球墨铸铁简介及用途
球墨铸铁板材料-概述说明以及解释

球墨铸铁板材料-概述说明以及解释1.引言1.1 概述球墨铸铁板材料,简称球铁板,是一种高强度、耐磨、耐腐蚀的铸铁材料。
其独特的球状石墨微观结构使其具有优异的性能特点,广泛应用于工程领域。
球铁板具备良好的可塑性、韧性和耐磨性,能够满足不同工作环境的要求。
球墨铸铁板由于具备球状石墨的均匀分布结构,使得它在拉伸、压缩等力学性能上表现出色。
相比于一般的灰铸铁板材料,球铁板能够承受更高的载荷和更强的冲击力,具备更好的抗疲劳能力。
这使得球铁板成为一种在工程结构中广泛应用的优质材料。
同时,球铁板还具有优异的耐腐蚀性能。
球状石墨在铸造过程中的形成,能够有效减少缝隙、孔洞等缺陷,从而降低材料的腐蚀敏感性。
它在恶劣环境中的抗腐蚀能力超过了其他各类铸铁材料,可以长时间保持良好的使用状态。
此外,球墨铸铁板的生产工艺成熟且经济高效。
球铁板的生产过程中,利用镁处理剂将铸铁中的碳球化,形成球状石墨结构。
这一工艺不仅使材料性能得到了改善,还能够大幅度提高生产效率,降低生产成本,满足市场需求。
球墨铸铁板的应用领域广泛多样。
它被广泛应用于汽车制造、机械工业、建筑工程等领域。
在汽车制造中,球铁板常用于发动机铸件、底盘部件等重要组成部分,以提高汽车的安全性和可靠性。
在机械工业中,球铁板常被用于制造齿轮、曲轴等高强度零部件,为机械设备的正常运行起到关键作用。
在建筑工程中,球铁板可用于制造桥梁支座、阀门等被要求具备高强度和耐久性的构件,以确保建筑物的牢固和安全。
总之,球墨铸铁板材料由于其卓越的性能优势,在工程领域得到了广泛应用。
其具备的高强度、耐磨、耐腐蚀等特点,使其成为众多行业的首选材料。
随着科学技术的不断进步和应用范围的扩大,球铁板材料的发展前景将更加广阔,有着充满希望的未来。
1.2文章结构文章结构的安排是为了使读者更好地理解和吸收文章内容。
在本篇文章中,我们将采用以下结构来组织和展示关于球墨铸铁板材料的相关信息。
首先,我们将在引言部分简要介绍球墨铸铁板材料的概况和背景。
球墨铸铁材质报告单

球墨铸铁材质报告单
摘要:
1.球墨铸铁的概述
2.球墨铸铁的性能特点
3.球墨铸铁的应用领域
4.球墨铸铁的发展前景
正文:
球墨铸铁材质报告单是一份详细介绍球墨铸铁的文档,本文将从球墨铸铁的概述、性能特点、应用领域以及发展前景四个方面进行详细介绍。
首先,我们来了解一下球墨铸铁的概述。
球墨铸铁是一种高强度、高韧性的铸铁材料,它是通过在铁水中加入适量的球墨剂和合金元素,使其形成球状石墨,从而提高铸铁的性能。
球墨铸铁的出现,弥补了普通铸铁在强度和韧性上的不足,使其在各种工业领域得到了广泛的应用。
接下来,我们来看看球墨铸铁的性能特点。
球墨铸铁的主要性能特点包括高强度、高韧性、耐磨性和耐腐蚀性等。
由于球墨铸铁中的石墨呈球状,可以有效地阻止铸铁的断裂,从而提高了铸铁的韧性。
同时,球墨铸铁还具有良好的耐磨性和耐腐蚀性,使其在各种恶劣环境下都能保持良好的性能。
再来看看球墨铸铁的应用领域。
由于球墨铸铁具有优良的性能,使其在各种工业领域都得到了广泛的应用。
比如,在汽车制造领域,球墨铸铁可以用于制造汽车发动机、变速器等部件;在建筑领域,球墨铸铁可以用于制造各种建筑构件;在石油化工领域,球墨铸铁可以用于制造管道、阀门等设备。
最后,我们来看看球墨铸铁的发展前景。
