα.故答案为<.16.(4分)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.【解答】解:∵△ABC中,|tanA﹣1|+(cosB﹣)2=0∴tanA=1,cosB=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.17.(4分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是10m.【解答】解:Rt△ABC中,BC=5m,tanA=1:;∴AC=BC÷tanA=5m,∴AB==10m.故答案为10m.18.(4分)如图,矩形ABCD的长AB=4cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.以AB、OP所在直线为两轴建立直角坐标系,抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.【解答】解:因为抛物线y=ax2的图象关于y轴对称,所以阴影部分的面积实际是一个半圆AO的面积,所以图中阴影部分的面积是:π(AB)2=(cm2).故答案为:.三、解答题(本题共6小题,共57分)19.(4分)计算:sin30°+cos245°+sin60°•tan60°.【解答】解:原式=+()2+×=++=.20.(6分)在Rt△ABC中,∠C=90°,a=,b=,解这个直角三角形.【解答】解:在Rt△ABC中,∵a2+b2=c2,a=,b=,∴c==2,∵tanA===,∴∠A=30°,∴∠B=90°﹣∠A=90°﹣30°=60°.21.(12分)如图,已知等腰直角三角形ABC的直角边长与正方形DEFG的边长都是4cm,AC与DG在同一直线上,开始时点A与点D重合,△ABC以1cm/s 的速度向右移动,最终点A与点G重合,设重合部分(阴影部分)的面积为y (cm2),移动的时间为x(s).(1)求出y与x的函数关系式;(2)画出(1)中所写出的函数关系式的图象.①完成下表:x/sy/cm2②画出图象.【解答】解:(1)设AB和FG的交点为H,∵DA=xcm,DG=AC=4cm,△ACB是等腰直角三角形,四边形EFGD是正方形,∴∠BAC=45°,∠FGD=90°,∴∠AHG=∠BAC=45°,∴AG=GH=(4﹣x)cm,∴y=(4﹣x)2,即y=x2﹣4x+8(0≤x≤4);(2)①②.22.(9分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73).【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.23.(12分)如图,直角三角形纸片ABC中,∠C=90°,∠BAC=30°,BC=1,将其沿AD折叠,使点C落在AB上的点E处.(1)求AB与AC的长;(2)求tan15°的值.【解答】解:(1)如图,∵∠C=90°,∠BAC=30°,BC=1,∴AB=2;由勾股定理得:AC=.(2)由题意得:DE=DC(设为λ),∠EAD=∠CAD=15°,AE=AC=,∠AED=∠C=90°,则BD=1﹣λ,BE=2﹣,∠BED=90°,由勾股定理得:,解得:λ=2﹣3,故tan15°===2﹣.24.(14分)在一次高尔夫比赛中,一队员从山坡下O点打出一球向球洞A飞去,球的飞行路线为抛物线,以点O为原点建立如图所示的直角坐标系,抛物线的表达式为y=﹣x2+2x.已知山坡OA与水平方向x轴的夹角为30°,O,A两点相距8米.(1)当球达到最大高度时,球移动的水平距离是多少米?最大高度是多少米?(2)判断这一杆能否把高尔夫球从O点直接打入球洞A点?请说明理由.(参考数据:≈1.73)【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣9)2+9,∴当球达到最大高度时,球移动的水平距离是9米,最大高度是9米;(2)作AB⊥x轴于点B,在Rt△AOB中,AB=OA=×8=4,OB=OA•cos∠AOB=8×=12,当x=12时,y=﹣(12﹣9)2+9=8,∵8,∴不能把高尔夫球从O点直接打入球洞A点.。
【数学】2014-2015年山东省烟台市七年级上学期期中数学试卷与解析PDF

2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.129.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.1010.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π二、填空题(本题共10个小题)11.(3分)三角形的三条交于一点,这点叫做三角形的重心.12.(3分)正九边形有条对称轴.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于.14.(3分)如图,∠α=.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是三角形.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是三角形(按角分类)18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有个等腰三角形.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是cm2.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.2014-2015学年山东省烟台市七年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本题共10个小题,每小题3分)1.(3分)以下列各组长度的线段为边,能构成三角形的是()A.6cm、8cm、15cm B.7cm、5cm、12cm C.4cm、6cm、5cm D.8cm、4cm、3cm【解答】解:根据三角形的三边关系,得:A、6+8=14<15,不能组成三角形;B、7+5=12,不能组成三角形;C、4+5=9>6,能够组成三角形;D、4+3=7<8,不能组成三角形.故选:C.2.(3分)下列图形中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.3.(3分)锐角三角形中,任意两个内角之和必大于()A.120°B.100°C.90°D.60°【解答】解:如果两个锐角和不大于90°,那么第三个角将大于等于90°,就不再是锐角三角形.