最优化方法
最优化方法

随机梯度下降每次迭代只使用一个样本,迭代 一次计算量为n 2 ,当样本个数m很大的时候, 随机梯度下降迭代一次的速度要远高于批量梯 度下降方法。 两者的关系可以这样理解:随机 梯度下降方法以损失很小的一部分精确度和增 加一定数量的迭代次数为代价,换取了总体的 优化效率的提升。增加的迭代次数远远小于样 本的数量。
2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods)
牛顿法(Newton's method) 牛顿法是一种在实数域和复数域上近似求解方程 的方法。方法使用函数 f ( x ) 的泰勒级数的前 面几项来寻找方程 f ( x ) = 0 的根。牛顿法最大 的特点就在于它的收敛速度很快。
具体步骤:
首先,选择一个接近函数 f ( x ) 零点的 x 0 , 计算相应的 f ( x 0 ) 和切线斜率 f ' (x 0 ) (这 里 f ' 表示函数 f 的导数)。然后我们计算穿 过点 (x 0 , f (x 0 )) 并且斜率为 f '(x 0 ) 的直线 和 x 轴的交点的 x 坐标,也就是求如下方程的 解:
批量梯度下降法(Batch Gradient Descent,BGD)
(1)将J(theta)对theta求偏导,得到每个theta对应 的的梯度:
(2)由于是要最小化风险函数,所以按每个参数 theta的梯度负方向,来更新每个theta:
(3)从上面公式可以注意到,它得到的是一个全 局最优解,但是每迭代一步,都要用到训练集 所有的数据,如果m很大,那么可想而知这种 方法的迭代速度会相当的慢。所以,这就引入 了另外一种方法——随机梯度下降。 对于批量梯度下降法,样本个数m,x为n维向 量,一次迭代需要把m个样本全部带入计算, 迭代一次计算量为m*n 2 。
最优化方法

最优化方法1. 简介最优化方法是一种通过调整变量值以最小化或最大化某个目标函数来优化系统性能的数学方法。
最优化方法广泛应用于各个领域,包括经济学、工程学、计算机科学等。
本文将介绍最优化方法的基本概念、常用算法以及其在实际问题中的应用。
2. 最优化问题最优化问题可以分为无约束最优化和约束最优化问题。
无约束最优化问题是在没有任何限制条件的情况下,寻找使目标函数值最小或最大的变量值。
约束最优化问题则在一定的约束条件下寻找最优解。
在最优化问题中,目标函数通常是一个多元函数,而变量则是目标函数的输入参数。
最优化的目标可以是最小化或最大化目标函数的值。
常见的优化问题包括线性规划、非线性规划、整数规划等。
3. 常用最优化算法3.1 梯度下降法梯度下降法是最常用的最优化算法之一。
它通过计算目标函数相对于变量的梯度(即偏导数),以负梯度方向更新变量值,逐步接近最优解。
梯度下降法的优点是简单易实现,但可能收敛速度较慢,且容易陷入局部最优解。
3.2 牛顿法牛顿法是一种基于目标函数的二阶导数(即海森矩阵)信息进行更新的最优化算法。
相较于梯度下降法,牛顿法的收敛速度更快,并且对于某些非凸优化问题更具优势。
然而,牛顿法的计算复杂度较高,且可能遇到数值不稳定的问题。
3.3 共轭梯度法共轭梯度法是一种用于解决线性方程组的最优化算法。
它利用共轭方向上的信息以减少最优化问题的迭代次数。
共轭梯度法适用于大规模线性方程组的求解,并且在非线性优化问题中也得到了广泛应用。
3.4 遗传算法遗传算法是一种通过模拟生物进化过程寻找最优解的优化算法。
它通过交叉、变异等操作生成新的解,并通过适应度评估筛选出优秀的解。
遗传算法适用于搜索空间较大、复杂度较高的优化问题。
4. 最优化方法的应用最优化方法在各个领域都有广泛的应用。
在经济学领域,最优化方法可以用于优化生产资源的配置、最小化成本或最大化利润等问题。
它可以帮助决策者制定最优的决策方案,提高效益。
数据科学中的最优化方法

数据科学中的最优化方法在数据科学领域,最优化方法是一种重要的数学工具,用于解决各种问题,如参数估计、模型选择、特征选择等。
