关于圆的证明题
初中数学圆的证明题专项练习大全(精华)

圆有关的证明题专项练习1、如图,△ABC 内接于⊙O,AD 是的边BC 上的高,AE 是⊙O 的直径,连BE. (1)求证:△ABE∽△ADC;(2)若AB=2BE=4DC=8,求△ADC 的面积.C2、如图,AE 是△ABC 外接圆⊙O 的直径,AD 是△ABC 的边BC 上的高,EF⊥BC,F 为垂足。
(1)求证:BF=CD(2)若CD=1,AD=3,BD=6,求⊙O 的直径。
5、如图,AB 是⊙O 的直径,D 是AB 上一点,C 是弧AD 的中点,AD、BC 交于点E,CF⊥AB 于F,CF 交AD 于G。
(1)求证:CG=EG=AG(2) 求证:AD=2CF(2)若AD= 4 3 ,AC=4,求⊙O 的半径6、如图,AB 为⊙O 的直径,弦CD⊥AB 于点H,E 为AB 延长线上一点,CE 交⊙O 于F。
(1)求证:BF 平分∠DFE;(2)若EF=DF=4,BE=5,CH=3,求⊙O 的半径7、如图,Rt△ABC 内接于⊙O,D 为弧AC 的中点,DH⊥AB 于点H,延长BC、HD 交于点E。
(1)求证:AC=2DH;(2)连接AE,若DH=2,BC=3,求tan∠AEB 的值8、在Rt△ABC 中,∠ACB=90º,D 是AB 边上一点,以 BD 为直径的⊙O 与边 AC 相切于点E,连结 DE 并延长,与 BC 的延长线交于点F.(1)求证:BD=BF;(2)若BC=6,AD=4,求SECF 。
9、如图,⊙O 中,直径DE⊥弦AB 于H 点,C 为圆上一动点,AC 与DE 相交于点 F。
(1)求证△AOG∽△FAO。
(2)若OA=4,OF=8,H 点为OD 的中点,求SCGF 。
10、如图,在⊙O 中,弦AB、CD 相交于AB 的中点E,连接AD 并延长至 F 点,使DF=AD,连接BC、BF。
(1)、求证:△CBE∽△AFB。
(2)、若∠C=30º,∠CEB=45º,CE= 3 1,求S ABF .11、如图,△ABC 内接于⊙O,AB 是直径,D 为弧 AC的中点,连接 BD,交 AC 于G,过 D 作DE⊥AB于E 点,交⊙O于H 点,交 AC 于F 点。
圆的有关计算与证明问题(真题10道+模拟30道)中考数学重难题型押题培优导练案【解析版】

专题15圆的有关计算与证明问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率圆的有关计算与证明问题(大题) 2013.2014.2015.2016.2017十年10考2018.2019.2020.2021.2022圆的证明与计算是中考取的一类重要的问题,在北京市的2013-2022年10年中考中出现了10次,常见的圆的基础知识和解题技巧如下:1、圆中的重要定理:(1)圆的定义: 主要用来证明四点共圆和点到或直线圆的最值距离问题.(2)垂径定理: 主要用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推论 : 主要用来证明——直角、角相等、弧相等.(5)切线的性质定理: 主要用来证明垂直关系 .(6)切线的判断定理: 主要用来证明直线是圆的切线 .(7)切线长定理:线段相等、垂直关系、角相等 .2.圆中几个要点元素之间的相互转变 : 弧、弦、圆心角、圆周角等都能够经过相等来相互转变 . 这在圆中的证明和计算中常常用到 .3.判断切线的方法:( 1)若切点明确,则“连半径,证垂直”。
常有手法有:全等转变;平行转变;直径转变;中线转变等;有时可经过计算联合相像、勾股定理证垂直;( 2)若切点不明确,则“作垂直,证半径”。
常有手法:角均分线定理;等腰三角形三线合一,隐蔽角均分线;4、考题形式剖析:主要以解答题的形式出现, 第 1 问主要判断切线、证明角或线段相等;第2 问主要与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(本质仍是求线段比)【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.【答案】(1)见详解;(2)GC=6,OF=2511【解析】【分析】(1)由题意易得BD⌢=CD⌢,然后问题可求证;(2)由题意可先作图,由(1)可得点E为BC的中点,则有OE=12CG,OE//CG,进而可得△AOF∽△CGF,然后根据相似三角形的性质可进行求解.【详解】(1)证明:∵AD是⊙O的直径,AD⊥BC,∵BD⌢=CD⌢,∵∠BAD=∠CAD;(2)解:由题意可得如图所示:由(1)可得点E为BC的中点,∵点O是BG的中点,∵OE=12CG,OE//CG,∵△AOF∽△CGF,∵OA CG =OFGF,∵OE=3,∵CG=6,∵⊙O的半径为5,∵OA=OG=5,∵5 6=OFGF,∵OF=511OG=2511.【点睛】本题主要考查垂径定理、三角形中位线及相似三角形的性质与判定,熟练掌握垂径定理、三角形中位线及相似三角形的性质与判定是解题的关键.【例2】(2022·北京·中考真题)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F,若F为AC的中点,求证:直线CE为⊙O的切线.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)设AB交CD于点H,连接OC,证明RtΔCOH≅RtΔDOH,故可得∠COH=∠DOH,于是BC⌢=BD⌢,即可得到∠BOD=2∠A;(2)连接,解出∠COB=60°,根据AB为直径得到∠ADB=90°,进而得到∠ABD=60°,即可证明OC//DB,故可证明直线CE为⊙O的切线.(1)证明:设AB交CD于点H,连接OC,由题可知,∴OC=OD,∠OHC=∠OHD=90°,∵OH=OH,∴RtΔCOH≅RtΔDOH(HL),∴∠COH=∠DOH,∴BC⌢=BD⌢,∴∠COB=∠BOD,∵∠COB=2∠A,∴∠BOD=2∠A;(2)证明:连接AD,∵OA=OD,∴∠OAD=∠ODA,同理可得:∠OAC=∠OCA,∠OCD=∠ODC,∵点H是CD的中点,点F是AC的中点,∴∠OAD=∠ODA=∠OAC=∠OCA=∠OCD=∠ODC,∵∠OAD+∠ODA+∠OAC+∠OCA+∠OCD+∠ODC=180°,∴∠OAD=∠ODA=∠OAC=∠OCA=∠OCD=∠ODC=30°,∴∠COB=2∠CAO=2×30°=60°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠ABD=90−∠DAO=90°−30°=60°,∴∠ABD=∠COB=60°,∴OC//DE,∵CE⊥BE,∴CE⊥OC,∴直线CE为⊙O的切线.【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)如图,AB是∵O的直径,PA,PC分别与∵O 相切于点A,C,PC交AB的延长线于点D,DE∵PO交PO的延长线于点E.(1)求证:∵EPD=∵EDO(2)若PC=6,tan∵PDA=,求OE的长.【答案】(1)见解析(2)√5【解析】【详解】试题分析:(1)根据切线长定理和切线的性质即可证明:∵EPD=∵EDO;(2)连接OC,利用tan∵PDA=34,可求出CD=4,再证明∵OED∵∵DEP,根据相似三角形的性质和勾股定理即可求出OE的长.试题解析:(1)证明:PA,PC与∵O分别相切于点A,C,∵∵APO=∵EPD且PA∵AO,∵∵PAO=90°,∵∵AOP=∵EOD,∵PAO=∵E=90°,∵∵APO=∵EDO,∵∵EPD=∵EDO;(2)解:连接OC,∵PA=PC=6,∵tan∵PDA=34,∵在Rt∵PAD中,AD=8,PD=10,∵CD=4,∵tan∵PDA=34,∵在Rt∵OCD中,OC=OA=3,OD=5,∵∵EPD=∵ODE,∵∵OED∵∵DEP,∵PD DO =PEDE=EDOE=2,∵DE=2OE在Rt∵OED中,OE2+DE2=OD2,即5OE2=52,∵OE=√5.考点:1.切线的性质;2.相似三角形的判定与性质.⌢的中点,⊙O的切线BD交AC的延长线于点D,E是2.(2014·北京·中考真题)如图,AB是⊙O的直径,C是ABOB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【答案】(1)证明见解析(2)BH=4√55【解析】【分析】⌢的中点,可知OC∵AB,又BD是切(1)连接OC,若要证明C为AD的中点,只需证OC//BD,已知C是AB线,可知BD∵AB,问题得证(2)由(1)及E为OB中点可知∵COE∵∵FBE,从而可知BF=CO=BO=2,由勾股定理可得AF的长,由面积法即可求出BH的长【详解】(1)连接OC⌢的中点,AB是∵O的直径∵C是AB∵OC∵AB∵BD是∵O的切线∵BD∵AB∵OC//BD∵AO=BO∵AC=CD(2)∵E是OB的中点∵OE=BE在∵COE和∵FBE中{∠CEO=∠FEB OE=BE ∠COE=∠FBE∵∵COE∵∵FBE(ASA)∵BF=CO∵OB=2∵BF=2∵AF=√AB2+BF2=2√5∵AB是直径∵BH∵AFBH=AB⋅BFAF=2√5=4√55考点:1、平行线分线段成比例定理;2、切线的性质;3勾股定理;4、全等三角形3.