故选:C.4.(3分)如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC【解答】解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD ≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选:C.5.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.6.(3分)如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【解答】解:一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故选:C.7.(3分)等腰三角形的一个内角为100°,则它的底角为()A.100°B.40°C.100°或40°D.不能确定【解答】解:根据等腰三角形的性质得,底角度数为:(180°﹣100°)÷2=40°;故选:B.8.(3分)如图,在Rt△ABC中,∠C=90°,它的周长为24,且AB:BC=5:3,则AC的长为()A.6 B.8 C.10 D.12【解答】解:设AB=5x,BC=3x,则AC==4x,于是5x+3x+4x=24,解得x=2,故AC=4×2=8,故选:B.9.(3分)如图,在△ABC中,D、E分别是AC、BC边上的一点,AD=2DC,BE=EC,若△DBE的面积为1,则△ABC的面积等于()A.4 B.6 C.8 D.10【解答】解:如图,过点A作AM⊥BC,过点D作DN⊥BC;则AM∥DN;∴△AMC∽△DNC,∴,而AD=2DC,∴AM=3DN(设DN为λ);设BE=EC=μ,∴=6,而S=1,△BED=6,∴S△ABC故选:B.10.(3分)如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于()A.2πB.4πC.8πD.16π【解答】解:S1=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故选:A.二、填空题(本题共10个小题)11.(3分)三角形的三条中线交于一点,这点叫做三角形的重心.【解答】解:三角形的三条中线交于一点,这点叫做三角形的重心.故答案为:中线.12.(3分)正九边形有9条对称轴.【解答】解:正九边形有9条对称轴.故答案为:9.13.(3分)如图是边长为1的正方形网格,点A、B、C、D都在格点上,图中阴影部分的面积等于15.【解答】解:如图,S ABCD=S MNPQ﹣S△ABM﹣S△BCQ﹣S△CDP﹣S△ADN=6×5﹣=30﹣15=15.故答案为15.14.(3分)如图,∠α=17°.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.故答案为:17°.15.(3分)如图,在△ABC中,∠C=90°,AD是角平分线,点D到AB的距离为7cm,则CD=7cm.【解答】解:∵AD是∠BAC的平分线,BC⊥AC,点D到AB的距离为7cm,∴CD=7cm.故答案为:7cm.16.(3分)如果一个三角形有两个角等于60°,那么这个三角形是等边三角形.【解答】解:∵一个三角形有两个角等于60°,且三角之和为180°,∴第三个角的度数=180°﹣60°﹣60°=60°,∴这个三角形是等边三角形.故答案为:等边.17.(3分)在△ABC中,若∠C=∠B=∠A,则△ABC是直角三角形(按角分类)【解答】解:∠C=x°,∵∠C=∠B=∠A,∴∠B=2∠C=2x,∠A=3∠C=3x,∵∠A+∠B+∠C=180°,即:3x+2x+x=180°,解得:x=30°,∴∠C=30°,∠A=3∠C=90°,∠B=2∠C=60°,∴此三角形是直角三角形.故答案为:直角.18.(3分)如图,AD与BC交于点O,△AOB≌△COD,A和C,B和D是对应顶点,若BO=5,AO=3,AB=4,则BD2=80.【解答】解:∵AB2+AO2=42+32=25,BO2=52=25,∴AB2+AO2=BO2,∴∠A=90°,∵△AOB≌△COD,∴BO=DO=5,∵BO=5,AO=3,∴AD=AO+DO=3+5=8,在Rt△ABD中,BD2=AB2+AD2=42+82=80.故答案为:80.19.(3分)如图,在△ABC中,∠A=36°,∠B=72°,CD是∠ACD的平分线,则图中共有3个等腰三角形.【解答】解:有3个等腰三角形,理由是:∵在△ABC中,∠A=36°,∠B=72°,∴∠ACB=180°﹣∠A﹣∠B=72°,∴∠ACB=∠B,∴△ABC是等腰三角形,∵CD是∠ACD的平分线,∴∠ACD=∠BCD=∠ACB=36°,∴∠A=∠ACD=36°,∴△ACD是等腰三角形,∵∠BCD=36°,∠B=72°,∴∠CDB=180°﹣36°﹣72°=72°,∴∠B=∠CDB,∴△BCD是等腰三角形,故答案为:3.20.(3分)如图,在△ABC中,AB=AC,AD平分∠BAC,点E、F在AD上,若△ABC的面积为16cm2,则图中阴影部分的面积是8cm2.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥DC,∴S△BEF =S△CEF,∴S阴影部分=S△ABD=S△ABC=×16=8(cm2).故答案为8.三、解答题21.(8分)尺规作图:如图,已知线段a、b和∠α用尺规作一个三角形,使其两边分别等于a、b,这两边的夹角等于2∠α.要求:不写已知、求作、作法,只画图,保留作图痕迹.【解答】解:如图所示:△ABC即为所求.22.(6分)利用一个点、一条线段、一个正三角形(或等腰三角形)、一个正方形(或长方形)设计一个轴对称图案,并说明你希望表达的含义.【解答】解:如图所示.表示一个垃圾箱.23.(9分)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=10,试求△PMN的周长.【解答】解:∵P点关于OA、OB的对称点P1,P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN,=P1M+MN+P2N,=P1P2,∵P1P2=10,∴△PMN的周长=10.24.(11分)已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC 的长.【解答】解:∵AB=AC∴∠B=∠C=30°∵AB⊥AD∴BD=2AD=2×4=8(cm)∠B+∠ADB=90°,∴∠ADB=60°∵∠ADB=∠DAC+∠C=60°∴∠DAC=30°∴∠DAC=∠C∴DC=AD=4cm∴BC=BD+DC=8+4=12(cm).25.(11分)如图,小芳和她的同学汤秋千,秋千AB在静止时,下端B离地面0.6m,秋千荡到AB′的位置时,下端B′距静止位置的水平距离B′D等于2m,距地面1.4m,求秋千AB的长.【解答】解:设AB=xm,则AB′=xm,由题意可得出:DB=1.4﹣0.6=0.8(m),则AD=AB﹣DB=x﹣0.8,在Rt△AB′D中,AD2+B′D2=AB′2,则(x﹣0.8)2+22=x2解得:x=2.9.答:秋千AB的长为2.9m.26.(12分)如图:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.【解答】证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).。
