2014年高考(湖南卷)文科数学
2014年高考数学试卷,湖南高考文科数学试卷

【全国高考数学试卷】2014年普通高等学校招生全国统一考试(湖南卷)数学(文)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤ 200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤3.对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==4.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -=6.若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D -7.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( ) A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-8.一块石材表示的几何体的三视图如图2所示,将学科 网石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.49.若1201x x <<<,则( )A.2121ln ln xxe e x x ->-B.2121ln ln xxe e x x -<-C.1221xxx e x e >D.1221xxx e x e <10.在平面直角坐标系中,O 为原点,()1,0A -,()03B ,,()30C ,,动点D 满足 1CD =u u u r ,则OA OB OD ++u u u r u u u r u u u r的取值范围是( )A.[]46,B.19-119+1⎡⎤⎣⎦,C.2327⎡⎤⎣⎦, D.7-17+1⎡⎤⎣⎦,二.填空题:本大题共5小题,每小题5分,共25分. 11.复数23ii+(i 为虚数单位)的实部等于_________.12.在平面直角坐标系中,曲线2 22:212x tCy t⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数)的普通方程为___________.13.若变量yx,满足约束条件⎪⎩⎪⎨⎧≥≤+≤14yyxxy,则yxz+=2的最大值为_________.14.平面上以机器人在行进中始终保持与点()01,F的距离和到直线1-=x的距离相等.若机器人接触不到过点()01,-P且斜率为k的直线,则k的取值范围是___________.15.若()()ax ex f x++=1ln 3是偶函数,则=a____________.三、解答题:本大题共6小题,学科 网共75分.解答应写出文字说明,证明过程或演算过程. 16.(本小题满分12分)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (I )求数列{}n a 的通项公式;(II )设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.17.(本小题满分12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年 研发新产品的结果如下:()()()()()()()()()()()()()()()b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ρρρρρρρρρρ 其中a a ρ,分别表示甲组研发成功和失败;b b ρ,分别表示乙组研发成功和失败.(I )若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研 发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(II )若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率. 18.(本小题满分12分) 如图3,已知二面角MN αβ--的大小为60o ,菱形ABCD 在面β内,,A B 两点在棱MN 上,60BAD ∠=o ,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.19.(本小题满分13分)如图4,在平面四边形ABCD 中,32,2,7,1,π=∠===⊥ADC EA EC DE AB DA , 3π=∠BEC(1)求CED ∠sin 的值; (2)求BE 的长20.(本小题满分13分)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b -=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=u u u r u u u r u u u r?证明你的结论.21.(本小题满分13分) 已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<L。
2014年高考湖南文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(湖南卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年湖南,文1,5分】设命题2:,10p x R x ∀∈+>,则p ⌝为( )(A )200,10x R x ∃∈+> (B )200,10x R x ∃∈+≤ (C )200,10x R x ∃∈+< (D )200,10x R x ∀∈+≤ 【答案】B【解析】全称命题的否定是特称命题,所以命题p 的否定为200,10x R x ∃∈+≤,故选B . (2)【2014年湖南,文2,5分】已知集合{|2},{|13}A x x B x x =>=<<,则A B =( )(A ){|2}x x > (B ){|1}x x > (C ){|23}x x << (D ){|13}x x << 【答案】C【解析】由题可得{|23}A B x x =<<,故选C .(3)【2014年湖南,文3,5分】对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )(A )123p p p =< (B)231p p p =< (C )132p p p =< (D )123p p p == 【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D . (4)【2014年湖南,文4,5分】下列函数中,既是偶函数又在区间(),0-∞上单调递增的是( )(A )21()f x x =(B )2()1f x x =+ (C )3()f x x = (D)()2xf x -=【答案】A【解析】根据函数奇偶性的判断可得选项A 、B 为偶函数,C 为奇函数,D 为非奇非偶函数,所以排除C 、D 选项.由二次函数的图像可得选项B 在(),0-∞是单调递减的,根据排除法选A .因为函数2y x =在(),0-∞是单调递减的且1y x=在()0,+∞是单调递增的,所以根据复合函数单调性的判断同增异减可得选项A 在(),0-∞是单调递减的,故选A .(5)【2014年湖南,文5,5分】在区间[]2,3-上随机选取一个数X ,则1X ≤的概率为( )(A )45 (B)35 (C )25 (D )15【答案】B【解析】在[]2,3-上符合1X ≤的区间为[]2,1-,因为[]2,3-的区间长度为5且区间[]2,1-的区间长度为3,所以根据几何概型的概率计算公式可得35p =,故选B . (6)【2014年湖南,文6,5分】若圆221:1C x y +=21x=与圆222:680C x y x y m +--+=外切,则m =( )(A )21 (B )19 (C )9 (D )11- 【答案】C【解析】因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以25025m m ->⇒<且圆2C的圆心为()3,4,半径为25m -,根据圆和圆外切的判定可得()()2230401259m m -+-=+-⇒=,故选C .(7)【2014年湖南,文7,5分】执行如图所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )(A )[]6,2-- (B)[]5,1-- (C )[]4,5- (D )[]3,6- 【答案】D【解析】当[]2,0t ∈-时,运行程序如下:(]2211,9t t =+∈,(]32,6S t =-∈-,当[]0,2t ∈时,(]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D .(8)【2014年湖南,文8,5分】一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于( )(A)1 (B )2 (C )3 (D )4 【答案】B 【解析】由图可得该几何体为三棱柱,因为正视图、侧视图和俯视图的内切圆半径最小的是正视图(直角三角形)所对应的2121ln ln x x e x x x -<- C.内切圆,所以最大球的半径为正视图直角形内切 圆的半径r ,则2286862r r r -+-=+⇒=,故选B .(9)【2014年湖南,文9,5分】若1201x x <<<,则( )(A )2121ln ln x x e e x x ->- (B )2121ln ln x x e e x x -<- (C )1221x x x e x e > (D )1221x x x e x e < 【答案】C【解析】设()ln x f x e x =-,则(]0,1x ∈时,()1xf x e x'=-的符号不确定,()f x ∴的单调性不确定.设()x e g x x =,则()0,1x ∈时,()()210xx eg x x -'=<,()g x ∴在()0,1上单调递减,()()1212122112x x x x e e g x g x x e x e x x ∴<⇒<⇒<,故选C .(10)【2014年湖南,文10,5分】在平面直角坐标系中,O 为原点,(1,0),(03),(30)A B C -,,,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( )(A)[4,6] (B )[19119+1]-, (C )[2327],(D )[717+1]-, 【答案】D【解析】点D 的轨迹是以C 为圆心的单位圆,设()[)()3cos ,sin 0,2D θθθπ+∈,则OA OB OD ++()()()223cos 1sin 3822cos 3sin θθθθ=+-++=++.因为2cos 3sin θθ+的取值范围是()()222223,237,7⎡⎤⎡⎤-++=-⎢⎥⎣⎦⎣⎦,故827,82771,71OA OB OD ⎡⎤⎡⎤++∈-+=-+⎣⎦⎢⎥⎣⎦,故选D . 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年湖南,文11,5分】复数23i i +(i 为虚数单位)的实部等于 .【答案】3-【解析】由题可得所以23i 3i i +=--,3i --的实部为3-.(12)【2014年湖南,文12,5分】在平面直角坐标系中,曲线222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为 .【答案】10x y --= 【解析】联立222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩,消t 可得110x y x y -=⇒--=.(13)【2014年湖南,文13,5分】若变量y x ,满足约束条件41y xx y y ≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为 .【答案】7【解析】作出不等式组41y xx y y ≤⎧⎪+≤⎨⎪≥⎩表示的区域如下,则根据线性规划的知识可得目标函数2z x y =+在点()3,1处取得最大值7.(14)【2014年湖南,文14,5分】平面上以机器人在行进中始终保持与点(1,0)F 的距离和到直 线1x =-的距离相等.若机器人接触不到过点()10P -,且斜率为k 的直线,则k 的取值范围是 . 【答案】()(),11,-∞-+∞【解析】由题设知机器人在以点(1,0)F 为焦点的抛物线24y x =上,且()1y k x =+与抛物线24y x =无交点,()22441y xy y k k y k x ⎧=⎪⇒=⋅+⇒⎨=+⎪⎩方程204y k y k ⋅-+=无实根,则0k ≠且2101k k ∆=-<⇒<-或1k >, 所以()(),11,k ∈-∞-+∞.(15)【2014年湖南,文15,5分】若()()3ln 1xf x e ax =++是偶函数,则a = .【答案】23-【解析】因为()f x 为偶函数,所以()()()()33ln 1ln 1x x f x f x e ax e ax --=⇒+-=++⇒()()333ln 13ln 1322x x e x ax e ax x ax a +--=++⇒-=⇒=-.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(16)【2014年湖南,文16,12分】已知数列{}n a 的前n 项和22n n nS n N *+=∈,.(1)求数列{}n a 的通项公式;(2)设2(1)n ann n b a =+-,求数列{}n b 的前2n 项和.解:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S n -=-=,∴*()n a n n N =∈. (2)由题意得:2(1)2(1)n a n n n n n b a n =+-=+-,∴数列{}n b 的前2n 项和2n T 为22212(222)(12342)22n n n T n n +=++++-+-+-+=-+. (17)【2014年湖南,文17,12分】某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下: (,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为102==153x 甲.