(2015·北京·中考真题)如图,AB是∵O的直径,过点B作∵O的切线BM,弦CD//BM,交AB于点F,且DA⌢=DC⌢,连接AC,AD,延长AD交BM于点E.(l)求证:∵ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.【答案】(1)见解析;(2)2√7【解析】【分析】(1)根据切线的定义可知AB∵BM,又∵BM//CD,∵AB∵CD,根据圆的对称性可得AD=AC,再根据等弧对等弦得DA=DC,即DA=DC=AC,所以可得∵ACD是等边三角形;(2)∵ACD为等边三角形,AB∵CD,由三线合一可得∵DAB=30°,连接BD,根据直径所对的角是直角和三角形的内角和可得∵∵EBD=∵DAB=30°,因为DE=2,求出BE=4,根据勾股定理得BD=2√3,直角三角形中30°角所对的直角边等于斜边的一半得,AB=4√3,OB=2√3,在Rt∵OBE中,根据勾股定理即可得出OE的长.【详解】解:(1)∵BM是∵O切线,AB为∵O直径,∵AB∵BM,∵BM//CD,∵AB∵CD,∵AD=AC,∵AD=AC,∵DA=DC,∵DC=AD,∵AD=CD=AC,∵∵ACD为等边三角形.(2)∵ACD为等边三角形,AB∵CD,∵∵DAB=30°,连结BD,∵BD∵AD.∵EBD=∵DAB=30°,∵DE=2,∵BE=4,BD=2√3,AB=4√3,OB=2√3,在Rt∵OBE中,OE=√OB2+BE2=√12+16=2√7.【点睛】本题考查圆的有关性质,直角三角形的性质;勾股定理.4.(2016·北京·中考真题)如图,AB为∵O的直径,F为弦AC的中点,连接OF并延长交AC⌢于点D,过点D作∵O的切线,交BA的延长线于点E.(1)求证:AC∵DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【答案】(1)证明见解析;(2)32a2.【解析】【详解】试题分析:(1)欲证明AC∵DE,只要证明AC∵OD,ED∵OD即可.(2)作DM∵OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.试题解析:(1)∵ED与∵O相切于D,∵OD∵DE,∵F为弦AC中点,∵OD∵AC,∵AC∵DE.(2)作DM∵OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.∵AC∵DE,AE=AO,∵OF=DF,∵AF∵DO,∵AD=AO,∵AD=AO=OD,∵∵ADO是等边三角形,同理∵CDO 也是等边三角形,∵∵CDO=∵DOA=60°,AE=CD=AD=AO=DD=a,∵AO∵CD,又AE=CD,∵四边形ACDE是平行四边形,易知DM=√32a,∵平行四边形ACDE面积=√32a2.考点:切线的性质.5.(2017·北京·中考真题)如图,AB是∵O的一条弦,E是AB的中点,过点E作EC∵OA于点C,过点B 作∵O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求∵O的半径.【答案】(1)证明见解析;(2)152【解析】【详解】试题分析:(1)由切线性质及等量代换推出∵4=∵5,再利用等角对等边可得出结论;(2)由已知条件得出sin∵DEF和sin∵AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC∵OA,∵∵1+∵3=90°,∵BD为切线,∵OB∵BD,∵∵2+∵5=90°,∵OA=OB,∵∵1=∵2,∵∵3=∵4,∵∵4=∵5,在∵DEB中,∵4=∵5,∵DE=DB.(2)作DF∵AB于F,连接OE,∵DB=DE,∵EF=12BE=3,在RT∵DEF中,EF=3,DE=BD=5,EF=3 ,∵DF=√52−32=4∵sin∵DEF=DFDE = 45,∵∵AOE=∵DEF,∵在RT∵AOE中,sin∵AOE=AEAO =45,∵AE=6,∵AO=152.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.6.(2018·北京·中考真题)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【答案】(1)证明见解析;(2)4√33.【解析】【分析】(1)根据切线的性质定理得到PC=PD,OP平分∠CPD.根据等腰三角形的性质即可得到PQ⊥CD于Q,即OP⊥CD.(2)连接OC、OD.根据等腰三角形的性质和平角的性质得到∠COD=180°−∠AOD−∠BOC=60°.进而得到∠DOQ=12∠COD=30°.在Rt△ODP中,解直角三角形即可.【详解】(1)证明:∵PC、PD与⊙O相切于C、D.∵PC=PD,OP平分∠CPD.在等腰△PCD中,PC=PD,PQ平分∠CPD.∵PQ⊥CD于Q,即OP⊥CD.(2)解:连接OC、OD.∵OA=OD∵∠OAD=∠ODA=50°∵∠AOD=180°−∠OAD−∠ODA=80°同理:∠BOC=40°∵∠COD=180°−∠AOD−∠BOC=60°.在等腰△COD中,OC=OD.OQ⊥CD∵∠DOQ=12∠COD=30°.∵PD与⊙O相切于D.∵OD⊥DP.∵∠ODP=90°.在Rt△ODP中,∠ODP=90°,∠POD=30°∵OP=ODcos∠POD=OAcos30°=√32=43√3.【点睛】本题考查了切线的性质和判定,圆周角定理,解直角三角形等,题目比较典型,综合性比较强,难度适中.7.(2019·北京·中考真题)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C 的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【答案】依题意画出图形G为∵O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.【解析】【分析】(1)根据线段垂直平分线的性质得出图形G为∵O,再根据在同圆或等圆中相等的圆周角所对的弧相等得⌢=CD⌢;从而得出弦相等即可.出AD(2)先根据HL得出△CDF∵∵CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∵ABC=∵COD,再证得DE为∵O的切线即可【详解】如图所示,依题意画出图形G为∵O,如图所示(1)证明:∵BD平分∵ABC,∵∵ABD=∵CBD,⌢=CD⌢,∵AD=CD∵AD(2)解:∵AD=CD,AD=CM,∵CD=CM.∵DF∵BC,∵∵DFC=∵CFM=90°在Rt△CDF和Rt△CMF中{CD=CMCF=CF,∵Rt△CDF∵Rt△CMF(HL),∵DF=MF,∵BC为弦DM的垂直平分线∵BC为∵O的直径,连接OD∵∵COD=2∵CBD,∵ABC=2∵CBD,∵∵ABC=∵COD,∵OD∵BE.又∵DE∵BA,∵∵DEB=90°,∵∵ODE=90°,即OD∵DE,∵DE为∵O的切线.∵直线DE与图形G的公共点个数为1个.【点睛】本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.8.(2020·北京·中考真题)如图,AB为∵O的直径,C为BA延长线上一点,CD是∵O的切线,D为切点,OF∵AD于点E,交CD于点F.(1)求证:∵ADC=∵AOF;(2)若sinC=13,BD=8,求EF的长.【答案】(1)见解析;(2)2.【解析】【分析】(1)连接OD,根据CD是∵O的切线,可推出∵ADC+∵ODA=90°,根据OF∵AD,∵AOF+∵DAO=90°,根据OD=OA,可得∵ODA=∵DAO,即可证明;(2)设半径为r,根据在Rt∵OCD中,sinC=13,可得OD=r,OC=3r,AC=2r,由AB为∵O的直径,得出∵ADB=90°,再根据推出OF∵AD,OF∵BD,然后由平行线分线段成比例定理可得OEBD =OAAB=12,求出OE,OFBD =OCBC=34,求出OF,即可求出EF.