建筑阻尼器分类
建筑阻尼器分类

建筑阻尼器分类建筑阻尼器是一种用于减震和减振的装置,广泛应用于高层建筑、桥梁、塔楼等结构中。
根据其结构和工作原理的不同,可以将建筑阻尼器分为几类。
一、摩擦阻尼器摩擦阻尼器是一种常见的建筑阻尼器,它利用材料之间的摩擦力来吸收和消耗结构的振动能量。
摩擦阻尼器通常由两个平行的金属板之间夹有一定厚度的摩擦材料组成,当结构发生振动时,板的相对滑动会产生摩擦力,从而减小结构的振幅。
摩擦阻尼器适用于抗震性能要求不高的建筑,如住宅、商业建筑等。
二、液体阻尼器液体阻尼器是利用流体的粘滞阻力来减震的装置。
液体阻尼器通常由一个密封的容器、流体以及阻尼液压缸或阻尼阀组成。
当结构发生振动时,流体在阻尼液压缸中流动,通过液体的粘滞阻力来消耗振动能量,从而减小结构的振幅。
液体阻尼器适用于振动频率较高且抗震性能要求较高的建筑,如桥梁、高层建筑等。
三、摆锤阻尼器摆锤阻尼器是一种利用摆锤的运动来减振的装置。
它由一个或多个摆锤和摆杆组成,安装在结构上方。
当结构发生振动时,摆锤会随着结构的振动而产生摆动,通过摆锤的惯性力来消耗振动能量,从而减小结构的振幅。
摆锤阻尼器适用于抗震性能要求较高的建筑,如塔楼、烟囱等。
四、形状记忆合金阻尼器形状记忆合金阻尼器是一种利用形状记忆合金的特性来减振的装置。
形状记忆合金是一种具有记忆性能的合金材料,当受到外力作用时,能够改变自身的形状,当外力消失时,又能恢复原来的形状。
形状记忆合金阻尼器通过形状记忆合金的形状变化来消耗振动能量,从而减小结构的振幅。
形状记忆合金阻尼器适用于抗震性能要求较高且需要长寿命的建筑,如大型桥梁、高层建筑等。
五、电磁阻尼器电磁阻尼器是一种利用电磁力来减振的装置。
它由电磁铁和磁铁之间的间隙组成,当结构发生振动时,电磁铁会受到激励电流的作用而产生磁力,通过磁力的吸引和排斥来消耗振动能量,从而减小结构的振幅。
电磁阻尼器适用于振动频率较高且抗震性能要求较高的建筑,如桥梁、高层建筑等。
建筑阻尼器是一种有效的减震和减振装置,能够提高建筑结构的抗震性能。
阻尼综述——阻尼模型、阻尼机理、阻尼分类和结构阻尼建模方法

阻尼1 引言静止的结构,一旦从外界获得足够的能量(主要是动能),就要产生振动。
在振动过程中,若再无外界能量输入,结构的能量将不断消失,形成振动衰减现象。
振动时,使结构的能量散失的因素的因素称为结构的阻尼因素。
索罗金在其论著中将结构振动时的阻尼因素概括为几种类型,即界介质的阻尼力;材料介质变形而产生的内摩擦力;各构件连接处的摩擦及通过地基散失的能量。
百多年来,不同领域的专家,均根据自身研究的需要,着重研究某种阻尼因素,如外阻尼、摩擦阻尼、材料阻尼及辐射阻尼等。
对于材料阻尼的物理机制,文献[82]、[126]、[127]等分别做了简要描述。
材料阻尼是一个机制比较复杂的物理量,由多种基本的物理机制组合而成。
如金属材料中的热弹性、晶体的粘弹性、松弛效应、旋转流效应、电子效应等对阻尼均有贡献。
对一般的非金属材料(如玻璃、各种聚合物等),电子效应对能量的损失影响较小。
温度、绝热系数等也是影响阻尼的重要因素。
一般来说,非金属材料的能量损失比金属大。
此外地质岩石由不同种固体微粒组成,且有空隙体积,因此,其阻尼特性与一般材料不同。
岩石中能量损失主要由三个物理机制构成:岩石内部微粒间的粘性=岩石的内摩擦及较大的塑性变形,而岩石的内摩擦与岩石内部微粒间接触处的位错及塑性变形有关。
如献[82]所述,为了计算、分析结构在外界载荷作用下产生的反应,人们建立了描述固体材料应力应变关系的物理模型。