方差为2221222=[(1)10(0)5]15339S -⨯+-⨯=甲;乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为93==155x 乙.方差为2221336=[(1)9(0)6]155525S -⨯+-⨯=乙 22><x x S S 甲乙甲乙,,∴甲组的研发水平优于乙组的研发水平.(2)记E ={恰有一组研发成功},在所抽得的15个结果中,恰有一组研发成功的结果是(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b 共有7个,根据古典概型的概率计算公式可得()715P E =. (18)【2014年湖南,文18,12分】如图,已知二面角MN αβ--的大小为60°,菱形ABCD在面β内,,A B 两点在棱MN 上,BAD ∠=60°,E 是AB 的中点,DO ⊥面α,垂足为 O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值. 解:(1)∵DO α⊥,AB α⊂,∴DO AB ⊥.∵四边形ABCD 问菱形,60BAD ∠=︒,连结BD ,则ABD ∆为正三角形.又E 为AB 的中点,∴DE AB ⊥.而DO DE D =,∴AB ⊥平面ODE . (2)∵//BC AD ,∴ADO ∠是直线BC ,OD 所成的角. 由(1)知,AB ⊥平面ODE ,∴AB OE ⊥,AB DE ⊥,∴DEO ∠是二面角MN αβ--的平面角,∴60DEO ∠=︒.设2AB =,则2AD =,3DE =,3sin 602DO DE =︒=.连结AO ,则3cos 4DO ADO AD ∠==,∴异面直线BC ,OD 所成的角的余弦值为34.(19)【2014年湖南,文19,13分】如图,在平面四边形ABCD 中,DA AB ⊥,1DE =,7EC =,2EA =,23ADC π∠=,3BEC π∠=. (1)求sin CED ∠的值; (2)求BE 的长. 解:(1)在CDE ∆中,222+2cos EC CD DE CD DE EDC =-⋅⋅∠.即227+1+CD CD =,2+60CD CD -=,2CD ∴=(3CD =-舍去),设CED α∠=,sin sin EC CDD α=∠,即722sin sin 3πα=,21sin 7α∴=. (2)0<<3πα,21sin 7α=,27cos 7α∴=, 2227cos cos()cos cos +sin sin 33314AEB πππααα∴∠=-==, 在ABE ∆中,cos EAAEB BE ∠=,247cos 7/14EA BE AEB ∴===∠.(20)【2014年湖南,文20,13分】如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.解:(1)设2C 的焦距为22c ,则12222a c ==,∴121a c ==.23(,1)3P 在1C 上,∴2212123:()13y C b -=,213b =. 由椭圆定义知,2222223232()(11)()(11)2333a =+-+++=,∴23a =,2222222b a c =-=, ∴12,C C 的方程分别为22221,1332y y x x -=+=.(2)不存在符合题设条件的直线.①若l x ⊥轴,∵l 与2C 只有一个公共点,∴l 的方程为2x =或2x =-.当2x =时,易得()2,3A ,()2,3B-, ||22,||23OA OB AB +==,此时||||OA OB AB +≠.②若l 不垂直x 轴,设:l y kx m =+,代入双曲线方程整理得222(3)230k x k m x m ----=.当l 与1C 有两个交点()11,A x y ,()22,B x y 时,12223k mx x k +=-,212233m x x k +=-,于是222212121212233()()()3k m y y kx b kx b k x x km x x m k -=++=+++=-,再将y kx b =+代入椭圆方程整理得222(23)4260k x k m x m +++-=,∵l 与2C 只有一个公共点,∴由0∆=,可得2223k m =-,于是有22222212122222333323303333m k m k m k OA OB x x y y k k k k +--+--⋅=+=+==≠----∴2222||||||||40OA OB AB OA OB OB OA OA OB +-=+--=⋅≠,即||||OA OB AB +≠. 综合①②可知,不存在符合题设条件的直线.(21)【2014年湖南,文21,13分】已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第*()i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<.解:(1)()cos sin cos f x x x x x '=--,令()0f x '=,则*()x k k N π=∈. 当(2,2)()x k k k N πππ∈+∈时,()0f x '<,当(2,22)()x k k k N ππππ∈++∈时,()0f x '>,∴()f x 的单调减区间为(2,2)()k k k N πππ+∈, ()f x 的单调增区间为(2,22)()k k k N ππππ++∈. (2)由(1)知,()f x 在区间(0,)π上单调递减,∵()02f π=,∴12x π=.当*n N ∈时,∵1()()[(1)1][(1)(1)1]0n n f n f n n n πππππ+⋅+=-+⋅-++<, 且()f x 的图像是连续不断的,∴()f x 在区间(,)n n πππ+内至少有一个实根,又()f x 在区间(,)n n πππ+上是单调的,∴1n n x n πππ+<<+.由此可得 222222221211111111111[41][41]23(1)1223(2)(1)n x x x n n n ππ+++<+++++<+++++-⨯⨯--2222111111111162[41(1)()()](411)(6)22321113n n n n ππππ=++-+-++-=++-=-<<---- 综上可知,对一切*n N ∈,都有2221211123n x x x +++<.。
2014年普通高等学校招生全国统一考试(湖南卷)数学(文史类)

2014年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014湖南,文1)设命题p:∀x∈R,x2+1>0,则p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x∈R,x2+1≤0答案:B解析:因为全称命题的否定为特称命题,所以p为∃x0∈R,x02+1≤0.故选B.2.(2014湖南,文2)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}答案:C解析:由交集的概念,结合数轴(数轴略)可得A∩B={x|2<x<3}.故选C.3.(2014湖南,文3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案:D解析:由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3,故选D.4.(2014湖南,文4)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x答案:A解析:由偶函数的定义知,A,B为偶函数.A选项,f'(x)=-2x3在(-∞,0)恒大于0;B选项,f'(x)=2x在(-∞,0)恒小于0.故选A.5.(2014湖南,文5)在区间[-2,3]上随机选取一个数X,则X≤1的概率为()A.45B.35C.25D.15答案:B解析:由几何概型的概率公式可得P(X≤1)=3,故选B.6.(2014湖南,文6)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11答案:C解析:易知圆C1的圆心坐标为(0,0),半径r1=1.将圆C2化为标准方程(x-3)2+(y-4)2=25-m(m<25),得圆C2的圆心坐标为(3,4),半径r2=25-m(m<25).由两圆相外切得|C1C2|=r1+r2=1+25-m=5,解方程得m=9.故选C.7.(2014湖南,文7)执行如图所示的程序框图.如果输入的t∈[-2,2],则输出的S属于()A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]答案:D解析:当t ∈[-2,0)时,执行以下程序:t=2t 2+1∈(1,9],S=t-3∈(-2,6];当t ∈[0,2]时,执行S=t-3∈[-3,-1],因此S ∈(-2,6]∪[-3,-1]=[-3,6].故选D .8.(2014湖南,文8)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4答案:B 解析:由三视图可得原石材为如右图所示的直三棱柱A 1B 1C 1-ABC ,且AB=8,BC=6,BB 1=12.若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆半径相等,故半径r=6+8-102=2.故选B .9.(2014湖南,文9)若0<x 1<x 2<1,则( ) A .e x 2−e x 1>ln x 2-ln x 1 B .e x 2−e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2答案:C解析:设f (x )=e x -ln x ,则f'(x )=x ·e x -1.当x>0且x 趋近于0时,x ·e x -1<0;当x=1时,x ·e x -1>0,因此在(0,1)上必然存在x 1≠x 2,使得f (x 1)=f (x 2),因此A,B 不正确;设g (x )=e x x,当0<x<1时,g'(x )=(x -1)e xx 2<0,所以g (x )在(0,1)上为减函数.所以g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,所以x 2e x 1>x 1e x 2.故选C .10.(2014湖南,文10)在平面直角坐标系中,O 为原点,A (-1,0),B (0, 3),C (3,0),动点D 满足|CD |=1,则|OA +OB +OD |的取值范围是( ) A .[4,6] B .[ -1, +1] C .[2 3,2 7] D .[ 7-1, 7+1]答案:D解析:设动点D 的坐标为(x ,y ),则由|CD |=1得(x-3)2+y 2=1,所以D 点的轨迹是以(3,0)为圆心,1为半径的圆.又OA +OB +OD =(x-1,y+ ),所以|OA +OB +OD |= (x -1)2+(y + 3)2,故|OA +OB +OD |的最大值为(3,0)与(1,- )两点间的距离加1,即 1,最小值为(3,0)与(1,- )两点间的距离减1,即 1.故选D . 二、填空题:本大题共5小题,每小题5分,共25分. 11.(2014湖南,文11)复数3+i i 2(i 为虚数单位)的实部等于 .答案:-3解析:由题意可得3+i i2=3+i-1=-3-i,故复数的实部为-3. 12.(2014湖南,文12)在平面直角坐标系中,曲线C : x =2+ 2t ,y =1+ 2t(t 为参数)的普通方程为 . 答案:x-y-1=0解析:两式相减得,x-y=2-1,即x-y-1=0.13.(2014湖南,文13)若变量x ,y 满足约束条件 y ≤x ,x +y ≤4,y ≥1,则z=2x+y 的最大值为 .答案:7解析:不等式组表示的平面区域如图阴影部分所示,作直线l 0:2x+y=0并平移,当直线经过点A (3,1)时,在y 轴上的截距最大,此时z 取得最大值,且最大值为7. 14.(2014湖南,文14)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是 . 答案:(-∞,-1)∪(1,+∞)解析:由题意知,机器人行进的路线为抛物线y 2=4x.由题意知过点P 的直线为y=kx+k (k ≠0),要使机器人接触不到过点P 的直线,则直线与抛物线无公共点,联立方程得k4y 2-y+k=0,即Δ=1-k 2<0,解得k>1或k<-1. 15.(2014湖南,文15)若f (x )=ln(e 3x +1)+ax 是偶函数,则a= . 答案:-3解析:由题意得f (-x )=ln(e -3x +1)-ax=ln 1+e 3xe3x -ax=ln(1+e 3x )-ln e 3x -ax=ln(e 3x +1)-(3+a )x ,而f (x )为偶函数,因此f (-x )=f (x ),即ax=-(3+a )x ,所以a=-3.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)(2014湖南,文16)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.分析:在第(1)问中,通过S n 可求出a n ,在求解过程中要注意分n=1和n ≥2两种情况进行讨论;在第(2)问中,充分利用第(1)问的结论得到b n =2n +(-1)n n ,然后利用分组求和法分别计算(21+22+…+22n )和(-1+2-3+…+2n ),最后相加得到{b n }的前2n 项和. 解:(1)当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2+n −(n -1)2+(n -1)=n.故数列{a n }的通项公式为a n =n.(2)由(1)知,b n =2n +(-1)n n.记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A=21+22+ (22),B=-1+2-3+4-…+2n ,则A=2(1-22n )1-2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n ]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.17.(本小题满分12分)(2014湖南,文17)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ) 其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.