最优化方法的目标是找到使得目标函数取得最大或最小值的变量取值。
本文将介绍几种常用的最优化方法,并探讨它们在数据科学中的应用。
一、梯度下降法梯度下降法是一种常用的优化算法,它通过迭代的方式逐步优化目标函数。
其基本思想是沿着目标函数的负梯度方向进行搜索,直到找到最优解。
梯度下降法有多种变体,如批量梯度下降法、随机梯度下降法和小批量梯度下降法等。
在数据科学中,梯度下降法广泛应用于模型参数的估计。
例如,在线性回归中,我们可以使用梯度下降法来估计回归系数,使得模型的预测误差最小化。
此外,梯度下降法还可以用于神经网络的训练、支持向量机的优化等。
二、牛顿法牛顿法是一种迭代的优化算法,它通过近似目标函数的二阶导数来更新变量的取值。
牛顿法的基本思想是通过二次近似来逼近目标函数,并求得使得二次近似函数取得最小值的变量取值。
牛顿法的收敛速度较快,但计算复杂度较高。
在数据科学中,牛顿法常用于解决非线性优化问题。
例如,在逻辑回归中,我们可以使用牛顿法来估计模型的参数,以最大化似然函数。
此外,牛顿法还可以用于求解无约束优化问题、非线性方程组的求解等。
三、拟牛顿法拟牛顿法是一种改进的牛顿法,它通过近似目标函数的梯度来更新变量的取值。
拟牛顿法的基本思想是通过一系列的迭代步骤来逼近目标函数,并求得最优解。
拟牛顿法的计算复杂度较低,收敛速度较快。
在数据科学中,拟牛顿法常用于解决大规模优化问题。
例如,在深度学习中,我们可以使用拟牛顿法来训练神经网络,以最小化损失函数。
此外,拟牛顿法还可以用于求解约束优化问题、非线性方程组的求解等。
四、遗传算法遗传算法是一种模拟自然进化过程的优化算法,它通过模拟生物进化的过程来求解最优解。
遗传算法的基本思想是通过选择、交叉和变异等操作来不断改进种群的适应度,并逐步逼近最优解。
遗传算法具有全局搜索能力,但计算复杂度较高。
第1章最优化方法的基本知识

Pattern Recognition and Intelligent System Institute, BIT
最优化方法的地位
为应用数学的一个分支,是新兴的数学理论之一; 是现代工程分析最佳设计的四种主要方法之一:
有限元分析 将问题从几何上看作有限个小单元(结点) 将问题从几何上看作有限个小单元(结点)相互连接而成的集 合体,使连续体离散化,然后用结构矩阵分析的方法处理, 合体,使连续体离散化,然后用结构矩阵分析的方法处理,得 到一组以结点场量为未知量的代数方程组, 到一组以结点场量为未知量的代数方程组,再用计算机及相应 最优化方法 无穷维系统,一般由偏微分方程、积分方程、 无穷维系统,一般由偏微分方程、积分方程、泛函微分方程 的计算方法,可以得到需求结点处未知量的近似值。 的计算方法,可以得到需求结点处未知量的近似值。 或抽象空间中的微分方程所描述。 或抽象空间中的微分方程所描述。我国学者在细长体弹性振 动系统的建模和振动控制、振动系统的谱分析、 动系统的建模和振动控制、振动系统的谱分析、能控性和反 动态设计 一般地, 一般地,系统的数学模型与实际系统存在着参数或结构等方 由于实际系统的复杂性,人们往往很难(或不可能 由于实际系统的复杂性,人们往往很难 人口系统控制、人 馈镇定、一般无穷维系统的极大值原理、或不可能)从基本的 人口系统控制、 馈镇定、一般无穷维系统的极大值原理、或不可能 从基本的 面的差异, 面的差异,而我们设计的控制律大多都是基于系统的数学模 物理定律出发直接推导出系统的数学模型, 物理定律出发直接推导出系统的数学模型,这就需要利用可 口预测和控制等方面都做出了重要贡献。 口预测和控制等方面都做出了重要贡献。 为了保证实际系统对外界干扰、 型,为了保证实际系统对外界干扰 以量测的系统输入和输出数据, 、系统的不确定性等有尽 以量测的系统输入和输出数据,来构造系统内部结构及参数 数值仿真 可能小的敏感性,导致了研究系统鲁棒控制问题。 