最简单的物理模型是单参数模型,即材料只产生弹性应力或只产生粘滞应力,但这两种模型不能代表材料中真实存在的粘弹性。
人们又建立了双参数线性模型,即Maxwell及Kelvin模型。
其中Maxwell模型由线性粘滞体和线弹性体串联而成,Kelvin模型是此二者并联而成的。
若设线粘滞体的应变为一般情况下,在结构振动分析设计中,与弹性力和惯性力相比,阻尼力在数值上较小。
然而,在一定条件下,阻尼因素将起很重要的作用。
如果没有阻尼力存在,振动体系在共振时将达到非常大的幅值。
大楼阻尼器的工作原理

大楼阻尼器的工作原理大楼阻尼器的最常见类型是摆式阻尼器。
摆式阻尼器由重锤和连接阻尼器框架的链接器组成。
当大楼发生振动时,重锤会受到惯性力的作用而随之摆动。
通过重锤的摆动,一部分能量会被转移到阻尼器框架上,并在摆动过程中逐渐消耗。
通过这个工作原理,大楼阻尼器可以实现以下功能:1.减小振幅:大楼阻尼器可以将振动的能量转化为阻尼器框架的摆动,从而减小振动的振幅。
这样一来,建筑物的摇晃幅度将减小,从而减少了对建筑物结构的影响。
2.减缓振动速度:由于阻尼器能够吸收部分振动能量,摆式阻尼器可以减缓建筑物的振动速度。
这样一来,建筑物在地震或风力作用下的振动速度将降低,使其更加稳定。
3.分散能量:阻尼器能够将部分能量转移给阻尼器框架,从而分散能量。
这样一来,建筑物的结构承受的震动力将减小,有助于减轻地震或风力对建筑物的损害。
4.保护建筑物:大楼阻尼器的存在可以减少建筑物的振动幅度和速度,从而有效地减少地震或风力对建筑物结构的影响。
这样一来,建筑物在灾难事件中更有可能保持完整,减少人员伤亡和财产损失。
除了摆式阻尼器,大楼阻尼器还包括摩擦阻尼器、液压阻尼器等其他类型。
不同类型的大楼阻尼器使用了不同的工作原理,但都旨在通过消耗和转移能量来减小建筑物的振幅和速度,从而保护建筑物免受地震和风力的损害。
总之,大楼阻尼器通过消耗和转移能量来减小建筑物振动的振幅和速度,从而保护建筑物免受地震和风力的损坏。
它的工作原理基于物理学的原理,通过重锤的摆动来吸收和分散振动能量,使建筑物更加稳定。
大楼阻尼器的应用可以降低地震和风力造成的损失,提高建筑物的抗震性能。
阻尼器工作原理

阻尼器工作原理阻尼器是一种常见的工程机械装置,它的作用是通过消耗能量来减缓或抑制机械振动或运动。
在工程设计中,阻尼器被广泛应用于各种机械系统中,例如汽车悬挂系统、建筑结构、桥梁、风力发电机等。
阻尼器的工作原理是通过转化机械振动或运动能量为热能或其他形式的能量来实现减震或减振的效果。
本文将从阻尼器的分类、工作原理和应用领域等方面来详细介绍阻尼器的工作原理。
一、阻尼器的分类。
根据阻尼器的工作原理和结构特点,可以将阻尼器分为多种类型,常见的阻尼器包括液体阻尼器、气体阻尼器、摩擦阻尼器和涡流阻尼器等。
1. 液体阻尼器,液体阻尼器是一种利用流体阻尼来实现减震的装置,通常由密封的容器、流体和阀门等组成。
当机械振动或运动时,流体在容器内流动,通过阀门的调节来消耗机械能,从而实现减震的效果。
2. 气体阻尼器,气体阻尼器是一种利用气体的压缩和膨胀来实现减震的装置,通常由气缸、活塞和阀门等组成。
当机械振动或运动时,气体在气缸内压缩或膨胀,通过阀门的调节来消耗机械能,从而实现减震的效果。
3. 摩擦阻尼器,摩擦阻尼器是一种利用摩擦力来实现减震的装置,通常由摩擦片、弹簧和阀门等组成。
当机械振动或运动时,摩擦片在摩擦面上产生摩擦力,通过阀门的调节来消耗机械能,从而实现减震的效果。
4. 涡流阻尼器,涡流阻尼器是一种利用涡流效应来实现减震的装置,通常由导体、磁场和阀门等组成。