分析:在第(1)问中,通过已知条件可分别写出甲、乙两组的成绩,然后利用平均数公式分别计算甲、乙两组的平均成绩,再结合方差公式得到甲、乙两组的方差,进而比较甲、乙两组的研发水平;在第(2)问中,充分利用古典概型的概率公式,转化为计算基本事件的个数,从而求得概率. 解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23; 方差为s 甲2=115 1-23 2×10+ 0-232×5 =29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为x 乙=9=3; 方差为s 乙2=115 1-352×9+ 0-352×6 =625. 因为x 甲>x 乙,s 甲2<s 乙2,所以甲组的研发水平优于乙组. (2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.故事件E 发生的频率为715.将频率视为概率,即得所求概率为P (E )=7.18.(本小题满分12分)(2014湖南,文18)如图,已知二面角α-MN-β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD=60°,E 是AB 的中点,DO ⊥面α,垂足为O. (1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.分析:在第(1)问中,可利用线面垂直的判定定理证明,由DO ⊥平面α可得到DO ⊥AB ,然后利用△ABD 为正三角形得到DE ⊥AB ,最后根据线面垂直的判定定理得出所证结论;在第(2)问中,充分利用第(1)问的结论AB ⊥平面ODE ,从而得到二面角α-MN-β的平面角,达到立几化平几的目的,即转化为求∠ADO 的余弦,然后利用解直角三角形的方法求出余弦值.解:(1)如图a,因为DO ⊥α,AB ⊂α,所以DO ⊥AB.图a连接BD ,由题设知,△ABD 是正三角形. 又E 是AB 的中点,所以DE ⊥AB. 而DO ∩DE=D ,故AB ⊥平面ODE.(2)因为BC ∥AD ,所以BC 与OD 所成的角等于AD 与OD 所成的角,即∠ADO 是BC 与OD 所成的角. 由(1)知,AB ⊥平面ODE ,所以AB ⊥OE.又DE ⊥AB ,于是∠DEO 是二面角α-MN-β的平面角,从而∠DEO=60°. 不妨设AB=2,则AD=2.易知DE= 3. 在Rt △DOE 中,DO=DE ·sin 60°=3. 连接AO ,在Rt △AOD 中,cos ∠ADO=DO=32=3.故异面直线BC 与OD 所成角的余弦值为34.19.(本小题满分13分)(2014湖南,文19)如图,在平面四边形ABCD 中,DA ⊥AB ,DE=1,EC= 7,EA=2,∠ADC=2π3,∠BEC=π3. (1)求sin ∠CED 的值; (2)求BE 的长.分析:在第(1)问中,通过已知条件,借助余弦定理得到CD 的长,然后在△CDE 中,利用正弦定理得到∠CED 的正弦值;在第(2)问中,利用∠CED 的正弦值求得其余弦值,然后利用角之间的关系表示出∠AEB ,进而表示出∠AEB 的余弦值,最后在Rt △EAB 中利用边角关系,求得BE 的长. 解:如题图,设∠CED=α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC. 于是由题设知,7=CD 2+1+CD ,即CD 2+CD-6=0. 解得CD=2(CD=-3舍去). 在△CDE 中,由正弦定理,得EC sin ∠EDC=CDsin α. 于是,sin α=CD ·sin 2π3EC =2× 327=217,即sin ∠CED= 21.(2)由题设知,0<α<π3,于是由(1)知,cos α= 1-sin 2α= 1-2149=2 77. 而∠AEB=2π-α,所以cos ∠AEB=cos 2π-α =cos 2πcos α+sin 2πsin α=-1cos α+ 3sin α=-1×2 7+ 3×21=7.在Rt △EAB 中,cos ∠AEB=EA =2,故BE=2= 714=4 7.20.(本小题满分13分)(2014湖南,文20)如图,O 为坐标原点,双曲线C 1:x 2a 12−y 2b 12=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P2 3,1 ,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA +OB |=|AB |?证明你的结论.分析:在第(1)问中,利用已知条件结合图形以及双曲线、椭圆中a ,b ,c 的几何意义,列出关于a 1,b 1,a 2,b 2的方程,得到它们的值,从而求出双曲线C 1、椭圆C 2的方程;在第(2)问中,首先对直线l 的斜率进行分类讨论,当斜率k 不存在时易得A ,B 两点的坐标,进而判断满足题设条件的直线l 不存在;当斜率k 存在时,可先设出l 的方程,然后代入曲线方程,利用根与系数的关系并结合向量的运算,依此判断满足题设条件的直线l 不存在. 解:(1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2.从而a 1=1,c 2=1.因为点P 2 33,1 在双曲线x 2-y 2b 12=1上,所以2 332−1b 12=1.故b 12=3. 由椭圆的定义知2a 2= 2 332+(1-1)+ 2 332+(1+1)=2 3.于是a 2= 3,b 22=a 22−c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1. (2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x= 或x=- .当x= 2时,易知A ( 2, 3),B ( 2,- 3), 所以|OA +OB |=2 2,|AB |=2 3. 此时,|OA+OB |≠|AB |. 当x=- 2时,同理可知,|OA +OB |≠|AB |.②若直线l 不垂直于x 轴,设l 的方程为y=kx+m. 由 y =kx +m ,x 2-y 2=1得(3-k 2)x 2-2kmx-m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km 3-k2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由 y =kx +m ,y 2+x 2=1得(2k 2+3)x 2+4kmx+2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0. 化简,得2k 2=m 2-3,因此OA·OB =x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA 2+OB 2+2OA ·OB ≠OA 2+OB 2-2OA ·OB , 即|OA +OB 2|≠|OA −OB 2|,故|OA +OB |≠|AB |. 综合①,②可知,不存在符合题设条件的直线.21.(本小题满分13分)(2014湖南,文21)已知函数f (x )=x cos x-sin x+1(x>0).(1)求f (x )的单调区间;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个零点,证明:对一切n ∈N *,有1x 12+1x 22+…+1n 2<2.分析:在第(1)问中,通过已知条件,借助导数,转化为判断导数在(0,+∞)上的符号,进而得出函数的单调区间;在第(2)问中,充分利用第(1)问的结论,得到f (x )在(n π,(n+1)π)上存在零点,从而得出n π<x n+1<(n+1)π,然后分n=1,n=2,n ≥3三种情况讨论112+122+…+1n 2的值与2的大小关系,即可得证. 解:(1)f'(x )=cos x-x sin x-cos x=-x sin x.令f'(x )=0,得x=k π(k ∈N *).当x ∈(2k π,(2k+1)π)(k ∈N )时,sin x>0,此时f'(x )<0; 当x ∈((2k+1)π,(2k+2)π)(k ∈N )时,sin x<0,此时f'(x )>0.故f (x )的单调递减区间为(2k π,(2k+1)π)(k ∈N ),单调递增区间为((2k+1)π,(2k+2)π)(k ∈N ). (2)由(1)知,f (x )在区间(0,π)上单调递减. 又f π=0,故x 1=π.当n ∈N *时,因为f (n π)f ((n+1)π)=[(-1)n n π+1][(-1)n+1(n+1)π+1]<0,且函数f (x )的图象是连续不断的,所以f (x )在区间(n π,(n+1)π)内至少存在一个零点.又f (x )在区间(n π,(n+1)π)上是单调的,故n π<x n+1<(n+1)π.因此,当n=1时,1x 12=4π2<23; 当n=2时,1x 12+1x 22<1π2(4+1)<23;当n ≥3时,1x 12+1x 22+…+1x n 2<1π2 4+1+122+…+1(n -1)2 <1π2 5+11×2+…+1(n -2)(n -1) <12 5+ 1-1 + 1-1 +…+ 1n -2-1n -1 =1π2 6-1n -1<6π2<23. 综上所述,对一切n ∈N *,1x 12+1x 22+…+1x n 2<23.。
2014年高考数学试卷,湖南高考文科数学试卷

【全国高考数学试卷】2014年普通高等学校招生全国统一考试(湖南卷)数学(文)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题2:,10p x R x ∀∈+>,则p ⌝为( )200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤ 200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤3.对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==4.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x =2.()1B f x x =+3.()C f x x = .()2xD f x -=6.若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D -7.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( ) A.[]6,2--B.[]5,1--C.[]4,5-D.[]3,6-8.一块石材表示的几何体的三视图如图2所示,将学科 网石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.49.若1201x x <<<,则( )A.2121ln ln xxe e x x ->-B.2121ln ln xxe e x x -<-C.1221xxx e x e >D.1221xxx e x e <10.在平面直角坐标系中,O 为原点,()1,0A -,()03B ,,()30C ,,动点D 满足 1CD =,则OA OB OD ++的取值范围是( )A.[]46,B.19-119+1⎡⎤⎣⎦,C.2327⎡⎤⎣⎦, D.7-17+1⎡⎤⎣⎦,二.填空题:本大题共5小题,每小题5分,共25分. 3i+12.在平面直角坐标系中,曲线222 :212x t Cy t⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数)的普通方程为___________.13.若变量yx,满足约束条件⎪⎩⎪⎨⎧≥≤+≤14yyxxy,则yxz+=2的最大值为_________.14.平面上以机器人在行进中始终保持与点()01,F的距离和到直线1-=x的距离相等.若机器人接触不到过点()01,-P且斜率为k的直线,则k的取值范围是___________.15.若()()ax ex f x++=1ln 3是偶函数,则=a____________.三、解答题:本大题共6小题,学科 网共75分.解答应写出文字说明,证明过程或演算过程. 16.(本小题满分12分)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (I )求数列{}n a 的通项公式;(II )设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.17.(本小题满分12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年 研发新产品的结果如下:()()()()()()()()()()()()()()()b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,其中a a,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败.(I )若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研 发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;18.(本小题满分12分) 如图3,已知二面角MN αβ--的大小为60,菱形ABCD 在面β内,,A B 两点在棱MN 上,60BAD ∠=,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.19.(本小题满分13分)如图4,在平面四边形ABCD 中,32,2,7,1,π=∠===⊥ADC EA EC DE AB DA , 3π=∠BEC(1)求CED ∠sin 的值; (2)求BE 的长20.(本小题满分13分)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b -=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.21.(本小题满分13分) 已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<精心整理资料,感谢使用!。
2014年高考文科数学湖南卷-答案

(2)利用放缩法即可证明不等式即可.