随着科技的发展,球墨铸铁的生产技术和工艺也在不断改进,这使得球墨铸铁的性能得到了进一步的提高。
同时,随着环保意识的增强,球墨铸铁的环保性能也受到了重视。
因此,可以预见,球墨铸铁在未来的发展前景将会更加广阔。
球墨铸铁

三、G球形成的条件及立体外貌
1、 G球形成的条件 一是铁液在凝固时必须有较大的过冷度ΔT; 二是必须使铁液和石墨之间具有较大的界面张力,也就 是使铁液中的杂质(表面活性元素如S、O等)含量足够低; 三是铁液中还必须有一定的球化元素残留量; 四是要有良好的石墨成核条件,即良好的石墨化孕育。 只要满足上上几个条件,就能生产出球墨铸铁。 2、球化处理(孕育)的机理: 在铁液中加入球化剂,使铁液中的表面活性物质硫和氧 降低,铁液中石墨的界面张力增大,同时使铁液过冷度加大, 以促使球状石墨的形成。球化处理后再进行炉前孕育处理, 使石墨的成核条件得以改善,从而获得量大、形小、外形圆 整、成分均匀的球状石墨铸铁。
球状石墨外貌接近球形,内部呈放射状,有明显的 偏光效应。石墨是由很多角锥体枝晶组成的多晶体,各 枝晶的基面垂直于球径C轴呈辐射状指向球心。
片状石墨
球状石墨
四、球状石墨的生长
1、球状石墨的生长条件
a、极低的硫、氧含量 b、限制反球化元素 c、保证必要的冷却速度 d、添加的球化元素
2、石墨球的生长方式
螺旋生长
3、石墨球生长的工艺措施 • 从生产实践中得知,使石墨按球状生长的工艺措施为改变 化学成分和控制冷却速度。 化学成分中,对石墨生长有 重要影响的是一些能显著改变铁液过冷倾向的元素;而引 起铸铁冷却速度产生变化的因素则是铸件壁厚、铸型以及 浇铸。这些条件的实质在于改变石墨结晶的冷却状况。
§3.3.4 球墨铸铁的化学成分及熔制工艺
球墨铸铁的金相组织、性能特点、 牌号及技术要求
球墨铸铁的金相组织: • G+F体、G+P体、G+ F体+ P体等,而且直 接决定着球墨铸铁的力学性能。
球墨铸铁特性及其应用

分 析
在铸铁凝固时,存在石墨共晶与渗碳体共晶两种形式。 在平衡状态图中,前者的温度比后者高。为了要避免白口 的产生,应使石墨共晶凝固过程在温度达到渗碳体共晶以 前完成,这就需要提高石墨共晶的凝固速率,而在一定的 冷却速度下,球铁共晶团的生长速度是一定的,因此提高 石墨共晶的凝固速度,就必须增加共晶团数量。 因此,为防止白口,对球墨铸铁的某一冷却速度,存 在对应的临界共晶团数,即临界石墨球数。只有石墨球数 大于该临界数,才能避免白口出现。 当铸件越薄,冷却速度越大时,所需的临界石墨球数越 多。 研究表明,为增加石墨球数目,添加稀土Bi是十分当的化学成分是保证球墨铸铁 获得良好的金相组织和高性能的基本条件, 化学成分的选择既要利于石墨的球化和获 得满意的基体,以期获得满意的性能,又 要使球墨铸铁具有良好的铸造性能。
一、五大元素 1、碳和硅 由于石墨球对基体的削弱作用很小,所以碳含量在 3.2-3.8%时,对力学性能无明显影响。确定球墨铸铁的 碳硅含量时,主要从保证铸造性能考虑,将碳当量选择在 共晶成分左右。 当碳含量过低时,铸件易产生缩松和裂纹;碳当量过 高时,易产生石墨漂浮现象,结果使夹杂物增多。 硅可以提高石墨球的圆整度,细化石墨,还可以减小 结晶过冷和白口倾向。一般认为硅含量大于2.8%时,可 能降低韧性,使韧性-脆性转变温度升高。 因此,选择碳硅含量时,应按照高碳低硅的原则,铸 件在寒冷地区使用,则含硅量应适当降低。 铁素体C:3.6-4.0% Si:2.4-2.8% 珠光体C:3.4-3.8% Si:2.2-2.4%