【详解】(1)证明:连接OD,∵CD是∵O的切线,∵OD∵CD,∵∵ADC+∵ODA=90°,∵OF∵AD,∵∵AOF+∵DAO=90°,∵OD=OA,∵∵ODA=∵DAO,∵∵ADC=∵AOF;(2)设半径为r,在Rt∵OCD中,sinC=13,∵OD OC =13,∵OD=r,OC=3r,∵OA=r,∵AC=OC-OA=2r,∵AB为∵O的直径,∵∵ADB=90°,又∵OF∵AD,∵OF∵BD,∵OE BD =OAAB=12,∵OE=4,∵OF BD =OCBC=34,∵OF=6,∵EF=OF−OE=2.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京市广渠门中学模拟预测)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,E为BC⌢上一点,过点E作⊙O的切线,分别交DC,AB的延长线于点F,G连接AE,交CD于点P.(1)求证:EF=FP;(2)连接AD,若AD∥FG,CD=8,cosF=45,求⊙O半径.【答案】(1)见解析(2)256【解析】【分析】(1)连接OE,要使EF=FP,需要∵FEP=∵FPE,通过切线和垂直的已知条件,利用等角的余角相等可得∵FEP=∵FPE,结论可得.(2)设圆的半径为r,在Rt∵ODH中,利用勾股定理可以求得半径r.(1)证明:连接OE,∵EF是圆的切线,∵OE∵EF.∵∵OEF=90°.∵∵OEA+∵AEF=90°.∵CD∵AB,∵∵AHC=90°.∵∵OAE+∵APH=90°.∵OA=OE,∵∵OAE=∵OEA.∵∵AEF=∵APH.∵∵APH=∵EPF,∵∵EPF=∵AEF.∵EF=PF.(2)连接OD,设圆的半径为r,∵直径AB∵CD于H,CD=8,∵CH=DH=4.∵AD∵FG,∵∵ADH=∵F.∵cos∵ADH=cos F=45∴AD=CHcos∠ADH=5∴AH=√AD2−DH2=3∵OH=OA-AH=r-3.在Rt∵ODH中,∵OH2+DH2=OD2,∵(r-3)2+42=r2.∴OE=r=25 6【点睛】本题主要考查了圆的切线的性质,勾股定理,垂径定理,圆周角定理和解直角三角形的知识.使用添加圆中常添加的辅助线是解题的关键.2.(2022·北京房山·二模)如图,已知AB是半⊙O的直径,点H在⊙O上,E是HB⌢的中点,连接AE,过点E作EC⊥AH交AH的延长线于点C.过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;(2)若FB=2,EFAF =√22,求OF的长.【答案】(1)见解析(2)OF=1【解析】【分析】(1)连接OE,由于E为HB⌢的中点,根据圆周角定理可知∵1=∵2,而AO=EO,则∵3=∵2,于是∵1=∵3,根据平行线的判定知OE∥AC,而AC∵CE,根据平行线的性质知∵OEC=90°,即OE∵CE,根据切线的判定可知CE是∵O的切线;(2)由于AB是直径,故∵AED=90°,而EF∵AB,易知∵2=∵4=∵1,那么tan∵1=tan∵2=tan∵4=EFAF =√22,在Rt∵EFB中,利用正切可求出EF,同理在Rt∵AEF中,可求出AF,得半径OB=3,进而可求出OF.(1)证明:连结OE,∵点E为HB⌢的中点,∵ ∵1=∵2,∵OE=OA,∵∵3=∵2,∵∵3=∵1,∵OE∵AC,∵AC∵CE,∵OE∵CE,∵点E在∵O上,∵CE是∵O的切线.(2)连结EB,∵AB是∵O的直径,∵∵AEB=90°,∵EF∵AB于点F,∵∵AFE=∵EFB=90°,∵∵2+∵AEF=∵4+∵AEF=90°,∵∵2=∵4=∵1,∵EF AF =√22,∵tan∠1=√22,∵tan∵4 =√22,在Rt∵EFB中,∵EFB=90°,FB=2,tan∵4 =√22,∵EF=2√2,设OE=x,则OB= x.∵FB=2,∵OF=x-2,∵在Rt∵OEF中,∵EFO=90°,∵x2=(x-2)2+(2√2)2,∵x=3,∵OF=1.【点睛】本题主要考查了切线的判定,圆周角定理,平行线的性质,等腰三角形的性质,勾股定理,三角函数的定义,作出辅助线,熟练掌握圆的切线判定方法,是解题的关键.3.(2022·北京朝阳·二模)如图,AB为∵O的直径,C为∵O上的一点,OD⊥AB交AC于点E,DE=DC.(1)求证:DC是∵O的切线;(2)若OA=4,OE=2,求cos D.【答案】(1)见解析(2)35【解析】【分析】(1)连接OC.证∵OCD=90°,即可得出结论;(2)先求出OC=4.再同由勾股定理求出DC=3,OD=5,最后由余弦定义cosD=DC求解.OD(1)证明:如图,连接OC.∵OD⊥AB交AC于点E,∵∠AOD=90∘,∵∠A+∠AEO=90∘.∵∠AEO=∠DEC,∵∠A+∠DEC=90∘.∵DE=DC,∵∠DEC=∠DCE,∵OA=OC,∵∠A=∠ACO,∵∵OCD=∠ACO+∠DCE=90∘,∵DC⊥OC,∵DC是∵O的切线,(2)解:∵∠OCD=90∘,∵DC2+OC2=OD2,∵OA=4,∵OC=4.设DC=x,∵OE=2,∵x2+42=(x+2)2.解得x=3,∵DC=3,OD=5.∵在Rt∵OCD中,cosD=DCOD =35.【点睛】本师考查切线的判定,解直角三角形,掌握切线的判定定理是解题的关键.4.(2022·北京东城·二模)如图,在△ABC中,AB>AC,∠BAC=90°,在CB上截取CD=CA,过点D作DE⊥AB 于点E,连接AD,以点A为圆心、AE的长为半径作⊙A.(1)求证:BC是∵A的切线;(2)若AC=5,BD=3,求DE的长.【答案】(1)见解析(2)158【解析】【分析】(1)过点A作AF⊥BC于F,根据同旁内角互补证得DE//AC,可证得∠DAC=∠ADE,利用AAS可证得△ADE≅△ADF,则可证得AF=AE,根据切线的判定即可求证结论.(2)根据角相等即可得△BDE∼△BCA,利用相似三角形的性质即可求解.(1)过点A作AF⊥BC于F,如图所示,∵DE⊥AB,∴∠AED=90°,∵∠BAC=90°,∴∠AED+∠BAC=180°,∴DE//AC,∴∠DAC=∠ADE,∵CD=AC,∴∠DAC=∠ADC,∴∠ADE=∠ADC,在△ADE和△ADF中,{∠AED=∠AFD ∠ADE=∠ADFAD=AD,∴△ADE≅△ADF(AAS),∴AF=AE,且AE为⊙A的半径,∴AF是⊙A的半径,∴BC是⊙A的切线.(2)∵AC=5,∴CD=AC=5,∴BC=BD+CD=3+5=8,∵∠DEB=∠BAC=90°,∠B=∠B,∴△BDE∼△BCA,∴DEAC =BDBC,∴DE5=38,解得DE=158,∴DE的长为158.【点睛】本题考查了切线判定、三角形全等的判定及性质、相似三角形的判定及性质,熟练掌握全等三角形的判定及性质,切线的判定及相似三角形判定及性质是解题的关键.5.(2022·北京平谷·二模)如图,AB是∵O的直径,过B作∵O的切线,与弦AD的延长线交于点C,AD=DC,E是直径AB上一点,连接DE并延长与直线BC交于点F,连接AF.(1)求证:AD⌢=BD⌢;(2)若tan∠BAF=14,∵O的半径长为6,求EF的长.【答案】(1)证明见解析(2)√13【解析】【分析】(1)连接BD,根据圆周角定理、切线性质以及题中AD=DC可得∠BAD=∠ABD=∠CBD=∠C=45°,从而得出结论;(2)连接OD,由(1)知DO⊥AB,得出ΔDOE∼ΔFBE,得出DOBF =OEBE,在RtΔABF中,tan∠BAF=14,∵O的半径长为6,解得BF=3,从而63=OEBE,设BE=x,OE=2x,则BE+OE=OB=6,解得x=2,即BE=2,在RtΔEBF中,利用勾股定理得结论.(1)证明:连接BD,如图所示:∵AB是∵O的直径,∴∠ABD=90°,即BD⊥AC,∵过B作∵O的切线,∴AB⊥BC,∵AD=DC,∴∠BAD=∠ABD=∠CBD=∠C=45°,∴BD=AD,∴AD⌢=BD⌢;(2)解:连接OD,如图所示:在等腰RtΔABD中,∠ADB=90°,∴DO⊥AB,∵∠DEO=∠BEF,∠DOE=∠FBE=90°,∴ΔDOE∼ΔFBE,∴DOBF =OEBE,在RtΔABF中,tan∠BAF=14,∵O的半径长为6,则tan∠BAF=14=BFAB=BF12,解得BF=3,∴63=OEBE,设BE=x,OE=2x,则BE+OE=x+2x=OB=6,解得x=2,在RtΔEBF中,∠EBF=90°,BE=2,BF=3,则利用勾股定理得EF=√BE2+BF2=√22+32=√13.【点睛】本题考查圆综合,涉及到圆周角定理、直角三角形的性质、切线的性质、相似三角形的判定与性质、正切函数求线段长、勾股定理等知识点,根据题意准确作出辅助线是解决问题的关键.6.(2022·北京北京·二模)如图,AB为⊙O的直径,BD⌢=CD⌢,过点A作⊙O的切线,交DO的延长线于点E.(1)求证:AC∥DE;(2)若AC=2,t an E=1,求OE的长.2【答案】(1)见解析(2)5【解析】【分析】(1)根据同圆中,等弧相等性质可得∠BAD=∠CAD,再利用等边对等角及等量代换即可证得∠CAD=∠D从而证得结论.