【考点】利用导数求闭区间上函数的最值,利用导数研究函数的单调性
∵圆 与圆 外切,∴ ,解得: .
【提示】化两圆的一般式方程为标准方程,求出圆心和半径,由两圆心间的距离等于半径和列式求得m值.
【考点】圆的切线方程
7.【答案】D
【解析】若 ,则不满足条件输出 ,若 ,则满足条件,此时 ,此时不满足条件,输出 ,综上: .
【提示】根据程序框图,结合条件,利用函数的性质即可得到结论.
【考点】复数代数形式的乘除运算.
12.【答案】
【解析】∵曲线 ( 为参数),∴两式相减可得 .
【提示】利用两式相减,消去 ,从而得到曲线 的普通方程.
【考点】直线的参数方程
13.【答案】
【解析】作出不等式组对应的平面区域如图:
由 ,得 ,平移直线 ,由图象可知当直线 经过点 ,直线 的截距最大,此时 最大,由 ,解得 ,即 ,此时 ,故答案为: .
【考点】直线与圆锥曲线的综合问题.
21.【答案】(1) ,令 ,则 .
当 时, ,当 时, ,
∴ 的单调减区间为 ,
的单调增区间为 .
(2)由(1)知, 在区间 上单调递减,∵ ,∴ .
当 时,∵ ,且 的图象是连续不断的,
∴ 在区间 内至少有一个实根,又 在区间
2014年普通高等学校招生全国统一考试(湖南卷)
数学(文科)答案解析
第Ⅰ卷
一、选择题
1.【答案】B
【解析】∵命题 ,是一个特称命题.
∴ .
【提示】题设中的命题是一个特称命题,按命题否定的规则写出其否定即可找出正确选项.
【考点】命题的否定
2014年湖南卷文科数学高考试卷(原卷 答案)

绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)文科数学本试卷共21题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设命题2:,10p x R x ∀∈+>,则p ⌝为200.,10A x R x ∃∈+> 200.,10B x R x ∃∈+≤200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤ 2. 已知集合{|2},{|13}A x x B x x =>=<<,则A B =.{|2}A x x > .{|1}B x x > .{|23}C x x << .{|13}D x x <<3. 对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p == 4.下列函数中,既是偶函数又在区间(,0)−∞上单调递增的是21.()A f x x= 2.()1B f x x =+3.()C f x x = .()2x D f x −=5. 在区间[2,3]−上随机选取一个数X ,则1X ≤的概率为4.5A 3.5B 2.5C 1.5D 6. 若圆221:1C x y +=与圆222:680C x y x y m +−−+=,则m =.21A .19B .9C .11D −7. 执行如图1所示的程序框图,如果输入的[]2,2t ∈−,则输出的S 属于A. []6,2−−B. []5,1−−C. []4,5−D. []3,6−8. 一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于 A. 1 B. 2 C. 3 D. 49. 若1201x x <<<,则 A. 2121ln ln xxe e x x −>− B. 2121ln ln x xe e x x −<− C. 1221xxx e x e >D. 1221xxx e x e <10. 在平面直角坐标系中,O 为原点,()1,0A −,(0B ()30C ,,动点D 满足 1||=CD 则||OD OB OA ++的取值范围是A. []46,B. ⎤⎦C. ⎡⎣D. ⎤⎦二、填空题:本大题共5小题,每小题5分,共25分. 11. 复数23ii +(i 为虚数单位)的实部等于_________.12.在平面直角坐标系中,曲线22:12x tC y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为___________. 13. 若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤14y y x x y ,则y x z +=2的最大值为_________.14. 平面上以机器人在行进中始终保持与点()01,F 的距离和到直线1−=x 的距离相等.若 机器人接触不到过点()01,−P 且斜率为k 的直线,则k 的取值范围是___________. 15. 若()()ax e x f x++=1ln 3是偶函数,则=a ____________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 16.(本小题满分12分)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22.(I) 求数列{}n a 的通项公式;(II )设()n nan a b n 12−+=,求数列{}n b 的前n 2项和.17.(本小题满分12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:()()()()()()()()()()()()()()()b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,其中a a,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (I )若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(II )若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.18.(本小题满分12分)如图3,已知二面角MN αβ−−的大小为60,菱形ABCD 在面β内,,A B 两点在棱MN 上,60BAD ∠=,E 是AB 的中点,DO ⊥面α,垂足为O . (1) 证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.19.(本小题满分13分)如图4,在平面四边形ABCD中,32,2,7,1,π=∠===⊥ADC EA EC DE AB DA3π=∠BEC(1)求CED ∠sin 的值; (2)求BE 的长20.(本小题满分13分)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b −=>>和椭圆222222222:1(0)x y C a b a b −=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1) 求12,C C 的方程;(2) 是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||AB OB OA =+?证明你的结论.21.(本小题满分13分)已知函数()cos sin 1(0)f x x x x x =−+>.(1) 求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有3211122221<+++nx x x .图4D E A2014年普通高等学校招生全国统一考试(湖南卷)文科数学(参考答案)1.B 【解析】试题分析:全称命题的否定是特称命题 所以命题p 的否定为200,10x R x ∃∈+≤ 故选B.考点:命题否定 全称命题 特称命题 2.C 【解析】试题分析:由交集的定义可得{}/23A B x x ⋂=<< 故选C. 考点:集合交集 3.D 【解析】试题分析:根据随机抽样的原理可得,简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p 1=p 2=p 3.注意无论是哪种抽样,每个个体被抽到的概率均是相同的. 考点:随机抽样 4.A 【解析】试题分析:A 中21()f x x=是偶函数,且在(,0)−∞上是增函数,故A 满足题意;B 中2()1f x x =+是偶函数,但在(,0)−∞上是减函数;C 中3()f x x =是奇函数;D 中()2x f x −=是非奇非偶函数.故,,B C D 都不满足题意,故选A .考点:1、函数的奇偶性;2、单调性. 5.B 【解析】试题分析:在[]2,3−上符合1X ≤的区间为[]2,1− 因为区间[]2,3−的区间长度为5且区间[]2,1−的区间长度为3 所以根据几何概型的概率计算公式可得35P = 故选B. 考点:几何概型 6.C 【解析】试题分析:因为()()22226803425x y x y m x y m +−−+=⇒−+−=− 所以250m −>25m ⇒<且圆2C 的圆心为()3,4 根据圆与圆外切的判定(圆心距离等于半径和)可得1=9m ⇒= 故选C.考点:圆与圆之间的外切关系与判断 7.D 【解析】试题分析:当[)2,0t ∈−时 运行程序如下 (](]2211,9,32,6t t S t =+∈=−∈− 当[]0,2t ∈时 []33,1S t =−∈−−则(][][]2,63,13,6S ∈−⋃−−=− 故选D. 考点:程序框图 二次函数 8.B 【解析】试题分析:由三视图可知,这是一个三棱柱,内切球在正视图的投影是正视图的内切圆,设其半径为r ,根据三角形面积公式有()11681068,222r r ++=⋅⋅=. 考点:几何体的内切球.9.C【解析】试题分析:对于A ,B 作出f(x)=e x −lnx 图象如图所示,可见0<x <1时,既有单调减函数区间,单调增函数区间,故都不正确;对于C ,设f(x)=e xx,作如图所示,因0<x <1,f′(x)=e x x−e xx 2=e x (x−1)x 2<0,此时,f(x)在(0,1)上为减函数,故有f(x 1)=e x 1x 1>f(x 2)=e x 2x 2,得x 2e x 1>x 1e x 2,故C 正确,D 不正确,故选C.考点:1、利用导数研究函数的单调性;2、函数的图象及数形结合思想的应用.10.D 【解析】试题分析:因为C 坐标为()3,0且1CD = 所以动点D 的轨迹为以C 为圆心的单位圆 则D 满足参数方程3cos {sin D D x y θθ=+=(θ为参数且[)0,2θπ∈) 所以设D 的坐标为为()[)()3cos ,sin 0,2θθθπ+∈则(3OA OB OD ++==因为2cos θθ+的取值范围为⎡⎡=⎢⎣⎣1==1==−所以OA OBOD ++的取值范围为1⎤=−⎦ 故选D.考点:参数方程 圆 三角函数11.3− 【解析】试题分析:由题可得233ii i +=−− 3i −−的实部为3− 故填3−. 考点:复数12.10x y −−=【解析】 【分析】 【详解】试题分析:联立22{12x t y t=+=+消t 可得110x y x y −=⇒−−= 故填10x y −−=.13.7【解析】试题分析:作出不等式组4y x x y ≤⎧⎪+≤⎨⎪表示的区域如下,则根据线性规划的知识可得目标函数2z x y =+在点)且斜率为k 的直线,此时直线的方程为(1)y k x =+,联立方程组2(1){4y k x y x=+=,整理得2222(24)0k x k x k −++=,由∆<0解得1k <−或1k >. 考点:直线与抛物线的位置关系.【方法点晴】本题主要考查了直线与抛物线的位置关系,其中解答中涉及到抛物线的定义、标准方程及其简单的几何性质的应用,直线与抛物线的位置关系等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与转化的应用,试题有一定的难度,属于中档试题,准确理解抛物线的定义是解答的关键. 15.−32【解析】试题分析:因为函数f(x)=ln(e 3x +1)+ax 为偶函数 所以f(−x)=f(x)⇒ln(e −3x +1)−ax =ln(e 3x +1)+ax ⇒ln(e 3x +1e 3x)−ax =ln(e 3x +1)+ax⇒ln(e 3x +1)−3x −ax =ln(e 3x +1)+ax ⇒−3x =2ax ⇒a =−32 故填−32. 