二次函数典型例题——最大值问题

合集下载

二次函数的极值问题

二次函数的极值问题

③设总利润为W=Q-30000-400x=-10x2+500x =-10(x-25)2+6250 ∴当x=25时,总利润最大,最大利润为6250 元。
例题:学校要建一个生物花圃园,其中一边靠墙,另三边用 长为30米的篱笆围成,已知墙长为18米,设这个花圃垂直的 一边为x米. (1)平行于墙的一边为y米,直接写出y与x之间的函数关系 及自变量x的取值范围; (2)垂直于墙的一边的长为多少米时,这个花圃的面积最大, 并求这个最大值; (3)当这个花圃园的面积不小于88平米时,(结合图像)直 接写出x的取值范围。
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能 使利润最大了吗?
答:综合以上两种情况,定价为65元时 可获得最大利润为6250元.
2.某公司试销一种成本单价为500元的新产品 规定试销时的销售单价不低于成本单价,又不高于 800元/件,经市场调查,发现销售量y(件)与销售单价 x(元/件)可以近似看作一次函数的关系(如图). (1)根据图象,求y与x的函数关系式; (2)设公司获得的毛利润为s元,试求s与x的函数 关系式; (3)试问:销售单价定为多少时,该公司可获得最大 利润?最大毛利润是多少?此时的销售量是多少?
做一做
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少? 15 7 x x x x 解 : 1. 由4 y 7 x x 15. 得, y . 4 2 2 x 15 7 x x x

=-2x2+440x+158400 …… =-2(x-110)2+182600 所以,当x=110时,y有最大值182600 ……

中考数学:二次函数——线段最大值问题

中考数学:二次函数——线段最大值问题

中考数学:二次函数——线段最大值问题一前提知识:二典型例题:1.如图,已知二次函数y=-x2-2x+3的图象交x轴于A、B两点(A在B左边),交y轴于C点。

(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC y=x+3 上方抛物线y=-x2-2x+3上一动点(不与A,C重合)过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值;三变式练习:2.变式1:点P是直线AC y=x+3 上方抛物线y=-x2-2x+3上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值;大值:问题2:你能求出△PQH周长的最大值吗?的最大值;积的最大值;积的最大值;四直通中考:1.(2014 ·重庆中考A卷25题)如图,抛物线y= -x2 -2x+3的图象与x轴交于A、B两点(点A在点B左边),与y轴交于点C,点D为抛物线的顶点。

(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ ∥AB交抛物线于点Q,过点Q作QN ⊥X轴于点N,若点P在点Q 左边,当矩形PMNQ的周长最大时,求△AEM的面积;26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G(不与点A、E 重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE 的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G(不与点A、E 重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.【分析】(1)由S△F AD=S△F AK﹣S△FDK=求而出点F(,),而FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,即可求解;(2)分AC′=EC′、AE=EC′、AC′=AE三种情况,求解即可.【解答】解:(1)过点F作FK⊥x轴于点H,交直线AE于点K(如下图),过点D作DM⊥FK于点M,令y=﹣x﹣=0,则点A(﹣1,0),设点F坐标为(x,﹣x2+x+),则点K(x,﹣x﹣),S△F AD=S△F AK﹣S△FDK=FK•AH﹣FK•DM=FK(AH﹣DM)=FK•AO=(﹣x2+x++x+)×1=﹣x2+x+,当x=﹣=时,S△F AD有最大值,此时点F(,),点G是线段AE上一点,作EQ⊥y轴于点Q,作GP⊥EQ于点P,则∠PEG=30°,∴GP=GE,∴FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,当x=时,y=﹣x﹣=﹣,此时点G(,﹣),FG+GE最小值为:;(2)连接CC′,过点C′作C′F⊥y轴于点F,则C′C=,CF=CC′=t,FC′=CC′=t,∴点C′(t,﹣t),由(1)知点E(4,﹣),∴AE2=,AC′2=t2+4,EC′2=t2﹣t+,①当AC′=EC′时,t2+4=t2﹣t+,解得:t=;②当AC′=AE时,同理可得:t=(舍去负值);③当AE=EC′时,同理可得:t=5;故:t的值为或或5或5.。

二次函数--利润最大值问题-顶点不在范围内

二次函数--利润最大值问题-顶点不在范围内

22.3(3.2)--利润最大值问题-顶点不在范围内
一.【知识要点】
1.利用二次函数解决最大利润问题,首先根据利润问题中常用的两个等量关系建立二次函数模型,然后利用二次函数确定最值。

2.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】
1.某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.
(1)求y与x之间的函数关系式.
(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
三.【题库】
【A】
1.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
【B】【C】【D】。

最全二次函数区间的最值问题(中考数学必考题型)