2014-2015学年山东省烟台市初二第一学期期中数学试卷(Word答案)

2014-2015学年山东省烟台市初二第一学期期中数学试卷(五四学制)一、选择题(每小题3分,共30分)1.(3分)下列各式:,其中分式共有()A.1个 B.2个 C.3个 D.4个2.(3分)若分式的值为0,则x的取值是()A.x=1 B.x=﹣1 C.x=±1 D.x=03.(3分)下列约分正确的是()A.B.C.D.4.(3分)若多项式4x2﹣12xy+ky2是完全平方式,则k的值是()A.3 B.6 C.9 D.365.(3分)20142﹣4028能被两个连续偶数整除,这两个连续偶数可以是()A.2010,2012 B.2012,2014 C.2014,2016 D.4026,40286.(3分)一个射手连续射靶10次,成绩(环)如图,则该射手射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,97.(3分)下列说法中错误的是()A.一组数据的平均数、中位数可能相同B.一组数据的中位数可能不唯一确定C.一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个8.(3分)多项式x2+6x+9取得最小值时,其x的值为()A.0 B.3 C.﹣3 D.99.(3分)解关于x的分式方程时不会产生增根,则m的取值是()A.m≠1 B.m≠﹣1 C.m≠0 D.m≠±110.(3分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米 B.千米C.千米 D.无法确定二、填空题(每小题3分,共30分)11.(3分)写出一个最简分式.12.(3分)分式的最简公分母为.13.(3分)把多项式a3﹣2a2+a分解因式的结果是.14.(3分)计算:=.15.(3分)某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分.已知某候选人三项得分分别为90,72,50,则这位候选人的招聘得分为.16.(3分)甲、乙、丙、丁四位同学本学期都参加了5次测试,每人的平均成绩都是93分,方差如下表:则这四人中成绩发挥最稳定的是.17.(3分)将一组数据中的每一个减去40后,所得新数据的平均数是2,则原来那组数据的平均数是.18.(3分)某班在一次测试中,一道计算题(满分5分)的得分情况如图.则这题得分的平均数是分.19.(3分)一组数据a,b,c的方差是9,则数据a+1,b+1,c+1的标准差为.20.(3分)观察下列各式:,,,…,根据观察计算:=(n为正整数).三、解答题(本题共6小题,共分)21.(6分)化简:+.22.(6分)已知x﹣3y=0,求•(x﹣y)的值.23.(8分)解分式方程:24.(10分)某地修筑水渠,某工程队出色地完成了任务.这是记者与工程队总指挥的一段对话:求工程队原来每天修筑水渠多少米?25.(17分)甲乙两支篮球队进行了5场比赛,比赛成绩绘制成了统计图(如图)(1)分别计算甲乙两队5场比赛成绩的平均分.(2)就这5场比赛,分别计算两队成绩的极差;(3)就这5场比赛,分别计算两队成绩的方差;(4)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、极差、方差以及获胜场数这四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?26.(10分)描述证明:海宝在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整海宝发现的这个有趣的现象;(2)请你证明海宝发现的这个有趣现象.2014-2015学年山东省烟台市初二第一学期期中数学试卷(五四学制)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各式:,其中分式共有()A.1个 B.2个 C.3个 D.4个【解答】解:(1﹣x),,的分母中均不含有字母,因此它们是整式,而不是分式.的分母中含有字母,因此是分式.故选:A.2.(3分)若分式的值为0,则x的取值是()A.x=1 B.x=﹣1 C.x=±1 D.x=0【解答】解:由分式的值为零的条件得:|x|﹣1=0,x﹣1≠0,解得:x=﹣1,故选:B.3.(3分)下列约分正确的是()A.B.C.D.【解答】解:A、≠1+,错误;B、≠1﹣,错误;C、=,正确;D、=﹣,错误.故选:C.4.(3分)若多项式4x2﹣12xy+ky2是完全平方式,则k的值是()A.3 B.6 C.9 D.36【解答】解:∵多项式4x2﹣12xy+ky2是完全平方式,∴k=9,故选:C.5.(3分)20142﹣4028能被两个连续偶数整除,这两个连续偶数可以是()A.2010,2012 B.2012,2014 C.2014,2016 D.4026,4028【解答】解:∵20142﹣4028=20142﹣2014×2=2014×(2014﹣2)=2014×2012.∴20142﹣4028能被两个连续偶数2012、2014整除.故选:B.6.(3分)一个射手连续射靶10次,成绩(环)如图,则该射手射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,9【解答】解:该射手射中环数分别为:6,8,7,10,9,7,8,10,8,9,按从小到大的顺序排列为:6,7,7,8,8,8,9,9,10,10,则众数为8,中位数为:8.故选:B.7.(3分)下列说法中错误的是()A.一组数据的平均数、中位数可能相同B.一组数据的中位数可能不唯一确定C.