二次函数的实际应用问题解题技巧

合集下载

二次函数的平移规律总结与应用技巧

二次函数的平移规律总结与应用技巧

二次函数的平移规律总结与应用技巧二次函数是高中数学中重要的一部分,通过对二次函数的平移规律进行总结和应用技巧的探索,可以更好地理解和应用这个函数形式。

本文将从平移规律的基本概念入手,逐步介绍相关的技巧和应用。

1. 平移规律的基本概念平移是指将函数图像沿着坐标轴平行地移动。

对于二次函数,其标准形式为y=a(x-h)^2+k,其中(h,k)表示二次函数图像的顶点坐标。

2. 平移规律的总结与应用技巧2.1 平移规律总结根据平移规律,改变二次函数中的参数a, h, k可以对函数图像进行平移。

具体总结如下:- 参数a的变化:a>0时,图像开口向上;a<0时,图像开口向下。

绝对值|a|越大,图像越"瘦长";|a|越小,图像越"胖宽"。

- 参数h的变化:若h>0,图像向左平移;若h<0,图像向右平移。

绝对值|h|越大,平移距离越长;|h|越小,平移距离越短。

- 参数k的变化:若k>0,图像向上平移;若k<0,图像向下平移。

绝对值|k|越大,平移距离越高;|k|越小,平移距离越低。

2.2 平移规律应用技巧- 技巧1:根据函数参数的变化,确定平移的方向和距离。

例如,对于函数y=2(x-1)^2+3,参数a=2,h=1,k=3,可以知道图像开口向上,向右平移1个单位,向上平移3个单位。

- 技巧2:通过平移规律,根据已知函数图像和顶点坐标,求出函数的表达式。

例如,已知函数图像经向左平移3个单位、向下平移2个单位后,顶点坐标为(3,-2),可以得到新函数的表达式为y=a(x-3)^2-2。

3. 平移规律的应用举例3.1 平移的图像比较可以通过比较两个函数的图像来观察平移规律。

例如,比较函数y=x^2和y=(x-1)^2+2的图像,可以发现后者相对于前者向左平移了1个单位,向上平移了2个单位。

3.2 解题应用解决实际问题时,可以利用平移规律来建立数学模型并求解。

数学二次函数应用题解题技巧

数学二次函数应用题解题技巧

数学二次函数应用题解题技巧
数学二次函数应用题解题技巧包括以下几个方面:
1. 熟悉二次函数的基本性质:二次函数有三个重要的性质,即抛物线的基本性质、对称性和伸缩性。