可能小的敏感性,导致了研究系统鲁棒控制问题 的估计,并研究估计的可靠性和精度等问题, 。 的估计,并研究估计的可靠性和精度等问题,这就是系统辨 近几年,非线性系统、时滞饱和系统、 近几年,非线性系统、时滞饱和系统、时滞故障系统的鲁棒 识的任务。系统辨识领域有3个热点研究方向 个热点研究方向: 识的任务。系统辨识领域有 个热点研究方向 综合控制问题已经成为新的热点研究方向, 综合控制问题已经成为新的热点研究方向,而且已经有不少 1.基于鲁棒控制数学模型要求的鲁棒辨识; 基于鲁棒控制数学模型要求的鲁棒辨识; 基于鲁棒控制数学模型要求的鲁棒辨识 应用事例。例如,核反应堆的温度跟踪鲁棒控制、 应用事例。例如,核反应堆的温度跟踪鲁棒控制、导弹系统 2.基于特殊信号驱动下的系统辨识; 基于特殊信号驱动下的系统辨识; 基于特殊信号驱动下的系统辨识 Pattern Recognition and Intelligent System Institute, 。 的鲁棒自适应最优跟踪设计、机器人操作的鲁棒神经控制。 的鲁棒自适应最优跟踪设计、机器人操作的鲁棒神经控制。 3.基于智能信息处理的非线性系统辨识 BIT 基于智能信息处理的非线性系统辨识。 基于智能信息处理的非线性系统辨识
五种最优化方法

精心整理五种最优化方法1.最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);341.22.2.11232.23.3.11233.24.模式搜索法(步长加速法)4.1简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min(f_1(x),f_2(x),...,f_k(x))s.t.g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
6.1遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。
种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。
2.适应度与适应度函数适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。
适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。
该函数就是遗传算法中指导搜索的评价函数。
6.2遗传算法基本流程遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。
最优化方法全部课件

f x0
据此有
ⅰ) 等号成立当且仅当 p 与f x0 同方向或与 f x0
同方向。且当
p与
f x0
同方向时,f x0
p
取到最大值
f x0 。当 p 与 f x0 同方向时,f x0 取到最小值 p
f x0
第1章 预备知识
1.1 经典极值问题 1. 例子, 2. 数学模型 第一,无约束极值问题
min f x1, x2, , xn 或 max f x1, x2, , xn
解法:解方程组 第二,仅含等式约束的极值问题
min f x1, x2, , xn s.t. hi x1, x2, , xn 0, i 1, 2, ,l(l n)
p
思考:f x 与
f x f x f x
,
,,
的异同。
p
x1 x2
xn
根据极限理论,易见
若
f x0
p
0,则p方向是 f
x
在点
x0 处的上升方向;
若 f x0 0,则 p方向是 f x在点 p
x0
处的下降方向。
因此,方向导数的正负决定了函数值的升降。
例1.8 P19
几个常用函数的梯度公式
(1)若 f x C ,则 f x 0
(2) bT x b ;
(3) xTQx 2Qx ;
(4) xT x 2x .
,即 C 0 ;
2. Hesse矩阵
问:函数 f x 关于变量 x 的二阶导数又是什么?