考点:奇偶性 对数运算 16.(1);(2)【解析】试题分析:(1)题目已知,n n a S 之间的关系 令1n = 利用11a S = 即可求的1a 的值 令2n ≥ 利用n a 与前n 项和之间的关系1n n n a S S −=−即可得到n a 令1n =检验首项即可得到n a 的通项公式.(2)把(1)得到的通项公式代入n b 可以得到n b 是由等比数列2n 数列()1?nn −之和 才用分组求和法 首先利用等比数列前n 项和公式求的等比数列2n 的前n 项和 再利用()1234562121n n −+=−+=−+==−−+=对数列()1?nn −进行分组()()()()()123456212n n −++−++−+++−−+即可求的数列n b 的前n 项和(1)当1n =时 111a S ==;当2n ≥时 ()()22111,22n n n n n n n a S S n −−+−+=−=−= 检验首项11a =符合n a n = 所以数列{}n a 的通项公式为n a n =. (2)由(1)可得()21?nn n b n =+− 记数列{}n b 的前2n 项和为2n T则()()123222222123452n n T n =+++++−+−+−++()()()()()12222?212345621212n n T n n −⎡⎤⇒=+−++−++−+++−−+⎣⎦− 21222n n T n +⇒=+−故数列{}n b 的前2n 项和为21222n n T n +=+−考点:数列前n 项和 等差数列 等比数列 分组求和法 17.(1)23x =甲 229s 甲= 35x =乙 2625s =乙 甲组优于乙组 (2)()715P E = 【解析】试题分析:(1)按照题意对甲 乙两组15次实验的等分 再根据平均数求的甲 乙成绩平均数 再根据方差的计算公式即可求的甲乙的方差 再比较甲乙两组的平均数和方差 谁平均数大方差小 谁的研究水平较好.(2)根据题意可知有15此实验 其中有7次是只有一组研发成功 频率除以总数即可得到概率的估算值 进而得到恰有一组研发成功的概率.(1)甲组研发新产品的成绩如下:1,1,1,0,0,1,1,1,0,1,0,1,1,0,1 其平均数102153x ==甲;方差22212221*********s ⎡⎤⎛⎫⎛⎫=−⨯+−⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦甲乙组研发新产品的成绩为:1,0,1,1,0,1,1,0,1,0,0,1,0,1,1 其平均数93155x 乙== 方差为22213361906155525s ⎡⎤⎛⎫⎛⎫=−⨯+−⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦乙因为22,<x x s s >甲乙甲乙所以甲组的研发水平优于乙组. (2)记{}E =恰有一组研发成功 在所有抽的的15个结果中 恰有一组研发成功的结果如下:(a ,b ⃗ ),(a ,b),(a ,b ⃗ ),(a ,b),(a ,b ⃗ ),(a ,b ⃗ ),(a ,b)共7个 所以根据古典概型的概率计算公式可得()715P E =. 考点:概率 平均数 方差 18.(1)详见解析 (2)34【解析】 【分析】 【详解】试题分析:(1)题目已知DO α⊥ 利用线面垂直的性质可得DO ⊥AB 已知角DAE 和2DA AE = 利用余弦定理即可说明AB DE ⊥ 即AB 垂直于面DOE 内两条相交的直线 根据线面垂直的判断即可得到直线AB 垂直于面DEO .(2)菱形ABCD 为菱形可得//AD BC 则BC 与OD 所成角与角ADO 大小相等 即求ADO 角的余弦值即可 利用菱形ABCD 所有边相等和一个角为060即可求的DE 的长度 根据(1)可得AB ⊥面DOE 即角DEO 为二面角MN αβ−−的平面角为060 结合∆DEO 为直角三角形与DO 的长度 即可求的,DO OE 长度 再直角AOD ∆中,AD OD 已知 利用直角三角形中余弦的定义即可求的角ADO 的余弦值 进而得到异面直线夹角的余弦值.(1)如图 因为DO α⊥ AB α⊆ 所以⊥DO AB 连接BD 由题可知ABD ∆是正三角形 又E 是AB 的中点 所以DE AB ⊥ 而故AB ⊥平面ODE .(2)因为//BC AD 所以BC 与OD 所成的角等于AD 与OD 所成的角 即ADO ∠是BC 与OD 所成的角 由(1)可知AB ⊥平面ODE 所以AB OE ⊥ 又DE AB ⊥ 于是DEO ∠是二面角MN αβ−−的平面角 从而060DEO ∠= 不妨设2AB = 则2AD =易知DE =在Rt DOE ∆中 03·sin 602DO DE == 连接AO 在Rt AOD ∆中 332cos 24DO ADO AD ∠=== 所以异面直线BC 与OD 所成角的余弦值为34.考点:异面直线的夹角 二面角 线面垂直 19.(1)7(2)【解析】 【分析】(1)在CDE ∆中已知两边与一角 利用余弦定理即可求出第三条边DC 的长度 再利用余弦定理即可求出角CED 的正弦值.(2)由(1)三角形DEC 的三条边 根据正余弦直角的关系可得角DEC 的余弦值(或者利用正余弦之间的关系也可求的) 角,,DEC BEC AEB ∠∠∠之和为0180 其中两个角的正余弦值已知 则可以利用余弦的和差角公式求的角AEB 的余弦值 AE 长度已知 利用直角三角形AEB 中余弦的定义即可求的BE 长. 【详解】如图设CED α∠=(1)在CDE ∆中 由余弦定理可得2222?··cos EC CD DE CD DE EDC =+−∠ 于是又题设可知 271CD CD =++ 即260CD CD +−= 解得2CD =(30CD =−<舍去)在CDE ∆中 由正弦定理可得sin sin DE CD EDC α=∠2·sin 3sin 7CD EC πα⇒===即sin 7CED ∠=. (2)由题设可得203πα<<于是根据正余弦之间的关系可得cos 7α=== 而23AED πα∠=− 所以222cos cos cos cos sin sin 333AEB πππααα⎛⎫∠=−=+⎪⎝⎭1cos sin 22αα=−+1272714=−⨯+⨯=在Rt EAB ∆中 2cos EA AEB BE BE ∠==所以2cos BE AEB ===∠⎝⎭考点:正余弦定理 正余弦和差角公式 直角三角形 正余弦之间的关系20.(1)222212:1,:1332y y x C x C −=+=;(2)见解析. 【解析】试题分析:(1)利用正方形面积为2 即可得到对角线的长为2 则可得1C 的两个顶点和2C 的两个焦点的坐标 求的12,a c 的值 再结合点P 在双曲线上 代入双曲线结合,,a b c 之间的关系即可求的1b 的值 得到双曲线的方程 椭圆的焦点坐标已知 点P 在椭圆上 利用椭圆的定义2a 即为P 到两焦点的距离之和 求出距离即可得到2a 的值 利用,,a b c 之间的关系即可求出2b 的值 得到椭圆的标准方程.(2)分以下两种情况讨论 当直线l 的斜率不存在时 直线l 与2C 只有一个公共点 即直线经过2C 的顶点 得到直线l 的方程 代入双曲线求的,A B 点的坐标验证是否符合等式OA OB AB += 当直线l 的斜率存在时 直线l 的方程为y kx m =+ 联立直线l 与双曲线消元得到二次方程 再利用根与系数之间的关系得到关于,A B 两点横纵坐标之和的表达式 利用,k m 出OA OB ⋅ 再立直线l 与椭圆的方程0∆=即可得到,k m 直线的关系 可得到内积OA OB ⋅不可能等于0 进而得到22222?2?OA OB OAOB OA OB OAOB ++≠+− 即OA OB AB +≠ 即不存在这样的直线.的焦距为22c 由题可得2122,22c a == 从而121,1a c ==因为点P ⎫⎪⎪⎝⎭在双曲线22211y x b −=上所以221212133b b ⎛⎫−=⇒= ⎪ ⎪⎝⎭由椭圆的定义可得22a ==2a ⇒=于是根据椭圆,,a b c 之间的关系可得2222222b a c =−= 所以12,C C 的方程为22221,1332y y x x −=+=.(2)不存在符合题设条件的直线.①若直线l 垂直于x 轴 即直线l 的斜率不存在 因为l 与2C只有一个公共点 所以直线的方程为:l x=或x =当x时易知,,AB所以22,23OA OB AB +== 此时OA OB AB +≠.当x =时 同理可得OA OB AB +≠.②当直线l 不垂直于x 轴时 即直线l 的斜率存在且设直线l 的方程为y kx m =+ 联立直线与双曲线方程22{13y kx my x =+−=可得()2223230kxkmx m −−−−= 当l 与1C 相交于,A B 两点时 设()()1122,,,A x y B x y 则12,x x 满足方程()2223230k xkmx m −−−−= 由根与系数的关系可得于是11 / 12()22221212122333k m y y k x x km x x m k −=+++=− 联立直线l 与椭圆22{132y kx my x =++=可得 ()222234260k x kmx m +++−= 因为直线l 与椭圆只有一个交点所以()()222201682330k m k m ∆=⇒−+−= 化简可得2223k m =− 因此 222212122223333·0333m k m k OAOB x x y y k k k +−−−=+=+=≠−−− 于是22222?2?OA OB OAOB OA OB OAOB ++≠+− 即22OA OB OA OB +≠− 所以OA OB AB +≠ 综上不存在符合题目条件的直线l .考点:椭圆 双曲线 向量 向量内积21.(1) 单调递减区间为()()()2,21*k k k N ππ+∈ 单调递增区间为()()()()21,22*k k k N ππ++∈.(2)详见解析 【解析】试题分析:(1)对函数()f x 求导得到导函数()()'0f x x > 求()'f x 大于0和小于0的解集得到单调减区间和单调增区间 但是必须注意正余弦的周期性和原函数的定义域()0,+∞.(2)利用(1)问的结果可知函数()f x 在区间()0,π上是单调递减的 即()f x 在区间()0,π上至多一个零点 根据正余弦的函数值可得1022f x ππ⎛⎫=⇒= ⎪⎝⎭再根据()f x 在区间上()(),1n n ππ+单调性和函数()f x 在区间()(),1n n ππ+端点处函数值异号可得函数()f x 在区间()(),1n n ππ+上有且只有一个零点 即()()122222111111n n n x n x n n ππππ++<<+⇒<<+ 则依次讨论1,2,3n n n ==≥利用放缩法即可证明2221211123n x x x +++<. 数()f x 求导可得()()'cos sin cos sin 0f x x x x x x x x =−−=−> 令()'0f x =可得()*x k k N π=∈ 当()()()2,21*x k k k N ππ∈+∈时 sin 0x >.此时()'0f x <;当()()()()21,22*x k k k N ππ∈++∈时 sin 0x < 此时()'0f x >故函数()f x 的单调递减区间为()()()2,21*k k k N ππ+∈ 单调递增区间为()()()()21,22*k k k N ππ++∈.12 / 12 (2)由(1)可知函数()f x 在区间()0,π上单调递减 又02f π⎛⎫=⎪⎝⎭ 所以12x π= 当*n N ∈时 因为()()()()()()11111110n n f n f n n n ππππ+⎡⎤⎡⎤+=−+−++<⎣⎦⎣⎦且函数()f x 的图像是连续不断的 所以()f x 在区间()(),1n n ππ+内至少存在一个零点 又()f x 在区间()(),1n n ππ+上是单调的 故()11n n x n ππ+<<+ 因此当1n =时 2211423x π=<;当2n =时 ()222121112413x x π+<+<;当3n ≥时 ()22222221231111111+4121n x x x x n π⎡⎤+++<++++⎢⎥−⎢⎥⎣⎦()()222221*********+51221n x x x x n n π⎡⎤⇒+++<+++⎢⎥⨯−−⎢⎥⎣⎦2222212311111111+51221n x x x x n n π⎡⎤⎛⎫⎛⎫⇒+++<+−++− ⎪ ⎪⎢⎥−−⎝⎭⎝⎭⎣⎦221162613n ππ⎛⎫=−<< ⎪−⎝⎭综上所述 对一切的*n N ∈ 2221211123n x x x +++<.考点:导数 单调性 放缩法 裂项求和。