2. 理解二次函数的图像特点:二次函数的图像通常呈现出抛物线的特点,即开口方向朝上或朝下,对称轴通常是抛物线的横坐标,且经过原点。

3. 利用二次函数的顶点式和一般式:顶点式是二次函数的一种特殊形式,一般式也是二次函数的一种形式。

对于顶点式和一般式,可以利用它们的性质进行变形,从而得到有关函数值、图像等信息。

4. 利用二次函数的求导法则:求导法则是解决二次函数问题的重要工具。

通过求导法则,可以求出函数在某一点处的导数,进而求出函数在该点的函数值。

5. 利用二次函数的图像性质和求导法则,通过图像进行推理和猜测,找到函数的取值范围或者零点位置。

6. 掌握常见的二次函数应用场景:常见的二次函数应用场景包
括求解几何图形、计算函数值、构造函数图像等。

7. 常规解题方法:对于常规问题,可以使用二次函数的基本概念、求导法则和图像特点等工具进行求解。

二次函数问题需要结合函数的性质和图像特点进行思考,同时掌
握求导法则和常见的应用场景,才能进行高效的解题。

二次函数利润问题解题技巧

二次函数利润问题解题技巧

二次函数利润问题解题技巧
一、概念解释
1. 二次函数利润:二次函数利润指的是,企业的利润函数中,
其可以用一个二次函数来表示。

二次函数利润是指企业在投资后能够产生的利润,以二次函数来表示利润会比较决策者更容易分析。

2. 利润最高:利润最高是指,企业利润由最低点开始,利润随
着量的增加,达到某一最高点后,随着量的继续增加而减少,从而出现利润达到最高点的情况。

3. 二次函数极值:二次函数极值是指,企业利润函数使用二次
函数进行表示时,二次函数有极大值和极小值,极大值表示企业利润最高点,极小值表示企业利润最低点。

二、解题技巧
1. 首先,要求二次函数利润的最高点,需要根据二次函数的极
值点来确定。

一般来说,二次函数的极大值点为:x=(-b/2a,f(-b/2a)),其中,b和a分别表示函数的一次和二次项系数;f(-b/2a)表示函
数的值。

2. 然后,由于企业的利润函数是二次函数,可以用二次函数去
拟合企业的利润数据,这样就可以拟合出企业的利润函数。

3. 接着,要求出企业的利润函数的最高点,可以用极值法,求
出二次函数的极大值点,这样就可以得到企业利润函数的最高点,也就是利润最高点。

4. 最后,结合求得的最高点,把极大值点和利润函数画图,来
观察利润的变化情况,看出利润达到最高时的投资情况,从而可以更好的帮助企业进行利润最大化决策。

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

如何利用二次函数求解最值问题

如何利用二次函数求解最值问题

数学篇数苑纵横与二次函数有关的最值问题是中考数学中的一个重难点,常与几何图形、三角函数、实际问题等相结合,考查同学们的空间想象能力和逻辑推理能力.不少同学面对这类最值问题时觉得难以下手,但只要我们认真阅读题目,理解问题的实质,构建出二次函数,再运用二次函数的有关性质即可使问题顺利得解.一、求解实际生活中的最值问题在实际生活中,我们总是追求利益最大或者是成本最低,从数学角度看,就是在特定条件下求目标函数的最大值或者最小值.运用二次函数求解实际生活中的最值问题,关键在于如何构建正确的二次函数模型.解题时应把握以下两点:其一,认真审题,提炼出有用信息;其二,根据题干描述以及自身生活经验,通过合理的抽象确定常量与变量间的函数关系,建立函数模型,然后结合模型和实际情况求得最大值或最小值.需要注意的是,实际问题中二次函数的最大值或最小值不一定在图象的顶点处取得,若顶点的横坐标不在自变量的取值范围内,则要借助函数的增减性来求最大值或最小值.例1某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1)设每件商品的售价上涨x 元(x 为正整数),则每件商品的利润为:(60-50+x )元,总销量为:(200-10x )件,商品利润为:y =(60-50+x )(200-10x ),=(10+x )(200-10x ),=-10x 2+100x +2000.∵原售价为每件60元,每件售价不能高于72元,∴0<x ≤12且x 为正整数;(2)y =-10x 2+100x +2000,=-10(x 2-10x )+2000,=-10(x -5)2+2250.故当x =5时,最大月利润y =2250元.这时售价为60+5=65(元).点评:此题主要考查了二次函数的应用及二次函数的最值问题.根据每天的利润=一件的利润×销售量,建立函数关系式.借助二次函数解答实际问题是解题关键.例2李大爷利用坡前空地种植了一片优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足m =ìíî3x +15(1≤x ≤15),-x +75(15<x ≤30).(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图1所示:图1如果李大爷的草莓在上市销售期间每天如何利用二次函数求解最值问题山西临沂周立恒23数学篇数苑纵横的维护费用为80元.(1)求日销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润y 的最大值及相应的x .