1.5 梯度和Hesse矩阵
本段讨论都基于对函数 f x 可微的假定。
五种最优化方法

五种最优化方法 Prepared on 22 November 2020五种最优化方法1. 最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
原理和步骤3. 最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4. 模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)). g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
最优化方法求解技巧

最优化方法求解技巧最优化问题是数学领域中的重要课题,其目标是在给定一组约束条件下寻找使目标函数取得最大(或最小)值的变量取值。
解决最优化问题有多种方法,下面将介绍一些常用的最优化方法求解技巧。
1. 直接搜索法:直接搜索法是一种直接计算目标函数值的方法。
它的基本思路是在给定变量范围内,利用迭代计算逐步靠近最优解。
常用的直接搜索法包括格点法和切线法。
- 格点法:格点法将搜索区域均匀划分成若干个小区域,然后对每个小区域内的点进行计算,并选取最优点作为最终解。
格点法的优点是简单易行,但对于复杂的问题,需要大量的计算和迭代,时间复杂度较高。
- 切线法:切线法是一种基于目标函数的一阶导数信息进行搜索的方法。
它的基本思路是沿着目标函数的负梯度方向进行迭代搜索,直到找到最优解为止。
切线法的优点是收敛速度较快,但对于非光滑问题和存在多个局部最优点的问题,容易陷入局部最优。
2. 数学规划法:数学规划法是一种将最优化问题转化为数学模型的方法,然后借助已有的数学工具进行求解。
常用的数学规划法包括线性规划、非线性规划、整数规划等。
- 线性规划:线性规划是一种求解目标函数为线性函数、约束条件为线性等式或线性不等式的优化问题的方法。
常用的线性规划求解技巧包括单纯形法和内点法。
线性规划的优点是求解效率高,稳定性好,但只能处理线性问题。
- 非线性规划:非线性规划是一种求解目标函数为非线性函数、约束条件为非线性等式或非线性不等式的优化问题的方法。
常用的非线性规划求解技巧包括牛顿法、拟牛顿法、遗传算法等。
非线性规划的优点是可以处理更广泛的问题,但由于非线性函数的复杂性,求解过程相对较复杂和耗时。
- 整数规划:整数规划是一种在变量取值为整数的前提下求解优化问题的方法,是线性规划和非线性规划的扩展。
由于整数规划的复杂性,常常利用分支定界法等启发式算法进行求解。
3. 近似法:近似法是一种通过近似的方法求解最优化问题的技巧,常用于处理复杂问题和大规模数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优化的发展简史
最优化是一个古老的课题。长期以来, 人们对最优化问题进行着探讨和研究。
公元前 500年古希腊在讨论建筑美学中就已 发现了长方形长与宽的最佳比例为1. 618,称为 黄金分割比。其倒数至今在优选法中仍得到广泛 应用。在微积分出现以前,已有许多学者开始研 究用数学方法解决最优化问题。例如阿基米德证 明:给定周长,圆所包围的面积为最大。这就是 欧洲古代城堡几乎都建成圆形的原因。
最优化方法的具体应用举例
② 最优计划:现代国民经济或部门经济的计划,直 至企业的发展规划和年度生产计划,尤其是农业 规划、种植计划、能源规划和其他资源、环境和 生态规划的制订,都已开始应用最优化方法。一个 重要的发展趋势是帮助领导部门进行各种优化决 策。
③最优管理:一般在日常生产计划的制订、调度和 运行中都可应用最优化方法。随着管理信息系统 和决策支持系统的建立和使用,使最优管理得到 迅速的发展。
最优化方法
最优化及最优化方法
最优化是一门应用十分广泛的学科,它研究 在有限种或无限种可行方案中挑选最优方案,构 造寻求最优解的计算方法。达到最优目标的方案, 称为最优方案,搜索最优方案的方法,称为最优 化方法。这种方法的数学理论,称为最优化理论。
最优化方法(也称做运筹学方法)是近几十年 形成的,它主要运用数学方法研究各种系统的优 化途径及方案,为决策者提供科学决策的依据。
最优化方法的具体应用举例