一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【解答】解:A、一组数据的平均数、中位数可能相同,该说法正确,故本选项错误;B、一组数据的中位数只能有一个,该说法错误,故本选项正确;C、一组数据中平均数、中位数、众数是从不同角度描述了一组数据的集中趋势,该说法正确,故本选项错误;D、一组数据中众数可能有多个,该说法正确,故本选项错误.故选:B.8.(3分)多项式x2+6x+9取得最小值时,其x的值为()A.0 B.3 C.﹣3 D.9【解答】解:x2+6x+9=(x+3)2∵(x+3)2≥0=0.∴当x=﹣3时,y最小值故选:C.9.(3分)解关于x的分式方程时不会产生增根,则m的取值是()A.m≠1 B.m≠﹣1 C.m≠0 D.m≠±1【解答】解:分式方程去分母,得:1+x﹣1=﹣m,当x﹣1=0时,方程有增根,此时x=1,代入整式方程得:1+1﹣1=﹣m,解得:m=﹣1,则分式方程不会产生增根时,m≠﹣1,故选:B.10.(3分)在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.千米 B.千米C.千米 D.无法确定【解答】解:依题意得:2÷(+)=2÷=千米.故选:C.二、填空题(每小题3分,共30分)11.(3分)写出一个最简分式.【解答】解:根据最简分式的定义如:.故答案为:.12.(3分)分式的最简公分母为10xy2.【解答】解:因为系数的最小公倍数为10,x最高次幂为1,y的最高次幂为2,所以最简公分母为10xy2.13.(3分)把多项式a3﹣2a2+a分解因式的结果是a(a﹣1)2.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.。
烟台中考数学试题及答案

烟台中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长公式是C=2πrB. 圆的面积公式是A=πr²C. 圆的周长公式是C=πr²D. 圆的面积公式是A=2πr答案:A2. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方等于9,这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个函数是一次函数?A. y=x²B. y=2x+3C. y=x/2D. y=1/x答案:B5. 一个数的立方等于-8,这个数是多少?A. -2B. 2C. -2或2D. 以上都不是答案:A6. 以下哪个选项是正确的?A. 绝对值等于它本身的数是非负数B. 绝对值等于它本身的数是非正数C. 绝对值等于它本身的数是正数D. 绝对值等于它本身的数是负数答案:A7. 一个数的倒数是1/5,这个数是多少?A. 5B. -5C. 1/5D. -1/5答案:A8. 以下哪个选项是正确的?A. 任何数的平方都是非负数B. 任何数的平方都是正数C. 任何数的平方都是负数D. 任何数的平方都是零答案:A9. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 16或-16D. 以上都不是答案:C10. 以下哪个选项是正确的?A. 任何数的立方都是正数B. 任何数的立方都是负数C. 任何数的立方都是非负数D. 任何数的立方都是非正数答案:C二、填空题(每题3分,共30分)11. 一个数的平方等于36,这个数是_6_或_-6_。
12. 一个数的立方等于64,这个数是_4_。
13. 一个数的绝对值是5,这个数是_5_或_-5_。
14. 一个数的倒数是2,这个数是_1/2_。
15. 一个数的平方根是3,这个数是_9_。
16. 一个数的立方根是-2,这个数是_-8_。
山东省烟台市中考数学试卷(含答案解析)

山东省烟台市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.D.0.101001001【考点】实数.【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【解答】解:A、不能正好开方,即为无理数,故本选项错误;B、不能正好开方,即为无理数,故本选项错误;C、π为无理数,所以为无理数,故本选项错误;D、小数为有理数,符合.故选D.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念逐项分析即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选C.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a6【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的加减法可得出A选项结论不正确;根据单项式乘单项式的运算可得出B 选项不正确;根据整式的除法可得出C选项正确;根据幂的乘方可得出D选项不正确.由此即可得出结论.【解答】解:A、3a2﹣6a2=﹣3a2,﹣3a2≠﹣3,∴A中算式计算不正确;B、(﹣2a)•(﹣a)=2a2,2a2=2a2,∴B中算式计算正确;C、10a10÷2a2=5a8,5a8≠5a5(特殊情况除外),∴C中算式计算不正确;D、﹣(a3)2=﹣a6,﹣a6≠a6(特殊情况除外),∴D中算式计算不正确.故选B.4.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数;计算器—数的开方.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【考点】位似变换;坐标与图形性质;正方形的性质.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【考点】根与系数的关系.【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.10.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①②B.①③C.②③D.①②③【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.故选B.12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意确定出y与x的关系式,即可确定出图象.【解答】解:根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x<2),图象为:,故选B.