(2)连接BC,利用直径所对的圆周角是直角结合(1)中平行线的性质可求得∠B=∠E,从而得到tanB=tanE,根据直角三角形的锐角三角函数的值结合勾股定理即可求得答案.(1)⌢=CD⌢,证明:∵BD∵∠BAD=∠CAD,∵OA=OD,∵∠D=∠BAD,∵∠CAD=∠D,∵AC∥DE.(2)如图,连接BC,∵AB为⊙O的直径,∵∠C=90°,∵AC∥DE,∵∠BAC=∠AOE,∵AE是⊙O的切线,∵OA⊥AE,∵∠C=∠OAE=90°,∵∠B=∠E,∵tanB=tanE=12,在Rt△OAE中,tanB=12,AC=2,∵tanB=ACBC =2BC=12,解得BC=4,∴AB=√AC2+BC2=√22+C2=2√5,∵OA=√5,∵在Rt△OAE中,tanE=12,∵tanE=AOAE =√5AE=12,解得AE=2√5,∵OE=√OA2+AE2=√(√5)2+(2√5)2=5.【点睛】本题考查了平行线的判定及性质、切线的性质、圆周角定理、锐角三角函数值及勾股定理解直角三角形的应用,熟练掌握圆周角定理及平行线的判定及锐角三角函数值及勾股定理解直角三角形的应用是解题的关键.7.(2022·北京丰台·二模)如图,AB是∵O的直径,C为BA延长线上一点,过点C作∵O的切线,切点为D,过点B作BE∵CD于点E,连接AD,BD.(1)求证:∠ABD=∠DBE;(2)如果CA=AB,BD=4,求BE的长.【答案】(1)证明见解析;(2)43√6.【解析】【分析】(1)如图1,连接OD,由CD切∵O于点A得OD⊥CD,从而得OD∥BE,进而得∠ODB=∠DBE,另外由∠ODB=∠ABD即可得出结论;(2)解:设OA=x,则CA=AB=2x,CO=CA+OA=3x,先证明△COD∽△CBE,得ODBE =COCB=3x4x从而有x=34BE,另外由△ABD∽△DBE得ABBD =DBBE,即可求得BE=43√6.(1)证明:如图,连接OD,∵CD切∵O于点A,∴OD⊥CD,∵BE∵CD,∴OD∥BE,∴∠ODB=∠DBE,∵OD=OB,∴∠ODB=∠ABD,∴∠ABD=∠DBE;(2)解:如图,设OA=x,则CA=AB=2x,CO=CA+OA=3x,∵OD∥BE,∴∠CDO=∠E,∠COD=∠CBE,∴△COD∽△CBE,∴ODBE =COCB=3x4x即xBE=34,∴x=34BE,∵AB是∵O的直径,∴∠ADB=90°,∵BE∵CD,∴∠E=∠ADB=90°,∵∠ABD=∠DBE,∴△ABD∽△DBE,∴ABBD =DBBE,∵BD=4,∴2×34BE4=4BE,解得BE=43√6.【点睛】本题主要考查了圆的切线、勾股定理、相似三角形的判定及性质以及平行线的判定及性质,熟练掌握相似三角形的判定及性质是解题的关键.8.(2022·北京密云·二模)如图,在△ABC中,AB=BC,以BC为直径的∵O与AC交于点D,DE是∵O的切线.(1)计算∠AED的度数;(2)若tanA=12,BC=2√5,求线段DE的长.【答案】(1)90°(2)4√55【解析】【分析】(1)连接OD,BD,由直径所对圆周角等于90度得∵BDO+∵ODC=∵BDC=90°,再由切线的性质得∵BDE+∵BDO=∵ODE=90°,所以∵BDE=∵ODC,∵ADE=∵BDO,然后由OB-OC,则∵C=∵ODC,BA=BC,则∵C=∵A,所以∵A+∵ADE=90°,最后由三角形内角和定理即可求解;(2)由(1)知:∵AED=∵ADB=90°,则tan∵A=DEAE =BDAD=12,所以AD=2BD,AE=2DE,又因为AB=BC=2√5,在Rt△ADB中,由勾股定理,可求出BD=2,AD=4,再在Rt△ADE中,由勾股定理可求出DE长.(1)解:如图,连接OD,BD,∵BC是∵O的直径,∵∵BDO+∵ODC=∵BDC=90°,∵∵BDE+∵ADE=∵BDA=90°,∵DE是∵O的切线,∵∵BDE+∵BDO=∵ODE=90°,∵∵BDE=∵ODC,∵ADE=∵BDO,∵OD=OC,∵∵C=∵ODC,∵∵C+∵ADE=∵C+∵BDO=90°,∵BA=BC,∵∵C=∵A,∵∵A+∵ADE=90°,∵∵AED=180°-(∵A+∵ADE)=90°;(2)解:由(1)知:∵AED=∵ADB=90°,∵tan∵A=DEAE =BDAD=12,∵AD=2BD,AE=2DE,∵AB=BC=2√5,∵在Rt△ADB中,由勾股定理,得AD2+BD2=AB2,∵(2BD)2+BD2=(2√5)2,∵BD=2,∵AD=4,在Rt△ADE中,由勾股定理,得AE2+DE2=AD2,(2DE)2+DE2=42,∵DE=4√5.5【点睛】本题考查切线的性质,圆周角定理的推论,勾股定理,正切的定义,熟练掌握切线的性质、圆周角定理的推论、正切的定义是解题的关键.9.(2022·北京大兴·二模)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA 为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.【答案】(1)见解析(2)6【解析】【分析】(1)要证BC是∵O的切线,只要连接OD,再证OD∵BC即可.(2)过点D作DE∵AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过证明△BDE∵∵BAC,根据相似三角形的性质得出AC的长.(1)连接OD;∵AD是∵BAC的平分线,∵∵1=∵3.∵OA=OD,∵∵1=∵2.∵∵2=∵3.∵OD∵AC.∵∵ODB=∵ACB=90°.∵OD∵BC.∵OD是∵O的半径,∵BC是∵O切线.(2)过点D作DE∵AB,∵AD是∵BAC的平分线,∵CD=DE=3.在Rt△BDE中,∵BED=90°,由勾股定理得:BE=√BD2−DE2=√52−32=4,∵∵BED=∵ACB=90°,∵B=∵B,∵∵BDE∵∵BAC.∵BE BC =DEAC.∵4 8=3AC.∵AC=6.【点睛】^$本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了角平分线的性质,勾股定理得到BE的长,及相似三角形的性质.10.(2022·北京西城·二模)如图,AB是⊙O的直径,CB,CD分别与⊙O相切于点B,D,连接OC,点E 在AB的延长线上,延长AD,EC交于点F.(1)求证:FA∥CO;(2)若FA=FE,CD=4,BE=2,求F A的长.【答案】(1)见解析(2)3√5【解析】【分析】(1)连接OD,证明△CDO∵△CBO(SSS),得∵COD=∵COB,即∵BOD=2∵COB,又因为OD=OA,得∵OAD=∵ODA,所以∵BOD=∵OAD+∵ODA=2∵OAD,即可证得∵COB=∵OAD,即可由平行线的判定定理,得出结论;(2)由F A=FE,得∵F AE=∵FEA,又由(1)知:∵COB=∵OAD,所以∵COE=∵CEO,则CO=CE,又由切线的性质得OB∵CB,根据等腰三角形“三线合一”性质得OB=BE=2,从而求出AE=6,OE=4,再由切线性质得CB=CD=4,然后在Rt△CBE中,由勾股定理,得CF=√CB2+BE2=√42+22=2√5,最后证△EOC∵△EAF,得OEAE =CEFE,即46=2√5FE,可求得FE=3√5,即可由F A=FE得出答案.(1)证明:如图,连接OD,∵CB,CD分别与⊙O相切于点B,D,∵CD=CB,∵OD=OB,OC=OC,∵∵CDO∵△CBO(SSS),∵∵COD=∵COB,即∵BOD=2∵COB,∵OD=OA,∵∵OAD=∵ODA,∵∵BOD=∵OAD+∵ODA=2∵OAD,∵2∵COB=2∵OAD,即∵COB=∵OAD,∵F A∥OC;(2)解:∵F A=FE,∵∵F AE=∵FEA,由(1)知:∵COB=∵OAD,∵∵COE=∵CEO,∵CO=CE,∵CB是∵O的切线,∵OB∵CB,∵OB=BE=2,∵OA=OB=2,∵AE=6,OE=4,∵CB、CD是∵O的切线,∵CB=CD=4,在Rt△CBE中,由勾股定理,得CE=√CB2+BE2=√42+22=2√5,∵F A∥OC,∵∵EOC∵∵EAF,∵OE AE =CEFE,即46=2√5FE,∵FE=3√5,∵F A=FE=3√5.【点睛】本题考查切线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.11.(2022·北京顺义·二模)如图,△ABC内接于⊙O,AB是⊙O的直径,点D在AB的延长线上,且∠BCD=∠A,点E为AC的中点,连接OE并延长与DC的延长线交于点F.(1)求证:CD是⊙O的切线;(2)若CD=4,tanA=12,求CF的长.