当机械振动或运动时,导体在磁场中产生涡流效应,通过阀门的调节来消耗机械能,从而实现减震的效果。
二、阻尼器的工作原理。
阻尼器的工作原理可以总结为能量转换和能量消耗两个方面。
在机械振动或运动时,阻尼器通过转换机械能为其他形式的能量来实现减震或减振的效果。
1. 能量转换,当机械振动或运动时,阻尼器将机械能转换为热能、声能或其他形式的能量。
例如,液体阻尼器通过流体的摩擦来将机械能转换为热能,气体阻尼器通过气体的压缩和膨胀来将机械能转换为热能,摩擦阻尼器通过摩擦力来将机械能转换为热能,涡流阻尼器通过涡流效应来将机械能转换为热能。
阻尼器在桥梁工程中的应用与实践

阻尼器在桥梁工程中的应用与实践桥梁作为一种重要的交通运输工程设施,一直以来都备受关注。
在桥梁的设计中,阻尼器作为一种较为重要的桥梁防震装置,已经逐渐受到设计师们的广泛应用。
一、阻尼器的基本概念及分类阻尼器是指一种能够消耗结构动力能量的非线性装置,广泛应用于结构防震领域。
阻尼器一般分为线性阻尼器和非线性阻尼器。
线性阻尼器是指在阻尼器工作范围内,阻力大小与相对速度成正比例关系的装置。
而非线性阻尼器则是指阻尼力与结构变形、相对速度大小非线性相关的装置。
二、阻尼器在桥梁工程中的应用1. 阻尼器在大跨度桥梁中的应用具有大跨度和高塔柱的桥梁结构一直以来都是工程师们难以解决的问题。
这种桥梁结构在受到地震的影响下,容易出现晃动现象,导致桥梁的稳定性下降。
为了解决这个问题,阻尼器开始得到广泛应用。
阻尼器的应用不但能够提高桥梁的抗震性能,而且能够减少桥梁受地震的摆动程度,消除桥梁结构的共振状态,提高桥梁的稳定性。
2. 阻尼器在桥梁施工过程中的应用桥梁施工是一项相当复杂和繁琐的工程,其中包括桥梁吊装、缆索拉直、桥梁转体、换位等多个环节。
这些环节涉及到桥梁结构的变形、振动等问题,影响着桥梁工程的稳定性、安全性和效率。
阻尼器可以在桥梁施工过程中对桥梁振动、变形等问题加以控制,并提高桥梁施工的效率和安全性。
同时,阻尼器也可以用来控制桥梁施工中的晃动,减小施工对周边环境的影响。
三、阻尼器在桥梁工程实践中的应用案例1. 长江大桥长江大桥是我国现代桥梁史上的一座著名的杰作。
该桥梁的塔高405米,桥跨主跨1088米,是当时世界上跨径最大的双层铁路、公路两用悬索桥。
在这座大桥的设计中,阻尼器被广泛应用,以达到对桥梁结构的稳定和精准控制。
2. 唐古拉山口特大桥唐古拉山口特大桥是国内一座重要的公路桥梁工程。
在这座桥梁的设计中,阻尼器也被广泛应用。
由于该桥梁所处地理环境较为复杂,设计师们在沉着应对桥梁的稳定性问题的同时,也对桥梁的防震设置了高度要求。
粘弹性阻尼器

粘弹性阻尼器及应用实例数力系工程力学07-1班叶佳楠21 (号)1.阻尼器的分类阻尼器只是一个构件.使用在不同地方或不同工作环境就有不同的阻尼作用.主要用于减振或用于防震,低速时允许移动,在速度或加速度超过相应的值时闭锁,形成刚性支撑。
其主要的分类有:弹簧阻尼器,液压阻尼器,脉冲阻尼器,旋转阻尼器,和粘弹性阻尼器。
其中粘弹性阻尼器(VED)是一种十分有效安全的耗能减震装置,在结构振动控制中的应用已有二十多年的历史,已被美国及日本等高度工业化的国家在高层建筑设计中所广泛采用。
1972 年建成的纽约110 层世界贸易大厦,安装了一万个粘弹性阻尼器。
美国西雅图的76 层哥伦比亚大厦,共安装了260 个阻尼器。
它们安装粘弹性阻尼器的目的是力图减少结构的风振反应。
我国将粘弹性阻尼器用于结构的抗风抗震设计始于近几年。