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为﹣4.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】由|x﹣y+2|﹣=0,根据非负数的性质,可求得x﹣y与x+y的值,继而由x2﹣y2=(x﹣y)(x+y)求得答案.【解答】解:∵|x﹣y+2|﹣=0,∴x﹣y+2=0,x+y﹣2=0,∴x﹣y=﹣2,x+y=2,∴x2﹣y2=(x﹣y)(x+y)=﹣4.故答案为:﹣4.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.【考点】解一元一次不等式组;负整数指数幂;在数轴上表示不等式的解集.【分析】根据不等式组,和数轴可以得到a、b的值,从而可以得到b﹣a的值.【解答】解:,由①得,x≥﹣a﹣1,由②得,x≤b,由数轴可得,原不等式的解集是:﹣2≤x≤3,∴,解得,,∴,故答案为:.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为﹣6.【考点】反比例函数系数k的几何意义;菱形的性质.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,==π,∴S扇形B′OBS 扇形C ′OC ==,∵∴阴影部分面积=S 扇形B ′OB +S △B ′C ′O ﹣S △BCO ﹣S 扇形C ′OC =S 扇形B ′OB ﹣S 扇形C ′OC =π﹣=π;故答案为:π.18.如图,在正方形纸片ABCD 中,EF ∥AD ,M ,N 是线段EF 的六等分点,若把该正方形纸片卷成一个圆柱,使点A 与点D 重合,此时,底面圆的直径为10cm ,则圆柱上M ,N两点间的距离是 cm .【考点】圆柱的计算.【分析】根据题意得到EF=AD=BC ,MN=2EM ,由卷成圆柱后底面直径求出周长,除以6得到EM 的长,进而确定出MN 的长即可.【解答】解:根据题意得:EF=AD=BC ,MN=2EM=EF ,∵把该正方形纸片卷成一个圆柱,使点A 与点D 重合,底面圆的直径为10cm , ∴底面周长为10πcm ,即EF=10πcm ,则MN=cm ,故答案为:.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x ﹣1)÷,其中x=,y=. 【考点】分式的化简求值.【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:(﹣x ﹣1)÷,=(﹣﹣)×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了150个评价;②请将图1补充完整;③图2中“差评”所占的百分比是13.3%;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据×100%可得;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,通过概率公式计算可得.【解答】解:(1)①小明统计的评价一共有:=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是.故答案为:(1)①150;③13.3%.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【考点】一元二次方程的应用.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W 的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.22.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【考点】解直角三角形的应用.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.【考点】切线的性质;三角形的外接圆与外心.【分析】(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可解决问题.(2)利用面积法首先证明==,再证明△BEO∽△PEB,得=,即==,由此即可解决问题.【解答】(1)证明:连接OB.∵PB是⊙O切线,∴OB⊥PB,∴∠PBO=90°,∴∠PBD+∠OBD=90°,∵OB=OD,∴∠OBD=∠ODB,∵OP⊥BC,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠PBD=∠EBD,∴BD平分∠PBC.(2)解:作DK⊥PB于K,∵==,∵BD平分∠PBE,DE⊥BE,DK⊥PB,∴DK=DE,∴==,∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,∴∠OBE=∠P,∵∠OEB=∠BEP=90°,∴△BEO∽△PEB,∴=,∴==,∵BO=1,∴OE=,∵OE⊥BC,∴BE=EC,∵AO=OC,∴AB=2OE=.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,易证AP=EF,GH=BQ,△PDA∽△QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,易证四边形ABSR是矩形,由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,在Rt△CSD中根据勾股定理可得x2+y2=25①,在Rt△ARD中根据勾股定理可得(5+x)2+(10﹣y)2=100②,解①②就可求出x,即可得到AR,问题得以解决.【解答】解:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QA T+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB,∴=,∴=;(2)如图2,∵EF⊥GH,AM⊥BN,∴由(1)中的结论可得=,=,∴==.故答案为;(2)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC ∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【考点】二次函数综合题.【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积.(3)先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值.【解答】解:(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,==.∴当m=时,MN最大。