讨 论
薄壁铸态球墨铸铁
在欧美发达国家的阀门铸造 工艺中,日趋使用薄壁铸件, 可以节约资源。 薄壁铸态球墨铸铁件是壁厚 仅为几毫米的铸件。由于薄壁, 共晶凝固时冷却速度极快,所 以抑制白口组织的出现成为首 要问题。
球墨铸铁的力学性能及用途

球墨铸铁的力学性能及应用:
名称牌号
QT400-18QT450-10QT500-7铸件壁厚
(mm)抗拉强度
(Mpa)
400
450硬度(HB)
130~180
160~210特性及应用举例具有较高的韧性、塑性,具有一定的耐腐蚀性, 适用于做汽车的轮毂,通用机械的阀门、阀体
有适当的强度和韧性,可做内燃机的油泵齿500170~230轮、
汽轮机中的隔板等球墨铸铁QT600-3
QT700-2
QT800-2-600
700
800190~270
具有较高的强度和耐磨性,较高的弯曲疲劳225~305
245~335
具有很高的强度和耐磨性,较高的弯曲疲劳QT~360强度
和一定的韧性,适于做减速齿轮、凸轮轴犁
铧等
球墨铸铁以其优越的耐磨性和较强的耐疲劳强度,多用于重工机械行业的生产.可根据用户要的要求铸造机床铸件,球墨铸铁平台、划线平板、检验平板.
生产球墨铸铁平台具有较高的耐腐蚀性、有较高的强度和耐磨性,抗弯曲疲劳强度高.球墨铸铁平台出厂前经严格检验,材质化验、精度达标、抗拉强度三项指标。
原文地址:
http:
84.强度
和定的韧性,适于做曲轴、缸体等。
球墨铸铁特性及其应用

目录
• 球墨铸铁的特性 • 球墨铸铁的生产工艺 • 球墨铸铁的应用领域 • 球墨铸铁的未来发展 • 球墨铸铁的局限性及解决方案
01
球墨铸铁的特性
力学性能
01
02
03
强度和韧性
球墨铸铁具有较高的强度 和韧性,能够承受较大的 压力和冲击力,不易发生 脆性断裂。
抗疲劳性能
由于其良好的韧性和抗疲 劳性能,球墨铸铁在反复 承受压力的情况下仍能保 持其完整性。
铸造工艺改进
采用先进的铸造工艺和设备,提高铸件质量和生产效率。
热处理工艺优化
通过优化热处理工艺,改善球墨铸铁的机械性能和加工性能。
应用领域的拓展
汽车工业
随着新能源汽车和智能驾驶技术的快速发展,球墨铸铁在汽车工业 中的应用将进一步扩大,如发动机部件、悬挂系统等。
轨道交通
随着城市轨道交通的快速发展,球墨铸铁在轨道交通车辆的制造中 具有广泛应用,如转向架、制动系统等。
石油化工
在石油化工领域,球墨铸铁可以用于制造各种压力容器、管道和阀门 等关键部件。
05
球墨铸铁的局限性及解决 方案
成本问题
总结词
球墨铸铁的生产成本较高,这限制了其在某些领域的应用。
详细描述
球墨铸铁的生产需要较高的温度和特殊的处理过程,导致其 成本相对较高。为了解决这一问题,可以采用优化生产工艺 、提高设备效率以及寻找替代材料等方法来降低成本。
耐腐蚀、耐磨损材料
针对特殊环境下的应用,如海洋工程、化工设备 等,研发具有优异耐腐蚀和耐磨损性能的球墨铸 铁材料。
多功能复合材料
通过材料复合技术,将球墨铸铁与其他材料(如 金属、陶瓷等)进行复合,以获得具有多种优异 性能的复合材料。
球墨铸铁简介介绍

研究高效熔炼和浇注技术,缩短生产周期,降低能源消耗 和成本。例如,采用电炉熔炼、感应炉加热等先进技术, 提高熔炼效率和质量。