东南大学的陈文瀼等对宿迁市一栋9 度抗震设防的13 层钢筋混凝土结构采用粘弹性阻尼器减震后,使上部结构可按8 度抗震设防要求设计。
武汉工业大学的瞿伟廉等将粘弹性阻尼器用于一幢50层的全钢结构,计算结果表明减震效果显著。
在粘弹性阻尼器应用中主要面临着两个问题:如何选择阻尼器的几何参数以及阻尼器安装位置的确定。
已有的VED 位置确定方式一般采用多次循环逐个布置的方法。
这种方法的主要缺点是计算量大,并且没有实现结构总体优化。
本文根据无阻尼器结构在地震作用下的最大层间位移和最大层位移,采用不同的布置方式对阻尼器进行布置。
比较在相同数量阻尼器的情况下,不同布置方式所取得的减震效果,得出有关阻尼器布置方式的结论,从而指导粘弹性阻尼器结构的初步设计阶段阻尼器布置方案的确定。
2. 粘弹性阻尼装置的工作原理粘弹性阻尼装置包括粘弹性阻尼器及其支撑构件,粘弹性阻尼器的计算模型采用等效刚度和等效阻尼模型,该模型是基于粘弹性材料的Kelvin 模型,使用等效刚度和等效阻尼两个重要参数来表达的粘弹性阻尼器力与位移的关系式。
阻尼减振实验报告

阻尼减振实验报告一、实验目的本次实验旨在通过阻尼减振实验,掌握阻尼减振的基本原理和方法,了解不同材料和结构的阻尼器对振动的影响,为工程设计提供理论依据。
二、实验原理1. 阻尼减振的基本原理阻尼是指在弹性系统中,由于介质或结构自身内部存在一定摩擦力而产生的能量损耗。
当弹性系统受到外界作用力时,会产生振动。
若在系统中引入一种具有耗散能力的元件(即阻尼器),则可以将系统的振动能量转化为热能等其他形式的能量而消耗掉,从而达到减小振幅和延长振动周期的目的。
2. 阻尼器分类及其特点(1)粘滞阻尼器:利用黏性流体或粘性材料来消耗机械能。
(2)干摩擦阻尼器:利用干摩擦来消耗机械能。
(3)液压阻尼器:利用流体黏滞度使机械能转化为热能。
(4)涡流阻尼器:利用涡流的能量损耗来消耗机械能。
(5)气体阻尼器:利用气体的黏滞性消耗机械能。
3. 实验装置实验装置主要由振动台、试件、阻尼器以及传感器等组成。
其中,振动台为试件提供振动力,传感器用于测量试件的振动响应,阻尼器则通过将试件与振动台之间引入一定的耗散元件来减小试件的振幅和延长其振动周期。
三、实验步骤1. 将试件与阻尼器固定在振动台上,并将传感器安装在试件上。
2. 调整振动台频率为所需频率,并调节幅值为适当大小。
3. 记录下未加入阻尼器时的试件振幅和周期,并记录下传感器输出信号。
4. 依次加入不同类型和数量的阻尼器,并记录下每次加入后试件的振幅和周期以及传感器输出信号。
5. 分析不同类型和数量的阻尼器对试件振幅和周期的影响。
四、实验结果分析1. 不同类型阻尼器对试件的影响(1)粘滞阻尼器:由于黏性流体或材料的存在,粘滞阻尼器可以有效地减小试件振幅,并延长其振动周期。
(2)干摩擦阻尼器:干摩擦阻尼器的减振效果较差,但其对试件的影响较为稳定。
(3)液压阻尼器:液压阻尼器可以通过调节流体黏滞度来实现不同程度的减振效果,且具有较高的可调性。
(4)涡流阻尼器:涡流阻尼器可以在不损失机械能的情况下消耗掉试件的振动能量,但其减振效果较差。
阻尼器详细介绍及试验过程

1-液压站及油压显示装置;2-大油缸连接位置3-小油缸连接位置; 4-中心机架(锁止装置)试验台主要由机械与液压部分组成。
机械部分主要由床身和中心机架(锁止装置)组成。
床身用于安装和固定各种元器件,同时承受阻尼器的载荷。
床身两头分别安装了50KN和500KN的液压缸,并安装了速度、位移传感器(两传感器相互校验)。
通过不同的销轴和轴套配合可以将不同的阻尼器安装在销座上。