【答案】(1)见解析(2)6【解析】【分析】(1)根据AB是⊙O的直径,可得∠ACB=90°,由OA=OC得∠A=∠ACO,结合已知条件,根据可得∠BCD+∠OCB=90°,即可得证;(2)证明△DCB∽△DAC,得出CDAD =DBDC=CBAC,根据tanA=12,可得CBAC=12,从而求得DB的长,进而求得OD的长,由点E为AC的中点,根据垂径定理以及∠ACB=90°,证明OF∥BC,根据平行线分线段成比例即可求解.(1)证明:如图,连接OC,∵OA=OC,∴∠A=∠ACO,∵∠BCD=∠A,∴∠BCD=∠ACO∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠BCD+∠OCB=90°,即∠OCD=90°,∵OC是半径,∴CD是⊙O的切线;(2)∵∠BCD=∠A,∠D=∠D,∴△DCB∽△DAC,∴CDAD =DBDC=CBAC,∵tanA=12,可得CBAC=12,∴4AD =DB4=12,∴AD=8,DB=2,∴OB=12AB=12(AD−BD)=3,∵点E为AC的中点,∴OF⊥AC,又∵∠ACB=90°,∴OF∥BC,∴DCCF =BDOB,即4CF=23,∴CF=6.【点睛】本题考查了切线的判定,直径所对的圆周角是直角,垂径定理的推论,相似三角形的性质与判定,正切,平行线分线段成比例,掌握以上知识是解题的关键.12.(2022·北京房山·二模)如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE 的垂线于交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,若CD=2,求HF的长度.【答案】(1)见详解(2)2【解析】【分析】(1)连接OE,先证明BF是圆的直径,OE是圆的半径,再证明OE∥BC在,则有∵OEA=∵C=90°,结论得证;(2)连接ED,根据角平分线的性质证明EH=EC,再证∵EHF∵∵ECD,则HF可求.(1)连接OE,如图,∵EF∵BE,∵∵BEF=90°,∵∵O是∵BEF的外接圆,∵BF是∵O的直径,OE是∵O的半径,∵∵OEB=∵OBE,∵BE是∵ABC的角平分线,∵∵OBE=∵CBE,∵∵OEB=∵CBE,∵OE∥BC,∵∵OEA=∵C=90°,即OE∵AC,∵OE是半径,∵AC是∵O的切线;(2)连接ED,如图,∵BE平分∵ABC,且EH∵BA,EC∵BC,∵EH=EC,∵四边形BDEF是∵O的内接四边形,∵∵EFH=∵EDC,∵∵EHF=∵C=90°,∵∵EHF∵∵ECD,∵HF=CD=2,即HF的值为2.【点睛】此题考查了圆的切线的判定、圆周角定理、平行线的判定与性质、全等三角形的判定与性质等知识,解题的关键是正确的作出所需辅助线.13.(2022·北京昌平·二模)如图,在△ABC中,∠C=90°,BC,AC与⊙O交于点F,D,BE为⊙O直径,点E在AB上,连接BD,DE,∠ADE=∠DBE.(1)求证:AC是⊙O的切线;(2)若sinA=35,⊙O的半径为3,求BC的长.【答案】(1)过程见详解(2)245【解析】【分析】(1)连接OD,OD=OB=OE,即有∵OBD=∵ODB,∵ODE=∵OED,再根据BE是直径,得到∵BDE=90°=∵DBE+∵DEB=∵ODB+∵ODE,即有∵DBE+∵ODE=90°,再根据∵ADE=∵DBE,有∵ADE+∵ODE=90°,即有OD∵AC,则结论得证;(2)先证OD∥BC,则有BCOD =ABOA,利用sinA=ODOA=35可求出OA,即可求出BC的值.(1)连接OD,如图,∵OD=OB=OE,∵∵OBD=∵ODB,∵ODE=∵OED,∵BE是直径,∵∵BDE=90°=∵DBE+∵DEB=∵ODB+∵ODE,∵∵DBE+∵ODE=90°,∵∵ADE=∵DBE,∵∵ADE+∵ODE=90°,∵OD∵AC,∵OD为半径,∵AC是∵O的切线;(2)根据(1)的结论,有OD∵AC,∵∵C=90°,∵BC∵AC,∵OD∥BC,∵BC OD =ABOA,∵在Rt△ADO中,sinA=ODOA =35,又∵OD=OB=3,∵OA=5,∵AB=OA+OB=8,∵BC OD =ABOA,∵BC=ABOA ×OD=85×3=245.即BC为245.【点睛】本题考查了切线的判定与性质、直径作对圆周角为90°、平行的性质、勾股定理、三角函数等知识,证明切线是解答本题的关键.14.(2022·北京海淀·二模)如图,AB为∵O的直径,CD为弦,CD∵AB于点E,连接DO并延长交∵O于点F,连接AF交CD于点G,CG =AG,连接AC.(1)求证:AC∵DF;(2)若AB = 12,求AC和GD的长.【答案】(1)见解析(2)AC =6,DG=4√3【解析】【分析】(1)根据圆周角定理得到∵C=∵F,由GA=GC推出∵CAF=∵C,得到∵CAF=∵F,即可得到结论AC∵DF.∠2,进而证得△AOD是等边三角形,(2)连接AD,利用AC∵DF推出∵C=∵1,根据圆周角定理得到∠C=12AB=6.利用垂径定理求出AC=AD=6,利用三角函数求出AG.得到AD=AO=12(1)证明:∵ C,F都在∵O上,∵ ∵C=∵F.∵ GA=GC,∵ ∵CAF=∵C.∵ ∵CAF=∵F.∵ AC∵DF.(2)解:连接AD.∵ AC∵DF,∵ ∵C=∵1,⌢=AD⌢,∵AD∠2.∵∠C=12∠2.∵∵∠1=12∵ AB∵CD于E,∵ ∵BED=90°.∵∠1+∠2=90°.∵∵由∵,∵得∵1=30°,∵2=60°.∵ OA=OD,∵ ∵AOD是等边三角形.AB=6.∵AD=AO=12∵直径AB∵CD于E,∵AC⌢=AD⌢.∵ AC=AD=6.∵ ∵AOD是等边三角形,∵ ∵ADO=60°,∵1=30°.∵ ∵3=∵AOD-∵1=30°∵ DF是∵O的直径,∵ ∵F AD=90°.=4√3.∵ 在Rt∵GAD中,DG=ADcos∠3【点睛】此题考查了圆周角定理,垂径定理,等边三角形的判定及性质,锐角三角函数,平行线的判定定理,熟记圆周角定理及垂径定理是解题的关键.15.(2022·北京市十一学校模拟预测)如图,AB 是⊙O 的弦,C 为⊙O 上一点,过点C 作AB 的垂线与AB 的延长线交于点D ,连接BO 并延长,与⊙O 交于点E ,连接EC ,CD 是⊙O 的切线.(1)求证:∠ABE =2∠E ;(2)若tanE =13,AB =8,求BD 的长.【答案】(1)证明见解析(2)1【解析】【分析】(1)连接OC ,根据切线的性质易得AD ∥CO ,由平行线的性质得到∠ABE =∠BOC ,再结合等腰三角形的性质得到∠OCE =∠OEC ,由三角形外角性质易得∠BOC =∠OCE +∠OEC =2∠BCE 即可求解;(2)连接BC 和AC ,CO ,根据BE 是⊙O 的直径和切线的性质易得∠BCD =∠E ,由圆周角定理得到∠A =∠E ,结合tanE =13得到BD CD =DC AD =13,进而可得CD =3BD ,将AB =8,AD =AB +BD =8+BD 代入即可求解.(1)证明:连接OC ,如下图.∵CD 是⊙O 的切线,过点C 作AB 的垂线与AB 的延长线交于点D ,∵∠CDA =∠DCO =90°,∵AD ∥CO ,∵∠ABE =∠BOC .∵OC =OE ,∵∠OCE =∠OEC ,∵∠BOC =∠OCE +∠OEC =2∠BCE,∵∠ABE=2∠E;(2)解:连接BC和AC,CO,如下图.∵BE是⊙O的直径,∵∠BCE=90°,∵∠OCE+∠OCB=90°.∵CD是⊙O的切线,∵∠OCB+∠BCD=90°,∵∠BCD=∠OCE,∵∠BCD=∠E,∵∠A=∠E,tanE=13,∵BDCD=DC AD =13,∵CD=3BD.∵AB=8,AD=AB+BD=8+BD,∵3BD8+BD=13,∵BD=1.【点睛】本题主要考查了圆周角定理、切线的性质,平行线的性质,等腰三角形的性质,三角形外角性质,锐角三角函数值的求法,作出辅助线是解答关键.16.(2022·北京东城·一模)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点E,过点B作⊙O的切线交OD的延长线于点F.(1)求证:∠A=∠BOF;(2)若AB=4,DF=1,求AE的长.【答案】(1)见解析(2)AE=83【解析】【分析】(1)首先根据等边对等角可证得∠C=∠ODB,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得∠AEB=∠OBF,即可证得△ABE∽△OFB,再根据相似三角形的性质即可求得.(1)证明:∵AB=AC∴∠C=∠ABC∵OB=OD∴∠ODB=∠OBD∴∠C=∠ODB∴AC∥OD∴∠A=∠BOF(2)解:如图:连接BE∵AB是⊙O的直径,AB=4AB=2∴∠AEB=90°,OB=OD=12∵BF是⊙O的切线∴∠OBF=90°。