循环利用与废品再利用
加强废品回收和再利用,提高资源利用效率,降低生产成 本。例如,将废品进行破碎、熔炼后重新用于生产。
环保与可持续发展
减少污染排放
采取有效措施减少生产过程中的 废气、废水和固体废弃物的排放 ,降低对环境的影响。例如,采 用环保涂料和除尘设备等减少废
性质
具有高强度、高韧性、耐磨性等 优良性能,同时具有良好的可加 工性和耐腐蚀性。
球墨铸铁的历史与发展
历史
球墨铸铁最早由美国人发明,于19 世纪80年代问世。
发展
随着铸造技术的进步和新型材料的出 现,球墨铸铁的应用领域不断扩大。
球墨铸铁的生产过程
处理
对原材料进行质量 检验、合金化处理 、熔炼等步骤。
耐磨性
良好的耐磨性
球墨铸铁具有较好的耐磨性,能够在摩擦磨损条件下长期使 用。
磨损率低
球墨铸铁的磨损率较低,能够减少零件的磨损和更换频率。
耐腐蚀性
良好的耐腐蚀性
球墨铸铁具有较好的耐腐蚀性,能够抵抗常见的化学腐蚀。
在腐蚀环境下长期使用
球墨铸铁可以在腐蚀环境下长期使用,适用于各种恶劣环境。
03
球墨铸铁的应用领域
后处理工艺与设备
后处理工艺
包括热处理、切割、打磨等工序,以进一步提高产品 的力学性能和外观质量。
后处理设备
包括热处理炉、切割机、磨床等设备,其中热处理炉 需具备温度控制精度高、炉内温度均匀等特点。
05
球墨铸铁的未来发展趋势 与挑战
新材料与新工艺的研究与应用
01
球墨铸铁用途

球墨铸铁用途一、球墨铸铁的概述球墨铸铁是指在灰铸铁中加入球化剂,使其成为球状组织,从而提高了其强度和塑性,同时保持了灰铸铁的易切削性能。
球墨铸铁具有优良的机械性能、抗腐蚀性能和耐磨性能,广泛应用于各种机械设备、汽车零部件、建筑工程等领域。
二、球墨铸铁的用途1. 机械制造业球墨铸铁在机械制造业中应用广泛。
它可以制造各种机床床身、底座、支架等零部件,在重载工况下具有较好的稳定性和承载能力。
同时,球墨铸铁还可以制造各种齿轮、曲轴等精密零部件,在高速旋转时具有较好的耐磨性和抗疲劳性能。
2. 汽车制造业汽车是球墨铸铁重要的应用领域之一。
汽车发动机缸体、缸盖、曲轴箱等部件都可以采用球墨铸铁制造。
球墨铸铁具有较高的强度和耐磨性能,可以承受汽车发动机高温高压的工作环境,同时还具有较好的抗振性能和降噪功能。
3. 建筑工程球墨铸铁在建筑工程中应用广泛。
它可以制造各种管道、阀门、水泵等设备,在输送水、气等介质时具有较好的耐腐蚀性和耐久性。
同时,球墨铸铁还可以制造桥梁、隧道等大型结构件,在重载工况下具有较好的承载能力和稳定性。
4. 矿山机械球墨铸铁在矿山机械中应用广泛。
它可以制造各种矿山机械零部件,在恶劣的工作环境下具有较好的耐磨性和抗腐蚀性能。
同时,球墨铸铁还可以制造各种输送设备、破碎设备等,在高强度工况下具有较好的稳定性和承载能力。
5. 航空航天球墨铸铁在航空航天领域中也有着广泛的应用。
它可以制造各种航空发动机零部件、导弹零部件等,在高温高压的工作环境下具有较好的稳定性和耐久性。
同时,球墨铸铁还可以制造各种航空器外壳、底座等结构件,在轻量化设计方面具有较大的优势。
三、球墨铸铁的优点1. 机械性能好球墨铸铁具有较高的强度和韧性,可以在重载工况下承受较大的力矩和压力,同时还具有较好的抗振性能和降噪功能。
2. 耐磨性能好球墨铸铁表面硬度高,耐磨性能好,可以在高速旋转或者重载工况下长时间使用而不会出现损坏或者磨损。