2014年山东烟台高级中等学校招生考试数学试卷

2014年烟台市初中学生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.-3的绝对值等于()A.-3B.3C.±3D.-2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()3.烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元4.如图是一个正方体截去一角后得到的几何体,它的主视图是()5.按如图所示的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=-2B.x=3,y=-3C.x=-4,y=2D.x=-3,y=-96.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°7.如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A.1.5B.3C.3.5D.4.58.关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5B.1C.5D.-19.将一组数,,3,2,,…,3,按下面的方法进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)10.如图,将△ABC绕点P顺时针旋转90°得到△A'B'C',则点P的坐标是()A.(1,1)B.(1,2)C.(1,3)D.(1,4)11.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2.下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6个小题,每小题3分,满分18分)13.(-1)0+-=.14.函数y=-中,自变量x的取值范围是.15.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.16.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是.17.如图所示,正六边形ABCDEF内接于☉O,若☉O的半径为4,则阴影部分的面积等于.18.如图,∠AOB=45°,点O1在OA上,OO1=7,☉O1的半径为2.点O2在射线OB上运动,且☉O2始终与OA相切,当☉O2和☉O1相切时,☉O2的半径等于.三、解答题(本大题共8个小题,满分66分)19.(本题满分6分)先化简,再求值:-÷---,其中x为数据0,-1,-3,1,2的极差.2014年世界杯足球赛6月12日—7月13日在巴西举行.某初中学校为了了解本校2400名学生对此次世界杯的关注程度,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和关注程度,分别绘成了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“特别关注”“一般关注”“偶尔关注”都统计成关注,那么全校关注本届世界杯的学生大约有多少名?(3)在这次调查中,初四年级共有甲、乙、丙、丁四人“特别关注”本届世界杯,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.小明坐于堤边垂钓.如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米.若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.22.(本题满分8分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连结AB,在线段DC上是否存在一点E,使△ABE的面积等于5.若存在,求出E点坐标;若不存在,请说明理由.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:如图,AB是☉O的直径,延长AB至P,使BP=OB.BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.求证:tanα·tan=.25.(本题满分10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连结AE和DF交于点P,请你写出AE与DF的关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连结AE和DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连结AE和DF交于点P.由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.26.(本题满分12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=.抛物线y=ax2-ax-a经过点B,与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连结ED.试说明ED∥AC的理由.答案全解全析:一、选择题1.B因为一个负数的绝对值是它的相反数,所以|-3|=3.2.D A选项是轴对称图形但不是中心对称图形,B选项是中心对称图形但不是轴对称图形,C选项是轴对称图形但不是中心对称图形,D选项既是轴对称图形又是中心对称图形.3.A5613亿元=5.613×103亿元=5.613×103×108元=5.613×1011元.4.C由主视图的定义可知C正确.5.D该运算程序写成等式为2x-y=3,把各选项代入验证,只有D符合.6.C∵∠AOM=∠CON,∠MAO=∠NCO,AM=CN,∴△AOM≌△CON,∴AO=CO,∴点O是菱形ABCD对角线的交点,∴BO⊥AC,∴∠OBC=90°-∠BCO=90°-∠DAC=90°-28°=62°.7.B∵AB=AD,∴∠ABD=∠ADB.∵四边形ABCD是等腰梯形,∴∠ABC=∠C,∠ADB=∠DBC,∴∠ABD=∠DBC=∠C,∵BD⊥CD,∴∠DBC+∠C=90°,∴∠C=60°,∠DBC=30°,∴BC=6,∵EF是梯形的中位线,∴MF是△DBC的中位线,∴FM=3.