解:(1)当1≤x ≤10时,设n =kx +b ,由图可知ìíî12=k +b ,30=10k +b ,解得ìíîk =2,b =10,∴n =2x +10同理得,当10<x ≤30时,n =-1.4x +44,∴销售量n 与第x 天之间的函数关系式:n =ìíî2x +10(x ≤x ≤10),-1.4x +44(10<x ≤30),(2)∵y =mn -80,∴y =ìíîïï(2x +10)(3x +15)-80(x ≤x ≤10),(-1.4x +44)(3x +15)-80(10<x <15),(-1.4x +44)(-x +75)-80(15≤x ≤30),整理得,y =ìíîïï6x 2+60x +70,(1≤x ≤10),-4.2x 2+111x +580,(10<x <15),1.4x 2-149x +3220,(15≤x ≤30),(3)当1≤x ≤10时,∵y =6x 2+60x +70的对称轴x =-b 2a=602×6=-5,∴此时,在对称轴的右侧y 随x 的增大而增大,∴当x =10时,y 取最大值,则y 10=1270当10<x <15时,∵y =-4.2x 2+111x +580的对称轴是直线x =111-4.2×2=1118.4≈13.2<13.5,∴当x =13时,y 取得最大值,此时y 13=1313.2;当15≤x ≤30时,∵y =1.4x 2-149x +3220的对称轴为直线x =1492.8>30,∴此时,在对称轴的左侧y 随x 的增大而减小∴x =15时,y 取最大值,y 的最大值是y 15=1300,综上,草莓销售第13天时,日销售利润y 最大,最大值是1313.2元.点评:本题在确定函数最大值时,由于此函数是分段函数,所以要分三种情况讨论.第二种情况中顶点的横坐标在自变量取值范围内,可以利用顶点坐标公式来确定函数的最大值;而第一种情况和第三种情况中顶点的横坐标都不在自变量取值范围内,因此必须利用函数的增减性来确定函数的最大值.分别求出三种情况中的最大值后,还要通过比较确定日销售利润的最大值.二、求解几何图形中的最值问题解答几何图形中的最值问题一般根据已知条件设置相关参数,构建对应的函数模型,再借助函数的性质进行解答.构建二次函数求解几何图形中的最值问题时,要全面观察几何图形的结构特征,挖掘出相应的内在性质,综合运用所学的知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等,寻求等量关系构造出二次函数,结合二次函数性质计算出最终结果.同时,为保证求解最值问题的正确性,应明确自变量的取值范围.例3如图2,梯形ABCD 中,BC ∥AD ,AB =BC =CD =6,∠D =60°,E 、F 分别为BC 、CD 上两个动点(不与端点重合),且∠AEF =120°,设BE =x ,CF =y .(1)求y 与x 的函数关系式;(2)x 取何值时,y 有最大值,最大值是多少?24数学篇数苑纵横图2解:(1)∵AB =BC =CD =6,BE =x ,CF =y ,∴EC =6-x ,∵BC ∥AD ,∴∠C +∠D =180°,又∠D =60°,∴∠C =120°,∴∠CEF +∠CFE =60°,又∠AEF =120°,∴∠CEF +∠AEB =60°,∴∠CFE =∠AEB ,又梯形ABCD 中,BC ∥AD ,AB =CD ,∴∠B =∠C ,∴△ABE ∽△ECF ,∴AB EC =BE CF,即66-x =x y,∴y =-16x 2+x ;(2)函数y =-16x 2+x =-16(x -3)2+32为开口向下的抛物线,由0<x <6可知,当x =3时,y 有最大值,y 的最大值为32.点评:本题的思路为通过已知条件得出相似三角形,由相似三角形的比例式,进而列出y 与x 的函数关系式,最后根据二次函数求最值的方法求出y 的最大值及此时x 的值.同学们在求二次函数最值时一定要注意自变量x 的范围.例4如图3,在△ABC 中,AB =10,AC =25,∠ACB =45°,D 为AB 边上一动点(不与点B 重合),以CD 为边长作正方形CDEF ,连接BE ,则△BDE 面积的最大值等于.图3图4解:如图4,过点E 作EM ⊥BA 于M ,过点C 作CN ⊥BA 交BA 的延长线于N ,过点A 作AH ⊥BC 于H .在Rt△ACH 中,∵∠AHC =90°,∠ACH =45°,AC =25,∴AH =CH =AC ⋅cos 45°=10,在Rt△ABH 中,∵∠AHB =90°,AB =10,AH =10,∴BH =AB 2-AH 2=102-(10)2=310,∴BC =BH +CH =410,∵S △ACB =12⋅BC ⋅AH =12⋅AB ⋅CN ,∴CN =4,在Rt△ACN 中,AN =AC 2-CN 2=(25)2-42=2,∴BN =BA +AN =12,设BD =x ,则DN =12-x ,∵四边形EFCD 是正方形,∴DE =DC ,∠EDC =∠EMD =∠DNC =90°,∴∠EDM +∠ADC =90°,∠ADC +∠DCN =90°,∴∠EDM =∠DCN ,∴△EMD ≌△DNC (AAS),∴EM =DN =12-x ,∴S △DBE =12⋅BD ⋅EM =12⋅x ⋅(12-x )=12x 2+6x =-12(x -6)2+18,∵-12<0,∴当x =6时,△BDE 的面积最大,最大值为18.故答案为18.点评:本题是一道几何函数题,考查了正方形的性质,解直角三角形等知识.求解时应从几何图形入手,充分利用几何图形的性质构造出函数关系,如本题以三角形的面积公式构建二次函数,再利用二次函数的性质解题.25。