3. 抗腐蚀性能好球墨铸铁具有良好的抗腐蚀性能,可以在酸碱等恶劣环境下长时间使用而不会出现损坏或者腐蚀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁简介及应用球墨铸铁是通过球化与孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性与韧性,从而得到比碳钢还高的强度。
球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。
球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。
所谓“以铁代钢”,主要指球墨铸铁。
简介生铁是含碳量大于2%的铁碳合金,工业生铁含碳量一般在2.5%--4%,并含C、SI、Mn、S、P等元素,是用铁矿石经高炉冶炼的产品。
根据生铁里碳存在形态的不同,又可分为炼钢生铁、铸造生铁与球墨铸铁等几种。
吉龙模具钢材析出的石墨呈球形的铸铁。
球状石墨对金属基体的割裂作用比片状石墨小,使铸铁的强度达到基体组织强度的70~90%,抗拉强度可达120kgf/mm2,并且具有良好的韧性。
球墨铸铁除铁外的化学成分通常为:含碳量3.6~3.8%,含硅量2.0~3.0%,含锰、磷、硫总量不超过1.5%与适量的稀土、镁等球化剂。
成分表目前市面上球墨铸铁光谱标准样品成分如下:国内历史在河南巩县铁生沟西汉中、晚期的冶铁遗址中出土的铁䦆,经过金相检验,具有放射状的球状石墨,球墨铸铁球化率相当于现代标准一级水平。
而现代的球墨铸铁则是迟至1947年才在国外研制成功的。
我国古代的铸铁,在一个相当长的时期里含硅量都偏低,也就是说,在约2000年前的西汉时期,我国铁器中的球状石墨,就已由低硅的生铁铸件经柔化退火的方法得到。
这是我国古代铸铁技术的重大成就,也是世界冶金史上的奇迹。
球墨铸铁以其优良的性能,在使用中有时可以代替昂贵的铸钢与锻钢,在机械制造工业中得到广泛应用。
国际冶金行业过去一直认为球墨铸铁是英国人于1947年发明的。
西方某些学者甚至声称,没有现代科技手段,发明球墨铸铁是不可想象的。
1981年,我国球铁专家采用现代科学手段,对出土的513件古汉魏铁器进行研究,通过大量的数据断定汉代我国就出现了球状石墨铸铁。
有关论文在第18届世界科技史大会上宣读,轰动了国际铸造界与科技史界。
国际冶金史专家于1987年对此进行验证后认为:古代中国已经摸索到了用铸铁柔化术制造球墨铸铁的规律,这对世界冶金史作重新分期划代具有重要意义。
性能球铁铸件差不多已在所有主要工业部门中得到应用,这些部门要求高的强度、塑性、韧性、耐磨性、耐严球墨铸铁重的热与机械冲击、耐高温或低温、耐腐蚀以及尺寸稳定性等。
为了满足使用条件的这些变化、球墨铸铁现有许多牌号,提供了机械性能与物理性能的一个很宽的范围。
如国际标准化组织ISO1083所规定的大多数球墨铸铁铸件,主要是以非合金态生产的。
显然,这个范围包括抗拉强度大于800牛顿/毫米,延伸率为2%的高强度牌号。
另一个极端是高塑性牌号,其延伸率大于17%,而相应的强度较低(最低为370牛顿/毫米勺。
强度与延伸率并不是设计者选择材料的唯一根据,而其它决定性的重要性能还包括屈服强度、弹性模数、耐磨性与疲劳强度、硬度与冲击性能。