评析此题考查等腰梯形的性质、中位线的性质及角度的计算,渗透着边角之间的转化.关键就是30度角的计算,从而确定下底边的长.8.D设方程x2-ax+2a=0的两根分别为x1,x2,则+=(x1+x2)2-2x1x2=a2-2×2a=5,解得a=5或-1,经检验,只有-1符合题意.评析本题考查一元二次方程根与系数的关系.易错点是不易发现隐含条件Δ≥0.9.C最大的有理数是9,即=.由数的排列规律可以发现第n个数表示为,且每一行都是5个数,所以9是第27个数,在第6行、第2列的位置.故选C.评析此题考查数的排列规律及二次根式的化简.10.B分别连结AA'、CC',并分别作它们的垂直平分线,交点即为点P.评析此题考查旋转的性质,即对应点所连线段的垂直平分线的交点是旋转中心.11.B因为对称轴为直线x=2,所以-=2,所以4a+b=0,所以①正确;因为当x=-3时,9a-3b+c<0,所以9a+c<3b,所以②错误;因为a<0,b>0,c>0,4a+b=0,所以8a+7b+2c=-2b+7b+2c=5b+2c>0,所以③正确;因为当x>2时,y的值随x值的增大而减小,所以④错误.所以正确的有2个.故选B.12.A如图(1),当点P在AD边上时,作BE⊥AD于点E,y=BE·x,是正比例函数;图(1)图(2)如图(2),当点P在CD边上时,作DF⊥BA于点F,y=AB·DF,是一个定值;如图(3),当点P在BC边上时,作AG⊥BC于点G,y=AG·(2AD+CD-x),是一次函数,且y随x 的增大而减小.故选A.图(3)二、填空题13.答案2015解析原式=1+2014=2015.14.答案x≤1且x≠-2解析∵1-x≥0,x+2≠0,∴x≤1且x≠-2.15.答案12解析P(摸到白球)=球的总个数=,∴球的总个数=3÷=12.16.答案x<4解析根据题图可知,在交点P(4,-6)的左侧,y=kx-3的函数值大于y=2x+b的函数值,即kx-3>2x+b.17.答案π解析连结OD,由题意易知阴影部分的面积等于扇形OBCD的面积,所以阴影部分面积S==π.18.答案3或15解析根据题意知两圆只能外切,设两圆相切时,☉O2的半径为r,则r2+(7-r)2=(r+2)2,解得r=3或15,经检验都符合题意.评析考查圆与圆、圆与直线相切的性质,关键是运用位置关系构造方程.三、解答题19.解析原式=-÷----(1分)=-·--(2分)=-=-.(4分)∵x=2-(-3)=5,(5分)∴原式=-==.(6分)20.解析(1)四个年级被调查的人数由小到大排列为30,40,50,80.∴中位数是=45(人).(2分)(2)2400×(1-45%)=1320(人).∴该校关注本届世界杯的学生大约有1320人.(3分)(3)画树状图如下:(6分)由图可知,共有12种等可能结果,其中恰好是甲和乙的有2种结果.∴P(恰好是甲和乙)==.(7分)评析此题考查条形统计图和扇形统计图及概率计算,易错点是第(1)问中中位数的计算,需要先把数据从小到大排序.21.解析如图,延长OA交直线BC于点D.∵AO的倾斜角为60°,∴∠ODB=60°,∵∠ACD=30°,∴∠CAD=180°-∠ODB-∠ACD=90°.(1分)在Rt△ACD中,AD=AC·tan∠ACD=×=(米).(3分)∴CD=2AD=3米.(4分)又∵∠O=60°,∴△BOD为等边三角形.(5分)∴BD=OD=OA+AD=3+=4.5(米).(6分)∴BC=BD-CD=4.5-3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.(7分)22.解析(1)由题意得解得∴m,n的值分别为1,6.(3分)∴A(1,6),B(6,1).设反比例函数的表达式为y=,将A(1,6)代入y=,得k=xy=1×6=6.∴y=.(4分)(2)存在.(5分)设E(x,0)(1≤x≤6),则DE=x-1,CE=6-x.∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°.连结AE,BE.S△ABE=S梯形ABCD-S△ADE-S△BCE=(BC+AD)·DC-DE·AD-CE·BC=(1+6)×5-(x-1)×6-(6-x)×1=-x=5.(7分)∴x=5.∴E(5,0).(8分)评析第(1)问考查待定系数法求反比例函数解析式,第(2)问考查坐标系中三角形面积的计算方法,用梯形面积减去两个直角三角形的面积,从而找到思路.面积的计算是中考中的常见题型,大家要在复习中及时总结方法,积累解题经验.23.解析(1)设今年A型车每辆售价x元,则去年每辆售价(x+400)元.由题意得=-.(2分)解得x=1600.(3分)经检验,x=1600是所列方程的根.答:今年A型车每辆售价为1600元.(4分)(2)设车行新进A型车x辆,则B型车为(60-x)辆,获利y元.由题意,得y=(1600-1100)x+(2000-1400)(60-x),(5分)即y=-100x+36000.(6分)∵B型车的进货数量不超过A型车数量的2倍,∴60-x≤2x.∴x≥20.(7分)由y与x的关系式可知-100<0,∴y的值随x值的增大而减小.∴当x=20时,y的值最大.∴60-x=60-20=40(辆).答:当车行新进A型车20辆,B型车40辆时,这批车获利最大.(8分)24.证明连结AC.(1分)则∠A=∠POC=.(2分)∵AB是☉O的直径,∴∠ACB=90°,∴tan=.(3分)∵BD⊥BC,∴tanα=,(4分)又易知BD∥AC,∴△PBD∽△PAC.∴=.(6分)∵PB=OB=OA,∴==.(7分)∴tanα·tan=·==.(8分)评析此题涉及直径所对的圆周角是直角、三角形相似及锐角三角函数的知识,综合性较强.解题的关键是tan=的确定.25.解析(1)AE=DF,AE⊥DF.(1分)理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.又易知DE=CF,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠CDF.(2分)由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°,∴AE⊥DF.(3分)(2)是.(4分)(3)成立.(5分)理由:由(1)同理可证,AE=DF,∠DAE=∠CDF.延长FD交AE于点G,则∠CDF+∠ADG=90°.∴∠ADG+∠DAE=90°,∴AE⊥DF.(6分)(4)画出草图如图.(7分)由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧.(8分)设AD的中点为O,连结OC交弧于点P,此时CP的长度最小.在Rt△ODC中,OC===.(9分)∴线段CP的最小值为OC-OP=-1.(10分)评析这是一道探究性问题,前三问比较容易入手,考查正方形、三角形全等等知识,第(4)问利用90度圆周角所对的弦是直径构造圆,从而画出点P的运动轨迹是四分之一的圆,这一步是解决此问的关键.26.解析(1)把点B的坐标代入抛物线的表达式,得=a×22-2a-a.解得a=.(1分)∴抛物线的表达式为y=x2-x-.(2分)(2)连结CD.过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°.(3分)∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF.∵∠AOC=∠CFB=90°,∴△AOC∽△CFB.∴=.=.设OC=m,则CF=2-m,则有-解得m1=m2=1.∴OC=CF=1.(5分)对于y=x2-x-,当x=0时,y=-,∴OD=.∴BF=OD.∵∠DOC=∠BFC=90°,∴△OCD≌△FCB.∴DC=CB,∠OCD=∠FCB.(6分)∴点B,C,D在同一条直线上.(7分)∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点的抛物线上.(8分)(3)过点E作EG⊥y轴于点G.设直线AB的表达式为y=kx+b(k≠0),则解得k=-,b=.∴y=-x+.(9分)代入抛物线表达式后解得x=±2.当x=-2时,y=-x+=-×(-2)+=.∴点E的坐标为-.(10分)∵tan∠EDG===,∴∠EDG=30°.∵tan∠OAC===,∴∠OAC=30°.∴∠OAC=∠EDG,∴ED∥AC.(12分)评析此题第(1)问考查了待定系数法求二次函数解析式;第(2)问考查了点关于直线对称知识;第(3)问通过运用三角函数确定角度大小从而判定两直线平行.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014山东烟台中考数学试卷(解析版)
一、选择题(本题共12小题,每小题3分,满分36分)
1.(2014年山东烟台)﹣3的绝对值等于()
A.﹣3B.3C.±3D.﹣
分析:根据绝对值的性质解答即可.
解:|﹣3|=3.故选B.
点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.(2014年山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是()
A.B.C.D.
分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
解:A、∵此图形旋转180°后不能与原图形重合,∵此图形不是中心对称图形,是轴对称图形,故此选项错误;
B、∵此图形旋转180°后不能与原图形重合,∵此图形不是中心对称图形,也不是轴对称图形,故此选项错误;
C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;
D、∵此图形旋转180°后能与原图形重合,∵此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.
点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(2014年山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,
实现了经济平稳较快发展.2013年全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为()
A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(2014年山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是()
A.B.C.D.
分析:根据主视图是从正面看到的图形判定则可.
解:从正面看,主视图为.故选:C.
点评:本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键.
5.(2014年山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是()
A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9
分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.
解:由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;
B、x=3时,y=3,故本选项错误;
C、x=﹣4时,y=﹣11,故本选项错误;
D、x=﹣3时,y=﹣9,故本选项正确.故选D.
点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.
6.(2014年山东烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∵DAC=28°,则∵OBC的度数为()
A.28°B.52°C.62°D.72°
分析:根据菱形的性质以及AM=CN,利用ASA可得∵AMO∵∵CNO,可得AO=CO,然后可得
BO∵AC,继而可求得∵OBC的度数.
解:∵四边形ABCD为菱形,∵AB∵CD,AB=BC,
∵∵MAO=∵NCO,∵AMO=∵CNO,
在∵AMO和∵CNO中,∵,∵∵AMO∵∵CNO(ASA),
∵AO=CO,∵AB=BC,∵BO∵AC,∵∵BOC=90°,∵∵DAC=28°,
∵∵BCA=∵DAC=28°,∵∵OBC=90°﹣28°=62°.故选C.
点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
7.(2014年山东烟台)如图,已知等腰梯形ABCD中,AD∵BC,AB=CD=AD=3,梯形中位线EF 与对角线BD相交于点M,且BD∵CD,则MF的长为()
A. 1.5B.3C. 3.5D. 4.5
分析:根据等腰梯形的性质,可得∵ABC与∵C的关系,∵ABD与∵ADB的关系,根据等腰三角形的性质,可得∵ABD与∵ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.
解:已知等腰梯形ABCD中,AD∵BC,AB=CD=AD=3,。