二次函数实际问题及解题方法

二次函数实际问题及解题方法

二次函数实际问题广泛存在于我们的日常生活中,例如物体的自由落体运动、桥梁的拱形设计、以及经济学中的成本收益问题等。

下面,我们将通过具体的例子,探讨二次函数实际问题的解题方法。

例题:一位农民有一块形状为直角三角形的土地,他计划将这块土地用于种植,需要围上篱笆。

已知直角三角形的两条直角边长度分别为a米和b米,假设篱笆的价格是每米p元,那么他需要花费多少元来围这块土地?
解题步骤如下:
根据题目,理解问题的背景和目标。

在这个问题中,我们需要找出农民围土地所需的总花费,这是我们的目标。

定义变量。

这里,直角三角形的两条直角边长度是已知的,分别为a米和b米,篱笆的价格也是已知的,为p元/米。

我们需要找出的是篱笆的总长度,我们设其为L米。

建立数学模型。

我们知道,直角三角形的周长等于其三条边的长度之和。

因此,篱笆的总长度L = a + b + 斜边长度。

而斜边的长度可以通过勾股定理求得,即斜边长度= √(a²+ b²)。

所以,L = a + b + √(a²+ b²)。

然后计算总的花费,即总价= Lp = p(a + b + √(a²+ b²))。

通过数学模型,我们得到了总价是p*(a + b + √(a²+ b²))元。

以上就是一个利用二次函数解决的实际问题。

需要注意的是,在解决这类问题时,首先要明确问题的目标,然后确定已知和未知的变量,通过建立数学模型,将实际问题转化为数学问题,最后求解数学模型,得出实际问题的答案。