圆有关的证明题(附答案)

圆有关的证明题1.如图,已知直线MN 与以AB 为直径的半圆相切于点C ,∠A=28°.(1)求∠ACM 的度数.(2)在MN 上是否存在一点D ,使AB ·CD=AC ·BC ,说明理由.2.如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3.(1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系?(2)若点O 沿CA 移动,当OC 等于多少时,⊙O 与AB 相切?3.(苏州市)已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C . ①求证:AB =AC ;②若tan ∠ABE =21,(ⅰ)求BCAB 的值;(ⅱ)求当AC =2时,AE 的长.4.(广州市)如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.5.(河北省)已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB =2︰3,AC =10,求sin B 的值.6.(北京市海淀区)如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于点D ,若tan B =21,PC =10cm ,求三角形BCD 的面积.7.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.8.(四川省)已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积.9.(贵阳市)如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,PA =10,PB =5,求:(1)⊙O 的面积(注:用含π的式子表示);(2)cos ∠BAP 的值.1.解:(1)连结BC ,9028AB ACB A ⇒∠=︒⎫⎬∠=︒⎭是直径⇒∠B=62°. MN 是切线⇒∠ACM=∠B=62°.(2)过点B 作BD ⊥MN ,则190BDC ACB MN BCN A ∠=︒=∠⎫⎬⇒∠=∠⎭是切线⇒△ACB ∽△CNB ⇒1AC AB CD BC =⇒AB ·CD 1=AC ·BC . 过点A 作AD 2⊥MN ,则190AD C ACB MN MCA CBA ∠=︒=∠⎫⎬⇒∠=∠⎭是切线⇒△ABC ∽△ACD 2 ⇒2CD AC AB CB=⇒CD 2·AB=AC ·CB 2.解:(1)过点C 作CH ⊥AB 于H ,由三角形的面积公式得AB ·CH=AC ·BC ,∴CH=AC BC AB =6013,即圆心到直线的距离d=6013. ∵d=6013>3,∴⊙O 与AB 相离. (2)过点O 作OE ⊥AB 于E ,则OE=3.∵∠AEO=∠C=90°,∠A=∠A ,∴△AOE ∽△ABC ,∵OA=OE AB BC =31313124⨯= ∴OC=AC-OA=5-134=74. ∴当OC=74时,⊙O 与AB 相切. 3.(1)∵ BE 切⊙O 于点B ,∴ ∠ABE =∠C .∵ ∠EBC =2∠C ,即 ∠ABE +∠ABC =2∠C ,∴ ∠C +∠ABC =2∠C ,∴ ∠ABC =∠C ,∴ AB =AC .(2)①连结AO ,交BC 于点F ,∵ AB =AC ,∴ =,∴ AO ⊥BC 且BF =FC .在Rt △ABF 中,AF =tan ∠ABF ,∴ AF =21BF . ∴ AB =22BF AF +=2221BF BF +⎪⎭⎫ ⎝⎛=25BF . ∴ 452==BF AB BC AB . ②在△EBA 与△ECB 中,∵ ∠E =∠E ,∠EBA =∠ECB ,∴ △EBA ∽△ECB .∴ ⎪⎩⎪⎨⎧⋅==EC EA BE BC AB EB EA 2,解之,得516EA 2=EA ·(EA +AC ),又EA ≠0, ∴ 511EA =AC ,EA =115×2=1110. 4.设⊙的半径为r ,由切割线定理,得PA 2=PB ·PC , ∴ 82=4(4+2r ),解得r =6(cm ). 即⊙O 的半径为6cm .5.由已知AD ︰DB =2︰3,可设AD =2k ,DB =3k (k >0). ∵ AC 切⊙O 于点C ,线段ADB 为⊙O 的割线,∴ AC 2=AD ·AB , ∵ AB =AD +DB =2k +3k =5k ,∴ 102=2k ×5k ,∴ k 2=10, ∵ k >0,∴ k =10.∴ AB =5k =510.∵ AC 切⊙O 于C ,BC 为⊙O 的直径,∴ AC ⊥BC .在Rt △ACB 中,sin B =51010510==AB AC . 6.解法一:连结AC .∵ AB 是⊙O 的直径,点C 在⊙O 上,CD ⊥AB 于点D ,∴ ∠ADC =∠BDC =90°,∠2=90°-∠BAC =∠B . ∵ tan B =21, ∴ tan ∠2=21.∴ CB ACDB CD CD AD ===21.设AD =x (x >0),CD =2x ,DB =4x ,AB =5x .∵ PC 切⊙O 于点C ,点B 在⊙O 上,∴ ∠1=∠B . ∵ ∠P =∠P ,∴ △PAC ∽△PCB ,∴ 21==CB ACPC PA.∵ PC =10,∴ PA =5,∵ PC 切⊙O 于点C ,PAB 是⊙O 的割线,∵ PC 2=PA ·PB ,∴ 102=5(5+5 x ).解得x =3.∴ AD =3,CD =6,DB =12.∴ S △BCD =21CD ·DB =21×6×12=36.即三角形BCD 的面积36cm 2.解法二:同解法一,由△PAC ∽△PCB ,得21==CB AC PC PA .∵ PA =10,∴ PB =20.由切割线定理,得PC 2=PA ·PB .∴ PA =201022-PB PC =5,∴ AB =PB -PA =15,∵ AD +DB =x +4x =15,解得x =3,∴ CD =2x =6,DB =4x =12.∴ S △BCD =21CD ·DB =21×6×12=36.即三角形BCD 的面积36cm 2.7.解:如图取MN 的中点E ,连结OE ,∴ OE ⊥MN ,EN =21MN =21a .在四边形EOCD 中,∵ CO ⊥DE ,OE ⊥DE ,DE ∥CO ,∴ 四边形EOCD 为矩形.∴ OE =CD ,在Rt △NOE 中,NO 2-OE 2=EN 2=22⎪⎭⎫ ⎝⎛a .∴ S 阴影=21π(NO 2-OE 2)=21π·22⎪⎭⎫ ⎝⎛a =28πa .8.解:∵ ∠CDE =∠CBA ,∠DCE =∠BCA ,∴ △CDE ∽△ABC .∴ 2⎪⎭⎫⎝⎛=∆∆AB DE S S ABC CDE∴ AB DE =ABC CDES S ∆∆=41=21,即215=AB ,解得 AB =10(cm ),作OM ⊥FG ,垂足为M ,则FM =21FG =21×8=4(cm ),连结OF ,∵ OA =21AB =21×10=5(cm ).∴ OF =OA =5(cm ).在Rt △OMF 中,由勾股定理,得OM =22FM OF -=2245-=3(cm ).∴ 梯形AFGB 的面积=2FG AB +·OM =2810⨯×3=27(cm 2).9.⎭⎬⎫的割线⊙是的切线⊙是O PBC O PA )1(⇒PA 2=PB ·PC ⇒PC =20⇒半径为7.5⇒圆面积为π4225(或56.25π)(平方单位).⎭⎬⎫∠=∠∠=∠P P BAP C )2(⇒△ACP ∽△BAP ⇒PB PA AB AC =⇒12=AB AC.∵ ∠BAP =∠C ,∴ cos ∠BAP =cos ∠C =55252==x x BC AC 解法二:设AB =x ,在Rt △ABC 中,AC 2+AB 2=BC 2, 即 x 2+(2x )2=152,解之得 x =35,∴ AC =65, ∵ ∠BAP =∠C ,∴ ∴ cos ∠BAP =cos ∠C =5521556==BC AC。
几何圆证明题目(较难)