2014年湖南省高考数学试卷(文科)学生版

2014年湖南省高考数学试卷(文科)一、选择题(共10小题,每小题5分,共50分)1.(5分)(2014•湖南)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x02+1>0B.∃x0∈R,x02+1≤0C.∃x0∈R,x02+1<0D.∀x0∈R,x02+1≤02.(5分)(2014•湖南)已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3} 3.(5分)(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P3 4.(5分)(2014•湖南)下列函数中,既是偶函数又在区间(﹣∞,0)上单调递增的是()A.f(x)=B.f(x)=x2+1C.f(x)=x3D.f(x)=2﹣x 5.(5分)(2014•湖南)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A.B.C.D.6.(5分)(2014•湖南)若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=()A.21B.19C.9D.﹣117.(5分)(2014•湖南)执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S属于()A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6] 8.(5分)(2014•湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.49.(5分)(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x110.(5分)(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]二、填空题(共5小题,每小题5分,共25分)11.(5分)(2014•湖南)复数(i为虚数单位)的实部等于.12.(5分)(2014•湖南)在平面直角坐标系中,曲线C:(t为参数)的普通方程为.13.(5分)(2014•湖南)若变量x,y满足约束条件,则z=2x+y的最大值为.14.(5分)(2014•湖南)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=﹣1的距离相等,若机器人接触不到过点P(﹣1,0)且斜率为k的直线,则k的取值范围是.15.(5分)(2014•湖南)若f(x)=ln(e3x+1)+ax是偶函数,则a=.三、解答题(共6小题,75分)16.(12分)(2014•湖南)已知数列{a n}的前n项和S n=,n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=+(﹣1)n a n,求数列{b n}的前2n项和.17.(12分)(2014•湖南)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b)(a,b)其中a,分别表示甲组研发成功和失败,b,分别表示乙组研发成功和失败.(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.18.(12分)(2014•湖南)如图,已知二面角α﹣MN﹣β的大小为60°,菱形ABCD 在面β内,A、B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥面α,垂足为O.(Ⅰ)证明:AB⊥平面ODE;(Ⅱ)求异面直线BC与OD所成角的余弦值.19.(13分)(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.20.(13分)(2014•湖南)如图,O为坐标原点,双曲线C1:﹣=1(a1>0,b1>0)和椭圆C2:+=1(a2>b2>0)均过点P(,1),且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(Ⅰ)求C1、C2的方程;(Ⅱ)是否存在直线l,使得l与C1交于A、B两点,与C2只有一个公共点,且|+|=||?证明你的结论.21.(13分)(2014•湖南)已知函数f(x)=xcosx﹣sinx+1(x>0).(Ⅰ)求f(x)的单调区间;(Ⅱ)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.。
2014·湖南卷(文科数学)

2014·湖南卷(文科数学)1.[2014·湖南卷] 设命题p :∀x ∈R ,x 2+1>0,则綈p 为( )A .∃x 0∈R ,x 20+1>0B .∃x 0∈R ,x 20+1≤0C .∃x 0∈R ,x 20+1<0 D .∀x ∈R ,x 2+1≤01.B [解析] 由全称命题的否定形式可得綈p :∃x 0∈R ,x 20+1≤0. 2.[2014·湖南卷] 已知集合A ={x |x >2},B ={x |1<x <3},则A ∩B =( ) A .{x |x >2} B .{x |x >1}C .{x |2<x <3}D .{x |1<x <3}2.C [解析] 由集合运算可知A ∩B ={x |2<x <3}. 3.[2014·湖南卷] 对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 33.D [解析] 不管是简单随机抽样、系统抽样还是分层抽样,它们都是等概率抽样,每个个体被抽中的概率均为nN.4.、[2014·湖南卷] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x4.A [解析] 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 5.[2014·湖南卷] 在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25 D.155.B [解析] 由几何概型概率计算公式可得P =1-(-2)3-(-2)=35.6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11 6.C [解析] 依题意可得C 1(0,0),C 2(3,4),则|C 1C 2|=33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.7.[2014·湖南卷] 执行如图1-1所示的程序框图,如果输入的t ∈[-2,2],则输出的S 属于( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]7.D [解析] (特值法)当t =-2时,t =2×(-2)2+1=9,S =9-3=6,排除A ,B ,C.8.、[2014·湖南卷] 一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打A .1B .2C .3D .48.B [解析] 由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2.9.[2014·湖南卷] 若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 29.C [解析] 依题可构造函数f (x )=e xx ,则f ′(x )=e x ·x -e x x 2=e x (x -1)x 2.当x ∈(0,1)时,f ′(x )<0,所以f (x )=e xx在区间(0,1)上递减,故0<x 1<x 2<1时有f (x 1)>f (x 2),即x 2e x 1>x 1e x 2.10.[2014·湖南卷] 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]10.D [解析] 由|CD →|=1,得动点D 在以点C 为圆心,半径为1的圆上,故可设D (3+cos α,sin α),所以OA →+OB →+OD →=(2+cos α,3+sin α),所以|OA →+OB →+OD →|2=(2+cos α)2+(3+sin α)2=8+4cos α+23sin α=8+27sin(α+φ),所以|OA →+OB →+OD →|2∈[8-27,8+27],即|OA →+OB →+OD →|∈[7-1,7+1].11.[2014·湖南卷] 复数3+ii2(i 为虚数单位)的实部等于________.11.-3 [解析] 因为3+i i 2=3+i-1=-3-i ,所以实部为-3.12.[2014·湖南卷] 在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.12.x -y -1=0 [解析] 依题意,消去参数可得x -2=y -1,即x -y -1=0.13.[2014·湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥1,则z =2x +y 的最大值为________.13.7 [解析] 依题意,画出可行域,如图所示. 由⎨⎪⎧x +y =4,得点B 的坐标为(3,1),则z =2x +y 在B (3,1)处取得最大值7.F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.14.(-∞,-1)∪(1,+∞) [解析] 依题意可知机器人运行的轨迹方程为y 2=4x .设直线l :y =k (x +1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,消去y 得k 2x 2+(2k 2-4)x +k 2=0,由Δ=(2k 2-4)2-4k 4<0,得k 2>1,解得k <-1或k >1.15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.15.-32[解析] 由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,∴2ax =-ln e 3x =-3x ,∴a =-32.16.、[2014·湖南卷] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 16.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 17.、[2014·湖南卷] 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平.(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.17.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x 甲=1015=23,方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x 乙=915=35,方差为s 2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625. 因为x 甲>x 乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组. (2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个,故事件E 发生的频率为715.将频率视为概率,即得所求概率为P (E )=715.18.