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。

2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。

3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。

二次函数典型题解题技巧

二次函数典型题解题技巧

二次函数典型题解题技巧一有关角1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点点A 在点B 的左边,与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点.(1) 求此抛物线的解析式;2连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由.思路点拨:对于第1问,需要注意的是CD 和x 轴平行过点C 作x 轴的平行线与抛物线交于点D对于第2问,比较角的大小a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条解:1∵CD ∥x 轴且点C0,3,∴设点D 的坐标为x,3 .∵直线y= x+5经过D 点,∴3= x+5.∴x=-2.即点D -2,3 .根据抛物线的对称性,设顶点的坐标为M -1,y,又∵直线y= x+5经过M 点,∴y =-1+5,y =4.即M -1,4.∴设抛物线的解析式为2(1)4y a x =++. ∵点C0,3在抛物线上,∴a=-1.即抛物线的解析式为223y x x =--+.…………3分 2作BP ⊥AC 于点P,MN ⊥AB 于点N .由1中抛物线223y x x =--+可得 点A -3,0,B1,0,∴AB=4,AO=CO=3,AC=32. ∴∠PAB =45°.∵∠ABP=45°,∴PA=PB=22.∴PC=AC -PA=2.在Rt △BPC 中,tan ∠BCP=PBPC =2.在Rt △ANM 中,∵M-1,4,∴MN=4.∴AN=2.tan ∠NAM=MN AN =2.∴∠BCP =∠NAM .即∠ACB =∠MAB .后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角圆分开再说,所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系的基本思路2、如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且OA OC OB 3==.I 求抛物线的解析式;II 探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形若存在,求出P 点坐标,若不存在,请说明理由;III 直线131+-=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值.思路点拨:II 问题的关键是直角,已知的是AC 边,那么AC 边可能为直角边,可能为斜边,当AC 为斜边的时,可知P 点是已AC 为直径的圆与坐标轴的交点,且不能与A 、C 重合,明显只有O 点;当AC 为直角边时,又有两种情况,即A 、C 分别为直角顶点,这时候我们要知道无论是A 或者C 为直角顶点,总有一个锐角等于∠OCA 或Rt △PAC 和Rt △OAC 相似,利用这点就可以求出OP 的长度了III 从题目的已知条件看,除了∠ABC=45°外没有知道其他角的度数,那么这两个角要么全是特殊角30°,45°,60°,90°,在这种情况下,他们的差才有可能不是特殊的角,很明显,这两个角不是特殊角,那只有一种可能在没有学反三角函数的前提下,就是他们的差是特殊角,再联系到∠ABC=45°,可知,这两个角的差就是45°,那么我们需要证明的就是∠ABD=∠CBE,再想想上一题所说的,就明白是利用相似三角形来证明了,即证明△BCE 是一个直角三角形且与△BAD 相似解:I ()3,032--+=点轴交与抛物线C y bx ax y ,且OA OC OB 3==.())0,3(,0,1B A -∴.代入32-+=bx ax y ,得 {{12030339=-==--=-+∴a b b a b a322--=∴x x yII ①当190,PAC ∠=︒时可证AO P 1∆∽ACO ∆ 31tan tan 11=∠=∠∆∴ACO AO P AO P Rt 中,.)31,0(1P ∴②同理: 如图当)0,9(9022P CA P 时,︒=∠③当)0,0(9033P A CP 时,︒=∠综上,坐标轴上存在三个点P ,使得以点C A P ,,为顶点的三角形为直角三角形,分别是)31,0(1P )0,9(2P ,)0,0(3P . III ()1,0,131D x y 得由+-=.()4,1322---=E x x y ,得顶点由. ∴52,2,23===BE CE BC .为直角三角形BCE BE ∆∴=+,CE BC 222.31tan ==∴CB CE β. 又31tan ==∠∆∴OB OD DBO DOB Rt 中.β∠=∠∴DBO . ︒=∠=∠-∠=∠-∠45OBC DBO αβα.二线段最值问题引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,无论是两点之间选段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,如果我们公共端点,我们要想办法把它们构造成有公共端点来解决;有关线段最大值的问题,学过的有三角形三边之间的关系,两边之差小于第三边,我们可以利用这个来求第三边的最大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值3、抛物线()20y ax bx c a =++≠交x 轴于A 、B 两点,交y 轴于点C,已知抛物线的对称轴为直线x = -1,B1,0,C0,-3.⑴ 求二次函数()20y ax bx c a =++≠的解析式;⑵ 在抛物线对称轴上是否存在一点P,使点P 到A 、C 两点距离之差最大 若存在,求出点P 坐标;若不存在,请说明理由.思路点拨:点P 到A 、C 两点距离之差最大,即求|PA -PC|的最大值,因P 点在对称轴上,有PA=PB,也就是求|PB -PC|,到了这儿,易知当P 点是BC 所在直线与对称轴的交点,易知最大值就是线段BC 的长;具体解题过程略4、研究发现,二次函数2ax y =0≠a 图象上任何一点到定点0,a 41和到定直线ay 41-=的距离相等.我们把定点0,a 41叫做抛物线2ax y =的焦点,定直线ay 41-=叫做抛物线2ax y =的准线.1写出函数241x y =图象的焦点坐标和准线方程; 2等边三角形OAB 的三个顶点都在二次函数241x y =图象上,O 为坐标原点, 求等边三角形的边长;3M 为抛物线241x y =上的一个动点,F 为抛物线241x y =的焦点,P1,3 为定点,求MP+MF 的最小值.