1对1个性化教案2.已知:如图,AB是⊙∠E=18°,求∠C及∠3.已知:如图,△ABC,试用直尺和圆规画出过4.已知:如图,A,B是半圆是(1)在CD上求作一点(2)若CD=4cm,求AP5.如图,有一圆弧形的拱桥,桥下水面宽度为货箱从桥下经过,已知货箱长利通过该桥?在7.已知:如图,△ABC8.已知:如图,AB9.已知:如图,△ABC求证:FE=EH.10.已知:如图,⊙12.已知:如图,ABAF交⊙O于M.求证:∠13.已知:如图,半圆求∠CAD的度数及弦14.已知:如图,割线ABC15.已知:如图,△ABC16.已知:如图,P A切⊙O于求⊙O的半径长.17.已知:如图,⊙O是半径r;(2)若AC=b,BC18.已知:如图,⊙O内切于△ABC,∠长.19.已知:如图,AB是⊙O上两点,且,过长线于E点,交AB的延长线于(1)试判断DE与⊙O的位置关系,并证明你的结论;(2)试判断∠BCD与∠BAC20.已知:如图,⊙O是Rt21.已知:如图,AB为⊙O的直径,(1)求证:AT平分∠BAC;(2)22.如图,工地放置的三根外径是23.已知:如图,⊙射线DO1交AC24.已知:如图,⊙O1与⊙ODB,连结EB,试判断25.如图,点A,B在直线MN速度自左向右运动,与此同时,26.已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A (1)求A 1A 3的长;(2)求四边形A 1A 2A 3O27.已知:如图,⊙O 切正方形.求二者的边长比28.已知:如图,⊙O 的半径为A ′B ′和面积比S 内∶29.如图,△ABC 中,BC =4交AC 于F ,点P 是⊙A C .94π8-,30.已知:如图,以线段圆O2于D点.试比较与31.已知:如图,扇形OAB.,=l2.32.如图,圆锥的轴截面是边长为求在圆锥的侧面上从教研部建议:教研部签字:日期:年月日。
突破中考之圆(解答题)专题训练

与圆有关的计算与证明经典题分类汇编【考点1】与圆性质有关的计算与证明1.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.2.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.3.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,sin∠P=0.6,求⊙O的直径.4.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.AOECDB【考点2】与切线性质有关的证明与计算1.如图,PA、PB、EF分别与⊙O相切于点A、B、C,若△PEF的周长为18cm,且∠APB=60°,求⊙O的半径.2.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18cm,BC=28cm,CA=26cm,求AF,BD,CE的长.3.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.4.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为弧BC的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.5.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=45,求DE的长.6.直线PD垂直平分⊙O的半径OA,交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sin A=513,求EF的长.【考点3】与切线的判定有关的证明与计算1.如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)证明BC是⊙O的切线.2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=8,DF=40,求⊙O的半径r.3.如图,AB是⊙O的直径,点C在⊙O上,若∠BAC=∠CAM,过点C作直线L垂直于射线AM,垂足为点D.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若直线L与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°,求CE的长.4.如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC 的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长.【考点4】与阴影面积有关的计算与证明1.如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.2.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O 经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知cos A=32,⊙O的半径为3,求图中阴影部分的面积.3.如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积.4.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=23,求阴影部分的面积.5.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.6.如图,AB 是⊙O 的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F . (1)求证:CF 是⊙O 的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积.【考点5】与圆有关的计算与证明综合1.如图,AE 为⊙O 的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F. (1)求证:OD ∥AC ;(2)求证:DE.DA=DC 2;(3)若tan ∠CAD=21,求tan ∠CDA 的值.2.如图,⊙O 与直线MN 相切于点A ,点B 是⊙O 上异于点A 的一点,∠BAN 的平分线与⊙O 交于点C .(1)求证:△ABC 是等腰三角形;(2)①若∠CAN =15°,⊙O 的半径为23,则AB = ;②当∠CAN = 时,四边形OACB 为菱形.FEDOAC3.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=12,求cos∠ACB的值.4.如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D, DE ⊥AB 于点E ,且交AC 于点P ,连接AD.(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点; (3)若⊙O 的半径为5, AD =6,求ADDB的值.5.如图1,⊙O 是△ABC 的外接圆,AB =AC ,BC =2,cos ∠ABC =1010.点D 为AC ︵上的动点,连接AD 并延长,交BC 的延长线于点E. (1)试求AB 的长;(2)试判断AD ·AE 的值是否为定值?若为定值;请求出这个定值;若不为定值,请说明理由; (3)如图2,连接BD ,过点A 作AH ⊥BD 于点H ,连接CD ,求证:BH =CD +DH.图1图2。
20题圆的证明

20题、圆的证明1.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系并说明理由;(2)若AC=16,tanA=,求⊙O的半径.2.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)3.如图,AB是⊙O的直径,AB=6,过点O作OH⊥AB交圆于点H,点C是弧AH上异于A、B的动点,过点C作CD⊥OA,CE⊥OH,垂足分别为D、E,过点C的直线交OA的延长线于点G,且∠GCD=∠CED.(1)求证:GC是⊙O的切线;(2)求DE的长;(3)过点C作CF⊥DE于点F,若∠CED=30°,求CF的长.4.如图,AB是⊙O的直径,∠ABT=45°,A T=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.5.如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E 为上一点,连接ME,NE,NE交MQ于点F,且ME2=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=,求⊙O的半径.6.如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC(1)求证:PA是⊙O的切线;(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M 为的中点,且∠DCF=∠P,求证:==.7.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.8.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).9.已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E ,与交于点F,连接AF,求∠FAB的大小.。