、[2014·湖南卷] 如图1-3所示,已知二面角α-MN -β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.18.解:(1)证明:如图,因为DO ⊥α,AB ⊂α,所以DO ⊥AB . 连接BD ,由题设知,△ABD 是正三角形,又E 是AB 的中点,所以DE ⊥AB .而DO ∩DE =D ,故AB ⊥平面ODE .(2)因为BC ∥AD ,所以ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE .又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2,易知DE = 3.在Rt △DOE 中,DO =DE ·sin 60°=32.连接AO ,在Rt △AOD 中,cos ∠ADO =DOAD=322=34.故异面直线BC 与OD 所成角的余弦值为34.19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.19.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217. (2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.20.、、[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.20.解: (1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2,从而a 1=1,c 2=1.因为点P ⎝⎛⎭⎫233,1在双曲线x 2-y 2b 21=1上,所以⎝⎛⎫2332-1b 21=1,故b 21=3. 由椭圆的定义知2a 2=⎝⎛⎭⎫2332+(1-1)2+⎝⎛⎭⎫2332+(1+1)2=2 3. 于是a 2=3,b 22=a 22-c 22=2.故C 1,C 2的方程分别为x 2-y 23=1,y 23+x 22=1.(2)不存在符合题设条件的直线.(i)若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l 的方程为x =2或x =- 2.当x =2时,易知A (2,3),B (2,-3),所以 |OA →+OB →|=22,|AB →|=2 3.此时,|OA →+OB →|≠|AB →|.当 x =-2时,同理可知,|OA →+OB →|≠|AB →|.(ii)若直线l 不垂直于x 轴,设l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 23=1得(3-k 2)x 2-2kmx -m 2-3=0. 当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而x 1+x 2=2km3-k 2,x 1x 2=m 2+3k 2-3.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=3k 2-3m 2k 2-3.由⎩⎪⎨⎪⎧y =kx +m ,y 23+x 22=1得(2k 2+3)x 2+4kmx +2m 2-6=0. 因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3.因此OA →·OB →=x 1x 2+y 1y 2=m 2+3k 2-3+3k 2-3m 2k 2-3=-k 2-3k 2-3≠0,于是OA →2+OB →2+2OA →·OB →≠OA →2+OB →2-2OA →·OB →,即|OA →+OB →|2≠|OA →-OB →|2. 故|OA →+OB →|≠|AB →|.综合(i),(ii)可知,不存在符合题设条件的直线. 21.、[2014·湖南卷] 已知函数f (x )=x cos x -sin x +1(x >0).(1)求f (x )的单调区间;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个零点,证明:对一切n ∈N *,有1x 21+1x 22+…+1x 2n<23. 21.解: (1)f ′(x )=cos x -x sin x -cos x =-x sin x . 令f ′(x )=0,得x =k π(k ∈N *).当x ∈(2k π,(2k +1)π)(k ∈N )时,sin x >0,此时f ′(x )<0; 当x ∈((2k +1)π,(2k +2)π)(k ∈N )时,sin x <0,此时f ′(x )>0.故f (x )的单调递减区间为(2k π,(2k +1)π)(k ∈N ),单调递增区间为((2k +1)π,(2k +2)π)(k ∈N ).(2)由(1)知,f (x )在区间(0,π)上单调递减.又f ⎝⎛⎭⎫π2=0,故x 1=π2.当n ∈N *时,因为f (n π)f [](n +1)π=[(-1)n n π+1][(-1)n +1(n +1)π+1]<0, 且函数f (x )的图像是连续不断的,所以f (x )在区间(n π,(n +1)π)内至少存在一个零点.又f (x )在区间(n π,(n +1)π)上是单调的,故n π<x n +1<(n +1)π.因此,当n =1时,1x 21=4π2<23;当n =2时,1x 21+1x 22<1π2(4+1)<23;当n ≥3时,1x 21+1x 22+…+1x 2n <1π2⎣⎡⎦⎤4+1+122+…+1(n -1)2 <1π2⎣⎡⎦⎤5+11×2+…+1(n -2)(n -1)<1π2⎣⎡⎦⎤5+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -2-1n -1 =1π2⎝⎛⎭⎫6-1n -1<6π2<23.综上所述,对一切n ∈N *,1x 21+1x 22+…+1x 2n <23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014湖南,文1)设命题p :∀x ∈R ,x 2+1>0,则p 为( )A .∃x 0∈R ,2010x +>B .∃x 0∈R ,2010x +≤C .∃x 0∈R ,2010x +<D .∀x ∈R ,210x +≤ 答案:B解析:因为全称命题的否定为特称命题,所以p 为∃x 0∈R ,2010x +≤.故选B.2.(2014湖南,文2)已知集合A ={x |x >2},B ={x |1<x <3},则A ∩B =( ) A .{x |x >2} B .{x |x >1} C .{x |2<x <3} D .{x |1<x <3} 答案:C解析:由交集的概念,结合数轴(数轴略)可得A ∩B ={x |2<x <3}.故选C. 3.(2014湖南,文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3 答案:D解析:由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p 1=p 2=p 3,故选D.4.(2014湖南,文4)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .()21f x x=B .f (x )=x 2+1C .f (x )=x 3D .f (x )=2-x 答案:A解析:由偶函数的定义知,A ,B 为偶函数.A 选项,()32f x x '=-在(-∞,0)恒大于0;B 选项,f ′(x )=2x 在(-∞,0)恒小于0.故选A.5.(2014湖南,文5)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( )A .45 B .35 C .25 D .15答案:B解析:由几何概型的概率公式可得3(1)5P X ≤=,故选B. 6.(2014湖南,文6)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11 答案:C解析:易知圆C 1的圆心坐标为(0,0),半径r 1=1.将圆C 化为标准方程(x -3)2+(y -4)2=25-m (m <25),得圆C 2的圆心坐标为(3,4),半径2r m <25).由两圆相外切得|C 1C 2|=r 1+r 2=15,解方程得m =9.故选C.7.(2014湖南,文7)执行如图所示的程序框图.如果输入的t ∈[-2,2],则输出的S 属于( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6] 答案:D解析:当t ∈[-2,0)时,执行以下程序:t =2t 2+1∈(1,9],S =t -3∈(-2,6];当t ∈[0,2]时,执行S =t -3∈[-3,-1],因此S ∈(-2,6]∪[-3,-1]=[-3,6].故选D.8.(2014湖南,文8)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4 答案:B解析:由三视图可得原石材为如下图所示的直三棱柱A 1B 1C 1-ABC ,且AB =8,BC =6,BB 1=12.若要得到半径最大的球,则此球与平面A 1B 1BA ,BCC 1B 1,ACC 1A 1相切,故此时球的半径与△ABC 内切圆半径相等,故半径681022r +-==.故选B. 9.(2014湖南,文9)若0<x 1<x 2<1,则( )A .21e e xx->ln x 2-ln x 1 B .21e e xx-<ln x 2-ln x 1C .1221e e x x x x >D .1221e e x x x x < 答案:C解析:设f (x )=e x-ln x ,则()e 1x x f x x⋅-'=.当x >0且x 趋近于0时,x ·e x -1<0;当x =1时,x ·e x -1>0,因此在(0,1)上必然存在x 1≠x 2,使得f (x 1)=f (x 2),因此A ,B 不正确;设()e x g x x =,当0<x <1时,()2(1)e 0xx g x x -'=<,所以g (x )在(0,1)上为减函数.所以g (x 1)>g (x 2),即1212e e x x x x >,所以1221e e x x x x >.故选C. 10.(2014湖南,文10)在平面直角坐标系中,O 为原点,A (-1,0),B ,C (3,0),动点D 满足||1CD =,则||OA OB OD ++的取值范围是( )A .[4,6] B. C. D.答案:D解析:设动点D 的坐标为(x ,y ),则由||1CD =得(x -3)2+y 2=1,所以D 点的轨迹是以(3,0)为圆心,1为半径的圆.又(1,3)OA OB OD x y ++=-+,所以||OA OB OD x ++=(,故||OA OB OD ++的最大值为(3,0)与(1,两点间的距离加1,最小值为(3,0)与(1,两点间的距离减11.故选D.二、填空题:本大题共5小题,每小题5分,共25分.11.(2014湖南,文11)复数23ii+(i 为虚数单位)的实部等于__________. 答案:-3解析:由题意可得23i 3i3i i 1++==---,故复数的实部为-3. 12.(2014湖南,文12)在平面直角坐标系中,曲线C :2,21x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)的普通方程为__________.答案:x -y -1=0解析:两式相减得,x -y =2-1,即x -y -1=0.13.(2014湖南,文13)若变量x ,y 满足约束条件,4,1,y x x y y ≤⎧⎪+≤⎨⎪≥⎩则z =2x +y 的最大值为__________.答案:7解析:不等式组表示的平面区域如图阴影部分所示,作直线l 0:2x +y =0并平移,当直线经过点A (3,1)时,在y 轴上的截距最大,此时z 取得最大值,且最大值为7.14.(2014湖南,文14)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是__________.答案:(-∞,-1)∪(1,+∞)解析:由题意知,机器人行进的路线为抛物线y 2=4x .