思路点拨:2因△OAB 是等边三角形,易知AB 平行于X 轴,且∠AOB=60°,知OA 、OB 于y 轴的夹角等于30°,利用这点容易求出三角形的边长3由题目可知MF 的长度等于M 点到直线y=-1的距离,那么MP+MF 就是P 点到达抛物线上某一点再到y=-1上某一点的距离和,易知最小值就是过P 点做y=-1的垂线段的长 解:1焦点坐标为0,1, 准线方程是1-=y ;2设等边ΔOAB 的边长为x,则AD=x 21,OD=x 23. 故A 点的坐标为x 21,x 23. 把A 点坐标代入函数241x y =,得 2)21(4123x x ⋅=, 解得0=x 舍去,或38=x .∴ 等边三角形的边长为38.3如图,过M 作准线1-=y 的垂线,垂足为N,则MN=MF.过P 作准线1-=y 的垂线PQ,垂足为Q,当M 运动到PQ 与抛物线交点位置时,MP+MF 最小,最小值为PQ=4. 5、思路点拨:2要求AE 和AM 的长,对于求线段的长度我们学过的是勾股定理,相似三角形和简单三角函数,从题目可知OA 和OE 的长以及E 点到x 轴的距离,我们作EG ⊥x 轴,垂足为G,那么容易求出OG 的长,从而求出AE 的长;要求AM 的长,先做OK ⊥AE,垂足为K,要求AM 的长,首先我们利用已知的OA 的长和∠EAO 的函数值来求出AK 和OK 的长,利用OK 的长和三角形OMN 是等边三角形求出MK 和NK 的长,AM 的长也就知道了3这个是著名的费马点的问题,第2问给了我们提示,我们可以猜想当P 点在什么位置时,PA+PB+PO 才能取最小值,P 点应该在线段AE 上,至于具体的位置我们还不知道,我们就在线段AE 上任取一点P,把PA 、PB 、PO 连起来,要取最小值,那么这三条线段应该首尾相接,我们应该能想到它们首尾相接后的位置就是AE 所在直线,这时P 点应该和在△OAB 内的M 点重合,PA 的长就是AM 的长,m 的最小值就是AE 的长答案详见前段时间发过的从近近几年北京中考模拟及中考压轴题谈起额外讲解一个与二次函数无关的有关线段最值的问题6、2009年中考第25题如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A -6,0,B 6,0,C 0,43,延长AC 到点D ,使AC CD 21=,过D 点作DE ∥AB 交BC 的延长线于点E . 1求D 点的坐标;2作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y =kx +b 将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3设G 为y 轴上一点,点P 从直线y =kx +b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点.若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短. 要求:简述确定G 点位置的方法,但不要求证明思路点拨:3首先要把速度转化成路程,也就是线段的长度,直线与y 轴的交点假设为M,则OM=63,设P 点在y 轴上的速度为2v,那么在GA 上的速度为v,P 点到达A 点所用的时间为,要使时间最短,也就是求AG+GM/2的最小值,那么我们要把它转化成我们熟悉的两条线段的和,因为∠BMO=30°,GM/2也就是G 点到BM 的距离,我们作GK ⊥BM,垂足为K,问题转化成求GA+GM 的最小值,易知,A 、G 、M 必须共线且垂直BM,所以G 点就是过A 点作BM 的垂线与y 轴的交点解:1∵A -6,0,C 0,43,∴OA =6,OC =43.设DE 与y 轴交于点M .由DE ∥AB 可得△DMC ∽△AOC .又AC CD 21=,21===∴CA CD CO CM OA MD . ∴CM =23,MD =3.同理可得EM =3.∴OM =63.∴D 点的坐标为3,63.2由1可得点M 的坐标为0,63.由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线.∴点C关于直线DE的对称点F在y轴上.∴ED与CF互相垂直平分.∴CD=DF=FE=EC.∴四边形CDFE为菱形,且点M为其对称中心.作直线BM.设BM与CD、EF分别交于点S、点T.可证△FTM≌△CSM.∴FT=CS.∵FE=CD,∴TE=SD.∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS.∴直线BM将四边形CDFE分成周长相等的两个四边形.由点B6,0,点M0,63在直线y=kx+b上,可得直线BM的解析式为y=-3x+63.第25题答图3确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°.∴∠BAH=30°.在Rt△OAG中,OG=AO·tan∠BAH=23.∴G点的坐标为0,23.或G点的位置为线段OC的中点三平移对称旋转问题引子:平移问题以前讲过了,现在重点将对称旋转问题我们知道a,b关于x轴对称的点的坐标为a,-b,关于y轴对称的点的坐标为-a,b,关于原点对称的点的坐标为-a,-b,关于直线x=m的对称点为2m-a,b,关于直线y=n的对称点为a,2n-b,关于点m,n的对称点为2m-a,2n-b任意两点x1,y1和x2,y2的中点为对于抛物线关于x轴、y轴、x=a、y=b的对称抛物线,应该都会了吧,现在重点讲解抛物线关于某点m,n的对称抛物线解析式其他平移、关于直线对称都可以用这个方法解决,为了方便,选取抛物线的顶点式来证明例:对于一个抛物线y=ax-h2+ka≠0来说,坐标为x,y的所有点都在他的图像上,关于m,n的对称点为2m-x,2n-y,那么坐标为2m-x,2n-y都在抛物线关于m,n对称的抛物线上,我们把2m-x,2n-y代入y=ax-h2+ka≠0就可以得到它关于m,n对称的抛物线的解析式为2n-y=a2m-x-h2+k,变形为y=-ax-2m+h2+2n-k现在利用待定系数法来验证这个方法是否正确首先y=ax-h2+ka≠0和它关于点m,n的对称的抛物线的开口大小是一样的,所以二次项系数的绝对值是相同的,由于关于点对称,开口方向是相反的,故二次项系数互为相反数;其次原抛物线与对称抛物线的顶点是关于m,n对称的,原抛物线的顶点为h,k,它关于m,n的对称点的坐标为2m-h,2n-k,那么对称抛物线的解析式可以写成y=-ax-2m+h2+2n-k,和利用上述方法所得结果一致7、已知抛物线C1:y=ax2-2amx+am2+2m+1a>0,m>1的顶点为A,抛物线C2的对称轴是y轴,顶点为B,且抛物线C1和C2关于P1,3成中心对称(1)用含m的代数式表示抛物线C1的顶点坐标(2)求m的值和抛物线C2的解析式(3)设抛物线C2与x正半轴的交点是C,当△ABC为等腰三角形时,求a的值思路点拨:1很多人一看到求抛物线的顶点,习惯使用顶点的坐标公式来求,如果你熟悉因式分解和抛物线的顶点公式是如何得到的,那么这个题明显利用配方更容易得到顶点坐标,y=ax -m2+2m+1,故顶点坐标为m,2m+1(2)C1和C2关于点对称,利用上述方法容易求出C2的解析式和顶点坐标,易知m=2详解过程略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的实际应用问题解题技巧
二次函数是一种在数学中非常重要的函数,它在各个领域都有广泛的应用,
比如物理、工程、经济学等等。