中心机架(锁止装置)两侧安装有50KN和500KN的力传感器。
中心机架(锁止装置)的移动需人工推动。
中心机架(锁止装置)的底部下面设有500KN的液压缸,拧动旋纽换向手柄可以抬升和压紧该装置。
当压紧时中心机架(锁止装置)的“上齿条”和“下齿条”啮合,固定在床身上。
与主承力板项链的底板上装有四肢弹簧装置。
弹簧装置有套筒、圆柱螺旋弹簧和轴承组成。
中心机架需要在床身上移动时,有弹簧装置里的弹簧托举中心机架,并由滚动球轴承承在床身上可以来回移动。
移动中心机架的操作需要人工手动完成。
图9 中心机架图10 锁紧油缸中心机架的底部,即床身的下面设有输出力为500KN的液压缸(锁紧油缸)。
操作控制台的锁紧油缸,当它的活塞杆伸出时,可以把整个中心机架拉下来,并锁紧3.2液压系统液压系统主要由油箱、控制阀组、液压缸、其他附件组成。
液压系统压力最高压力为22Mpa,,出厂前已经设置好。
不准随意改变压力,否则会造成油泵损坏、油管爆裂、油缸损坏事故。
液压系统液压驱动阀门电压为24V,油泵驱动电压为380V。
图 11液压系统的作用原理:开始时油泵电机启功,比例溢流阀全开,液压油从油泵输出,从比例溢流阀回到油箱。
当给蓄能器加压时,比例溢流阀调节到22MPa,这是液压油从油泵输出,通过单向阀向蓄能器充油,当蓄能器油压达到22MPa时,油不再进入蓄能器,而是从比例溢流阀流回油箱,从而控制油压。
在蓄能器达到压力允许值后可以进行中心机架锁紧,这时通过控制电磁球阀的得电失电来控制锁紧油缸的锁紧与打开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑阻尼器分类
建筑阻尼器是一种用于减震和控制建筑结构振动的装置。
根据其工作原理和结构特点,可以将建筑阻尼器分为多种类型。
本文将介绍四种常见的建筑阻尼器分类:摩擦阻尼器、液体阻尼器、液体流阻尼器和调谐质量阻尼器。
一、摩擦阻尼器
摩擦阻尼器是一种利用摩擦力来消耗结构能量,减小结构振幅的装置。
它由摩擦材料和施力机构组成,通过调节施力机构的预紧力来改变摩擦力的大小。
摩擦阻尼器具有结构简单、安装方便、耐久性好等优点,被广泛应用于各类建筑结构中。
二、液体阻尼器
液体阻尼器是一种利用液体内部黏性阻尼来消耗振动能量的装置。
液体阻尼器通常由容器、液体和活塞组成,当建筑结构发生振动时,液体内部黏性阻尼将振动能量转化为热能而消耗掉。
液体阻尼器具有响应速度快、可调节性好等特点,广泛应用于高层建筑、桥梁和大型机械设备等领域。
三、液体流阻尼器
液体流阻尼器是一种利用液体流动阻力来消耗振动能量的装置。
它由液体介质、流通通道和调节机构组成,当结构发生振动时,液体通过流通通道流动,产生阻力将振动能量耗散。
液体流阻尼器具有
结构简单、流体动力学特性稳定等优点,广泛应用于大型建筑、桥梁和风力发电机组等领域。
四、调谐质量阻尼器
调谐质量阻尼器是一种利用调谐质量系统来控制结构振动的装置。
它由质量块、弹簧和阻尼器组成,通过调节质量块的质量和弹簧的刚度来改变系统的固有频率,从而实现对结构振动的控制。
调谐质量阻尼器具有控制精度高、自适应性强等特点,被广泛应用于高层建筑、桥梁和大型机械设备等领域。
建筑阻尼器是一种重要的减震控制装置,可以根据其工作原理和结构特点进行分类。
摩擦阻尼器、液体阻尼器、液体流阻尼器和调谐质量阻尼器是四种常见的建筑阻尼器分类。
它们各具特点,在不同的工程领域发挥着重要的作用,为建筑结构的安全性和舒适性提供了有效的保障。
随着科技的不断进步,建筑阻尼器的研究和应用将会越来越广泛,为人们的生活带来更多的便利和安全。