另外,耐蚀性与抗氧化以及电磁性能对于设计者也许是关键的。
为了满足这些特殊使用,研制了一组奥氏体球铁,通常叫傲Ni一Resis亡球铁。
这些奥氏体球铁,主要用锌、铬与锰合金化,并且列入国际标准。
1947年英国H. Morrogh发现,在过共晶灰口铸铁中附加铈,使其含量在0.02wt%以上时,石墨呈球状。
1948年美国A. P. Ganganebin等人研究指出,在铸铁中添加镁,随后用硅铁孕育,当残余镁量大于0.04wt%时,得到球状石墨。
从此以后,球墨铸铁开始了大规模工业生产。
球墨铸铁球墨铸铁作为新型工程材料的发展速度是令人惊异的。
1949年世界球墨铸铁产量只有5万吨,1960年为53.5万吨,1970年增长到500万吨,1980年为760万吨,1990年达到915万吨。
2000年达到1500万吨。
球墨铸铁的生产发展速度在工业发达国家特别快。
世界球墨铸铁产量的75%是由美国、日本、德国、意大利、英国、法国六国生产的。
我国球墨铸铁生产起步很早,1950年就研制成功并投入生产,至今我国球墨铸铁年产量达230万吨,位于美国、日本之后,居世界第三位。
适合我国国情的稀土镁球化剂的研制成功,铸态球墨铸铁以及奥氏体-贝氏体球墨铸铁等各个领域的生产技术与研究工作均达到了很高的技术水平。
汽车方面(1)铸态珠光体球墨铸铁曲轴与铸态铁素体球墨铸铁汽车底盘零件分别在我国第二汽车厂、南京汽车厂与第一汽车厂相继投产。
这标志着我国铸态球墨铸铁生产达到了较高水平。
与之相适应的包外脱硫、双联法熔炼、瞬时孕育、孕育块技术以及音频检测与热分析快速分析等技术的采用,则标志着我国大量流水生产汽车铸件的技术水平与国际先进水平的差距正在缩小。
冶金因素(2)试验研究了大断面(壁厚大于120mm)球墨铸铁的冶金因素以及相应的生产工艺措施。
采用适量的钇基重稀土复合球化剂、强制冷却、顺序凝固、延后孕育,必要时添加微量锑、铋等可防止球墨铸铁件中心部位的石墨畸变与组织疏松等,现已成功地制作了38吨重的大型复杂结构件,17.5吨重的柴油机体、截面为805mm的球墨铸铁轧辊等。
奥氏体-贝氏体球墨铸铁20世纪70年代初,几乎同时中国、美国、芬兰3个国家宣布研究成功了具有高强度、高韧性的奥氏体-贝氏体球墨铸铁(国际上统称ADI),这种材质的抗拉强度达1000MPa,因此它广泛应用于齿轮以及各种结构件,与合金钢相比,奥-贝球墨铸铁具有显著的经济效益与社会效益。
球墨铸铁型材我国已相继建成几个球墨铸铁管厂,且近几年还将有几个球墨铸铁管厂建成。
2000年,我国年产离心铸造球墨铸铁管达90万吨。
此外,我国自行研制的水平连续铸造球墨铸铁型材生产线已通过国家鉴定,并已有多家企业投产。
再加上我国引进的一条生产线,至2002年,我国年产球墨铸铁型材的能力达数万吨。
力学性能及其他性能(5)系统地测定了稀土镁球墨铸铁的力学性能及其他性能,为设计人员提供了有关数据。
测定了稀土镁球墨铸铁的比重、导热性、电磁性等物理性能,结合金相标准研究了石墨与基体组织对球墨铸铁性能的影响规律。
系统地测定了铁素体球墨铸铁在常温、低温、静态与动态条件下的各种性能。
此外,还研究了稀土镁球墨铸铁的应力应变性能、小能量多冲抗力与断裂韧性,并开始用于指导生产。
结合球墨铸铁齿轮的应用,还系统地研究了球墨铸铁的弯曲疲劳强度与接触疲劳强度,以及球墨铸铁齿轮的点蚀、剥落机理等。