本文将介绍二次函数的一些实际应用问题解题技巧,以及如何在实际问题中应用这些技巧。

正文:
1. 二次函数的实际应用问题
二次函数在数学中主要用于描述抛物线、双曲线等曲线的情况。

在各个领域,二次函数都有广泛的应用,下面列举几个例子:
- 物理学:在物理学中,二次函数主要用于描述质点的运动轨迹,如牛顿第二定律、万有引力定律等。

- 工程学:在工程学中,二次函数主要用于描述机械、电气、建筑等领域中的问题,如压力、张力、电流等。

- 经济学:在经济学中,二次函数主要用于描述供求关系、价格变化等。

例如,抛物线可以用来描述通货膨胀率的变化。

2. 二次函数的解题技巧
在实际问题中,我们需要用到二次函数的一些基本性质和解题技巧,下面列
举一些常见的解题技巧:
- 求抛物线与x轴的交点:通过用x=0和x=抛物线顶点式来求解。

- 求抛物线的对称轴:通过用y=-b/2a来求解,其中a和b是二次函数的系数。

- 求二次函数的极值:通过用抛物线的对称轴和x轴的交点来求解。

- 求二次函数的图像形状:通过用抛物线的顶点坐标和参数方程来求解。

3. 拓展
除了上述技巧,我们还可以利用二次函数的一些特殊性质来解决实际问题。

例如,我们可以通过用二次函数的对称性来解决实际问题,如求解一个二次函数的极值、图像形状等。

此外,我们还可以利用二次函数的性质来解决实际问题,如求解一个二次函数的方程、求抛物线的解析式等。

二次函数在数学中有着广泛的应用,而且在实际问题中,我们需要用到二次函数的基本性质和解题技巧来解决实际问题。

掌握这些技巧,可以帮助我们更好地理解和解决实际问题。

相关文档
最新文档