④最优控制:主要用于对各种控制系统的优化。 例如,导弹系统的最优控制,能保证用最少燃料 完成飞行任务,用最短时间达到目标;再如飞机、 船舶、电力系统等的最优控制,化工、冶金等工 厂的最佳工况的控制。计算机接口装置不断完善 和优化方法的进一步发展,还为计算机在线生产 控制创造了有利条件。最优控制的对象也将从对 机械、电气、化工等硬系统的控制转向对生态、 环境以至社会经济系统的控制。
最优各种有组织系统 的管理问题及其生产经营活动。最优化方法的目 的在于针对所研究的系统,求得一个合理运用人 力、物力和财力的最佳方案,发挥和提高系统的 效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经 营的日益发展,最优化方法已成为现代管理科学 的重要理论基础和不可缺少的方法,被人们广泛 地应用到空间技术、军事科学、电子工程、通讯 工程、自动控制、系统识别、资源分配、计算数 学、公共管理、经济管理等各个领域,发挥着越 来越重要的作用。
最优化的发展简史
第二次世界大战前后,由于军事上的需要和 科学技术和生产的迅速发展,许多实际的最优化 问题已经无法用古典方法来解决,这就促进了近 代最优化方法的产生。
近代最优化方法的形成和发展过程中最重要 的事件有:
1847年法国数学家Cauchy研究了函数值沿什么方向下 降最快的问题,提出最速下降法。
最优化的发展简史
但是最优化方法真正形成为科学方法则在17世 纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所 创建的微积分中,提出求解具有多个自变量的实 值函数的最大值和最小值的方法,后来又出现 Lagrange乘数法。以后又进一步讨论具有未知 函数的函数极值,从而形成变分法。这一时期的 最优化方法可以称为古典最优化方法。
最优化方法的具体应用举例
最优化一般可以分为最优设计、最优计划、最 优管理和最优控制等四个方面。
① 最优设计:世界各国工程技术界,尤其是飞机、造船、机械、 建筑等部门都已广泛应用最优化方法于设计中,从各种设 计参数的优选到最佳结构形状的选取等,结合有限元方法 已使许多设计优化问题得到解决。一个新的发展动向是最 优设计和计算机辅助设计相结合。电子线路的最优设计是 另一个应用最优化方法的重要领域。配方配比的优选方面 在化工、橡胶、塑料等工业部门都得到成功的应用,并向 计算机辅助搜索最佳配方、配比方向发展(见优选法)。
最优化方法包括的内容很广泛,如线 性规划、非线性规划、整数规划、几何规 划、动态规划、随机规划、多目标规划、 组合优化(在给定有限集的所有具备某些条件的
子集中,按某种目标找出一个最优子集的一类数
学规划)等等。
几何规划
非线性规划的一个分支,是最有效的最优化的方法之一。 几何规划最初是由数学家R.J.达芬和 E.L.彼得森及C.M.查 纳等人于1961年在研究工程费用极小化问题基础上提出 的,直到1967年《几何规划》一书出版后才正式定名。 几何规划的数学基础是G.H.哈代的平均理论。由于几何 平均不等式的关键性作用,几何规划由此得名。几何规 划的目标函数和约束条件均由广义多项式构成 ,这是一 类特殊的非线性规划,利用其对偶原理,可以把高度非 线性问题的求解转化为具有线性约束的优化问题求解, 使计算大为简化。几何规划理论研究和算法软件开发、 发展都很快,并且在化工、机械、土木、电气、核工程 等部门的工程优化设计和企业管理、资源分配、环境保 护以及技术经济分析等方面都得到广泛应用。
整数规划
整数规划是指一类要求问题中的全部或一部分变量为 整数的数学规划。是近三十年来发展起来的、规划论 的一个分支. 整数规划问题是要求决策变量取整数值的 线性规划或非线性规划问题。
1939年前苏联数学家Л.B.Канторович提出 了解决下料问题和运输问题这两种线性规划问题的求解 方法。
最优化的发展简史
以苏联 Л.В.康托罗维奇和美国G.B.丹齐克为 代表的线性规划;
以美国库恩和塔克尔为代表的非线性规划;以 美国R.贝尔曼为代表的动态规划;
以苏联Л.С.庞特里亚金为代表的极大值原理 等。这些方法后来都形成体系,成为近代很活跃 的学科,对促进运筹学、管理科学、控制论和系 统工程等学科的发展起了重要作用。
最优化的发展简史
直到20世纪30年代,最优化这个古老课题并 未形成独立的有系统的学科。
20世纪40年代以来,由于生产和科学研究 突飞猛进地发展,特别是电子计算机日益广泛使 用,使最优化问题的研究不仅成为一种迫切需要, 而且有了求解的有力工具。因此最优化理论和算 法迅速发展起来,形成一个新的学科。
最优化方法的内容