由题意知过点P 的直线为y =kx +k (k ≠0),要使机器人接触不到过点P 的直线,则直线与抛物线无公共点,联立方程得204k y y k -+=,即Δ=1-k 2<0,解得k >1或k <-1. 15.(2014湖南,文15)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =__________. 答案:32-解析:由题意得f (-x )=ln(e -3x+1)-ax =331e ln exx +-ax =ln(1+e 3x )-ln e 3x -ax =ln(e 3x+1)-(3+a )x ,而f (x )为偶函数,因此f (-x )=f (x ),即ax =-(3+a )x ,所以32a =-.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(2014湖南,文16)已知数列{a n }的前n 项和22n n n S +=,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.分析:在第(1)问中,通过S n 可求出a n ,在求解过程中要注意分n =1和n ≥2两种情况进行讨论;在第(2)问中,充分利用第(1)问的结论得到b n =2n +(-1)n n ,然后利用分组求和法分别计算(21+22+…+22n )和(-1+2-3+…+2n ),最后相加得到{b n }的前2n 项和.解:(1)当n =1时,a 1=S 1=1;当n ≥2时,221(1)(1)22n n n n n n n a S S n -+-+--=-==. 故数列{a n }的通项公式为a n =n .(2)由(1)知,b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则221212n A (-)=-=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.17.(本小题满分12分)(2014湖南,文17)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 分析:在第(1)问中,通过已知条件可分别写出甲、乙两组的成绩,然后利用平均数公式分别计算甲、乙两组的平均成绩,再结合方差公式得到甲、乙两组的方差,进而比较甲、乙两组的研发水平;在第(2)问中,充分利用古典概型的概率公式,转化为计算基本事件的个数,从而求得概率.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为102153x ==甲; 方差为22212221100515339s ⎡⎤⎛⎫⎛⎫=-⨯+-⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦甲. 乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1, 其平均数为93155x ==乙; 方差为22213361906155525s ⎡⎤⎛⎫⎛⎫=-⨯+-⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦乙. 因为x x >乙甲,22s s <乙甲, 所以甲组的研发水平优于乙组.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.故事件E 发生的频率为715. 将频率视为概率,即得所求概率为()715P E =. 18.(本小题满分12分)(2014湖南,文18)如图,已知二面角α-MN -β的大小为60°,菱形ABCD 在面β内,A ,B 两点在棱MN 上,∠BAD =60°,E 是AB 的中点,DO ⊥面α,垂足为O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值.分析:在第(1)问中,可利用线面垂直的判定定理证明,由DO ⊥平面α可得到DO ⊥AB ,然后利用△ABD 为正三角形得到DE ⊥AB ,最后根据线面垂直的判定定理得出所证结论;在第(2)问中,充分利用第(1)问的结论AB ⊥平面ODE ,从而得到二面角α-MN -β的平面角,达到立几化平几的目的,即转化为求∠ADO 的余弦,然后利用解直角三角形的方法求出余弦值.解:(1)如图a ,因为DO ⊥α,AB ⊂α,所以DO ⊥AB .图a连接BD ,由题设知,△ABD 是正三角形. 又E 是AB 的中点,所以DE ⊥AB . 而DO ∩DE =D ,故AB ⊥平面ODE . (2)因为BC ∥AD ,所以BC 与OD 所成的角等于AD 与OD 所成的角,即∠ADO 是BC 与OD 所成的角.由(1)知,AB ⊥平面ODE ,所以AB ⊥OE . 又DE ⊥AB ,于是∠DEO 是二面角α-MN -β的平面角,从而∠DEO =60°.不妨设AB =2,则AD =2.易知DE =. 在Rt △DOE 中,DO =DE ·sin 60°=32. 连接AO ,在Rt △AOD 中,332cos 24DO ADO AD ∠===.故异面直线BC 与OD 所成角的余弦值为34.19.(本小题满分13分)(2014湖南,文19)如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =EA =2,2π3ADC ∠=,π3BEC ∠=. (1)求sin ∠CED 的值; (2)求BE 的长.分析:在第(1)问中,通过已知条件,借助余弦定理得到CD 的长,然后在△CDE 中,利用正弦定理得到∠CED 的正弦值;在第(2)问中,利用∠CED 的正弦值求得其余弦值,然后利用角之间的关系表示出∠AEB ,进而表示出∠AEB 的余弦值,最后在Rt △EAB 中利用边角关系,求得BE 的长.解:如题图,设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC .于是由题设知,7=CD 2+1+CD ,即CD 2+CD -6=0. 解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得sin sin EC CDEDC α=∠.于是,2πsin 23sin 7CD EC α⋅===,即sin 7CED ∠=.(2)由题设知,π03α<<,于是由(1)知,cos α===. 而2π3AEB α∠=-,所以2π2π2πcos cos()cos cos sin sin 333AEB ααα∠-=+==11cos 227αα-=-=. 在Rt △EAB 中,2cos EA AEB BE BE ∠==,故2cos BE AEB ===∠20.(本小题满分13分)(2014湖南,文20)如图,O 为坐标原点,双曲线C 1:2222111x y a b -=(a 1>0,b 1>0)和椭圆C 2:2222221y x a b += (a 2>b 2>0)均过点P ⎫⎪⎪⎝⎭,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程;(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且||||OA OB AB +=?证明你的结论.分析:在第(1)问中,利用已知条件结合图形以及双曲线、椭圆中a ,b ,c 的几何意义,列出关于a 1,b 1,a 2,b 2的方程,得到它们的值,从而求出双曲线C 1、椭圆C 2的方程;在第(2)问中,首先对直线l 的斜率进行分类讨论,当斜率k 不存在时易得A ,B 两点的坐标,进而判断满足题设条件的直线l 不存在;当斜率k 存在时,可先设出l 的方程,然后代入曲线方程,利用根与系数的关系并结合向量的运算,依此判断满足题设条件的直线l 不存在.解:(1)设C 2的焦距为2c 2,由题意知,2c 2=2,2a 1=2.从而a 1=1,c 2=1.因为点P ⎫⎪⎪⎝⎭在双曲线22211y x b -=上,所以2211(13b -=.故213b =.由椭圆的定义知22a ==.于是2a =,2222222b a c =-=.故C 1,C 2的方程分别为2213y x -=,22132y x +=. (2)不存在符合题设条件的直线.①若直线l 垂直于x 轴,因为l 与C 2只有一个公共点,所以直线l的方程为x =x =当2x =时,易知2,3)A ,B ,所以||22OA OB +=,||23AB =. 此时,||||OA OB AB +≠.当x =||||OA OB AB +≠. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +m .由22,13y kx m y x =+⎧⎪⎨-=⎪⎩得(3-k 2)x 2-2kmx -m 2-3=0.当l 与C 1相交于A ,B 两点时,设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,从而12223km x x k =-+,212233m x x k +=-.于是y 1y 2=k 2x 1x 2+km (x 1+x 2)+m 2=222333k m k --. 由22,132y kx m y x =+⎧⎪⎨+=⎪⎩得(2k 2+3)x 2+4kmx +2m 2-6=0.因为直线l 与C 2只有一个公共点,所以上述方程的判别式Δ=16k 2m 2-8(2k 2+3)(m 2-3)=0.化简,得2k 2=m 2-3,因此2222121222233330333m k m k OA OB x x y y k k k +---⋅==+=≠---+, 于是222222OA OB OA OB OA OB OA OB ++⋅≠+-⋅,即22OA OB OA OB +≠-||||,故||OA OB AB +≠. 综合①,②可知,不存在符合题设条件的直线.21.(本小题满分13分)(2014湖南,文21)已知函数f (x )=x cos x -sin x +1(x >0). (1)求f (x )的单调区间;(2)记x i 为f (x )的从小到大的第i (i ∈N *)个零点,证明:对一切n ∈N *,有2221211123n x x x +++<. 分析:在第(1)问中,通过已知条件,借助导数,转化为判断导数在(0,+∞)上的符号,进而得出函数的单调区间;在第(2)问中,充分利用第(1)问的结论,得到f (x )在(n π,(n +1)π)上存在零点,从而得出n π<x n +1<(n +1)π,然后分n =1,n =2,n ≥3三;种情况讨论22212111n x x x +++的值与23的大小关系,即可得证.解:(1)f ′(x )=cos x -x sin x -cos x =-x sin x .令f ′(x )=0,得x =k π(k ∈N *).当x ∈(2k π,(2k +1)π)(k ∈N )时,sin x >0,此时f ′(x )<0; 当x ∈((2k +1)π,(2k +2)π)(k ∈N )时,sin x <0,此时f ′(x )>0.故f (x )的单调递减区间为(2k π,(2k +1)π)(k ∈N ),单调递增区间为((2k +1)π,(2k +2)π)(k ∈N ).(2)由(1)知,f (x )在区间(0,π)上单调递减.又π()02f =,故1π2x =. 当n ∈N *时,因为f (n π)f ((n +1)π)=[(-1)n n π+1][(-1)n +1(n +1)π+1]<0,且函数f (x )的图象是连续不断的,所以f (x )在区间(n π,(n +1)π)内至少存在一个零点.又f (x )在区间(n π,(n +1)π)上是单调的,故n π<x n +1<(n +1)π.因此,当n =1时,221142π3x =<; 当n =2时,22212111241π3x x +<+<();当n ≥3时,22212111nx x x +++<222111[41]π2(1)n ++++- <2111[5]π12(2)(1)n n +++⨯-- <2111111[5(1)()()]π22321n n +-+-++--- =221162(6)π1π3n -<<-. 综上所述,对一切n ∈N *,2221211123n x x x +++<.。