专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。
弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。
初中数学圆证明题

圆的证明1.如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.2.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC•交于点E,求证:△DEC为等腰三角形.3.如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB•的延长线于D,求证:AC=CD.4.如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,弧AB AF,BF和AD交于E,求证:AE=BE.5.如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.6.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.求∠ACM的度数.7.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.若点O沿CA移动,当OC等于多少时,⊙O与AB相切?9、如图,已知矩形ABCD ,以A 为圆心,AD 为半径的圆交AC 、AB 于M 、E ,CE•的延长线交⊙A 于F ,CM=2,AB=4.(1)求⊙A 的半径;(2)求CE 的长和△AFC 的面积.10、已知AB 是⊙0的直径,CD 切⊙0于C ,AE CD ⊥,BC 延长线与AE 的延长线交于F 、AF BF =,求A ∠的度数。
(10分)11、如图所示,AB=AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE 。
(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC=6,AB=5,求BE 的长。
(12分)12、如图,在△ABC 中,AB =AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点,交AD 于点G ,交AB 于点F .(1)求证:BC 与⊙O 相切; (2)当∠BAC =120°时,求∠EFG 的度数.13、如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动(不与B 、C 重合),过点D 作DE ∥BC ,DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E .(2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径.14、如图5.1-16,⊙O 的直径AB=4,C 为圆周上一点,AC=2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点E. (1)求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.(12分)MCBA E F OAB C DEA CD E G O F15、如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于圆的证明题
一、1、直线和圆的位置关系有三种:相交、相切、相离.
用数量关系表示是:如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
(1)直线l和⊙O相交d<r (2)直线l和⊙O相切d=r;(3)直线l和⊙O相离d>r.
2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.
3、切线的性质定理及其推论切线的性质定理圆的切线垂直于经过切点的半径.
推论1经过圆心且垂直于切线的直线必经过切点.
推论2经过切点且垂直于切线的直线必经过圆心.
二、1、直线和圆的位置关系
2、切线的判定定理
例1、已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.
例2、已知如图所示,AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且,过D作DE⊥AC于点E,求证:DE是⊙O的切线.
例3、(1)如图所示,△ABC内接于⊙O,如果过点A的直线AE和AC所成的角∠EAC=∠B,那么EA是⊙O的切线.
3、切线的性质及其推论
例3如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB•的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.
例4、已知:如图所示,AB为半圆O的直径,直线MN切半圆于点C,AD⊥MN于点D,BE⊥MN于点E,BE交半圆于点F,AD=3cm,BE=7cm,
(1)求⊙O的半径;
(2)求线段DE的长.
例5、如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点,
求证:AD∥OC,.
例6、已知如图所示,在梯形ABCD中,AD∥BC,∠D=90°,AD+BC=AB,以AB为直径作⊙O,求证:⊙O和CD相切.
例7如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.
(1)求证:BC是半圆O的切线;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.
例9如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE 是⊙O的切线.
例10、已知:如图,在Rt△ABC 中,∠ACB=90°,以AC 为直径的⊙O 交AB 于点D,过点D 作⊙O 的切线DE 交BC 于点E.求证:BE=CE.
例11如图,P 为⊙O 外一点,PO 交⊙O 于C ,过⊙O 上一点A 作弦AB ⊥PO 于E , 若∠EAC=∠CAP ,求证:PA 是⊙O 的切线.
例12在△ABC 中,∠C =90°,∠B =30°,O 为AB 上一点,AO =m ,⊙O 的半径,问
m 在什么范围内取值时,AC 与圆:(1)相离;(2)相切;(3)相交。
例13经过⊙O 上的点T 的切线和弦AB 的延长线相交于点C ,求证:∠ATC=∠TBC
例14已知:AD 是∠BAC 的平分线,BDC 是切线,求证:EF ∥BC
练习:
1、已知,AB 为⊙O 的直径,OC 平行于弦AD ,DC 是⊙O 的切线,求证:BC 是圆的切线.
C
2、如图,BC是⊙O的直径,A是弦BD延长线上一点,切线DE平分AC于E,求证:AC是⊙O的切线.
3、如图,PA、PB为⊙O的切线,AC为经过切点A的直径,求证:BC∥PO.
4、如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC且交AC的延长线于点E.
求证:DE是圆O的切线.
5、如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半
径的圆交BC于D,DE⊥AC交AC于E.
求证:DE是⊙O的切线.
7、如图,已知:AB是⊙O的直径,AC是切线,A为切点,BC交⊙O于点D,切线DE交AC于点E.求证:AE=EC.
8、已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC.
求证:DE是⊙O的切线.
9、如图,AB是⊙O的直径,AC的中点D在⊙O上,DE⊥BC于E.求证:DE是⊙O的切线.
10、如图,AB为⊙O的弦,若OA⊥OD且CD=BD.求证:BD是⊙O的切线
如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)(3分)求证:AE为⊙O的切线.
(2)(3分)当BC=8,AC=12时,求⊙O的半径.
(3)(3分)在(2)的条件下,求线段BG的长.。