稀土镁球墨铸铁在高强度低合金球墨铸铁方面,除了对铜、钼研究较多外,还对镍、铌等进行了研究。
在利用天然钒钛生铁制作钒钛合金球墨铸铁方面,国内一些单位进行了大量、系统的工作。
中锰球墨铸铁虽然在性能上不够稳定,但多年来的系统研究与生产应用,取得了显著的经济效益。
在耐热球墨铸铁方面,除了中硅球墨铸铁以外,系统研究了Si+Al总量对稀土镁球墨铸铁抗生长能力的影响。
我国研制的RQTAL5Si5耐热铸铁用作耐热炉条的使用寿命是灰铸铁的3倍,是普通耐热铸铁的2倍,并与日本Cr25Ni13Si2耐热钢的使用寿命相当。
高镍奥氏体球墨铸铁方面也取得了进展,它在石油开采机械、化工设备、工业用炉器件上均取得了成功的应用。
在耐酸球墨铸铁方面,我国生产的稀土高硅球墨铸铁比普通高硅铸铁的组织细小、均匀、致密,由此,抗蚀性能提高了10%~90%,并且其机械强度也有显著改善。
稀土在球墨铸铁中的作用稀土能使石墨球化。
自从H. Morrogh最先使用铈得到球墨铸铁以来,先后许多人研究了各种稀土元素的球化行为,发现铈是最有效的球化元素,其他元素也均具有程度不等的球化能力。
结合国情,我国对稀土的球化作用进行了大量研制工作,发现稀土元素对常用的球墨铸铁成分(C3.6~3.8wt%,Si2.0~2.5wt%)来说,很难获得同镁球墨铸铁那样完整均匀的球状石墨;而且,当稀土量过高时,还会出现各种变态形的石墨,白口倾向也增大,但是,如果是高碳过共晶成分(C>4.0wt%),稀土残留量为0.12~0.15wt%时,可获得良好的球状石墨。
根据我国铁质差、含硫量高(冲天炉熔炼)与出铁温度低的情况,加入稀土是必要的。
球化剂中镁是主导元素,稀土一方面可促进石墨球化;另一方面克服硫以及杂质元素的影响以保证球化也是必须的。
稀土防止干扰元素破坏球化。
研究表明,当干扰元素Pb、Bi、Sb、Te、Ti等总量为0.05wt%时,加入0.01wt%(残余量)的稀土,可以完全中与干扰,并可抑制变态石墨的产生。
我国绝大部分的生铁中含有钛,有的生铁中含钛高达0.2~0.3wt%,但稀土镁球化剂由于能使铁中的稀土残留量达0.02~0.03wt%,故仍可保证石墨球化良好。
如果在球墨铸铁中加入0.02~0.03wt%Bi,则几乎把球状石墨完全破坏;若随后加入0.01~0.05wt%Ce,则又恢复原来的球化状态,这是由于Bi与Ce形成了稳定的化合物。
稀土的形核作用。
20世纪60年代以后的研究表明,含铈的孕育剂可使铁液在整个保持期中增加球数,使最终的组织中含有更多的石墨球与更小的白口倾向。
经研究还表明,含稀土的孕育剂可改善球墨铸铁的孕育效果并显著提高抗衰退的能力。
加入稀土可使石墨球数增多的原因可归结为:稀土可提供更多的晶核,但它与FeSi孕育相比所提供的晶核成分有所不同;稀土可使原来(存在于铁液中的)不活化的晶核得以长大,结果使铁液中总的晶核数量增多。
(一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量(二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失(三)进行球化处理,即往铁液中添加球化剂(四)加入孕育剂进行孕育处理(五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则(六)进行热处理。