最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。

例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。

二次函数典型例题——最大值问题

二次函数典型例题——最大值问题

二次函数典型例题——最大面积1、如图所示,在平面直角坐标系中,Rt △OBC 的两条直角边分别落在x 轴、y 轴上, 且OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点F.(1)若抛物线过点A 、B 、C, 求此抛物线的解析式;(2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积;(3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积是多少?求出此时点M 的坐标.解:(1)∵OB=1,OC=3∴C(0,-3),B(1,0)∵△OBC 绕原点顺时针旋转90°得到△OAE ∴A(-3,0)所以抛物线过点A(-3,0),C(0,-3),B(1,0) 设抛物线的解析式为2(0)y ax bx c a =++≠,可得++0-39-30a b c c a b c =⎧⎪=⎨⎪+=⎩解得12-3a b c =⎧⎪=⎨⎪=⎩∴过点A,B,C 的抛物线的解析式为22-3y x x =+ (2) ∵△OBC 绕原点顺时针旋转90°得到△OAE , △OBC 沿y 轴翻折得到△COD∴E (0,-1),D (-1,0)可求出直线AE 的解析式为113y x =-- 直线DC 的解析式为33y x =-- ∵点F 为AE 、DC 交点 ∴F (3-4,3-4) MS 四边形ODFE =S △AOE -S △ADF =34(3)连接OM ,设M 点的坐标为()m n , ∵点M 在抛物线上,∴223n m m =+- ∴AMC AMO OMC AOC S S S S ∆∆∆∆=+-=111393()(3)222222OA m OC n OA OC m n m n ⋅+⋅-⋅=-+-=-++ =2233327(3)()2228m m m =-+=-++因为03m <<,所以当32m =-时,154n =-,△AMA’的面积有最大值所以当点M 的坐标为(31524-,-)时,△AMA’的面积有最大值2、在平面直角坐标系xOy 中,抛物线2(2)2y mx m x =+++过点(2,4),且与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .点D 的坐标为(2,0),连接CA ,CB ,CD . (1)求证:ACO BCD ∠=∠;(2)P 是第一象限内抛物线上的一个动点,连接DP 交B C 于点E . ①当△BDE 是等腰三角形时,直接写出点E 的坐标; ②连接CP ,当△CDP 的面积最大时,求点E 的坐标.3、如图,一次函数221+-=x y 分别交y 轴、x 轴于A 、B 两点,抛物线c bx x y ++-=2过A 、B 两点.(1)求这个抛物线的解析式;(2)作垂直x 轴的直线t x =,在第一象限交直线AB 于点M ,交这个抛物线于点N .求当t 取何值时,MN 有最大值,最大值是多少?BA NOM yx解:(1)易得A (0,2),B (4,0) ……………… 1分将x =0,y =2代入c bx x y ++-=2得2=c ………………2 分 将x =4,y =0,2=c 代入c bx x y ++-=2得到,27=b2272++-=∴x x y ……………… 3分 (2)由题意,易得217(,2),(,2)22M t t N t t t -+-++……………… 4分从而得到t t t t t MN 4)221(22722+-=+--++-=)40(<<t …… 5分当2=t 时,MN 有最大值4 . ………………6 分(延庆县)二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0),12y x b =-+经过点B ,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C . (1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.解:(1)∵二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0)∴4101m n m n =--+⎧⎨=-++⎩∴m=-2,n=3∴二次函数的表达式为223y x x =--+ (2)12y x b =-+经过点B ∴12b =画出图形()211(,),2322M m m m m m -+--+设,则N 21123()22MN m m m =--+--+设∴∴23522MN m m =--+ ∴2349()416MN m =-++ ∴MN 的最大值为4916(石景山)已知关于x 的方程()231220mx m x m --+-=.(1)求证:无论m 取任何实数时,方程恒有实数根;(2)若关于x 的二次函数()23122y mx m x m =--+-的图象经过坐标原点,得到抛物线1C .将抛物线1C 向下平移后经过点()0,2A -进而得到新的抛物线2C ,直线l 经过点A 和点()2,0B ,求直线l 和抛物线2C 的解析式;(3)在直线l 下方的抛物线2C 上有一点C ,求点C 到直线l 的距离的最大值.解:(1)当0m =时,2x =当0m ≠时,()()231422m m m ∆=---2296188m m m m =-+-+ ()22211m m m =++=+∵()210m +≥,∴0∆≥综上所述:无论m 取任何实数时,方程恒有实数根;………………………3分(2)∵二次函数2(31)22y mx m x m =--+-的图象经过坐标原点 ∴220m -=∴1m =………………………4分抛物线1C 的解析式为:22y x x =- 抛物线2C 的解析式为:222y x x =-- 设直线l 所在函数解析式为:y kx b =+将A 和点()2,0B 代入y kx b =+∴直线l 所在函数解析式为:2y x =-………5分(3)据题意:过点C 作CE x ⊥轴交AB 于E ,可证45DEC OAB ∠=∠=︒ ,则2CD =设()2,22C t t t --,(),2E t t -,()03t << ∴E C EC y y =-23t t =-+23924t ⎛⎫=--+ ⎪⎝⎭………………………6分∵3032⎛⎫<< ⎪⎝⎭∴当32t =时,max 94EC =∵CD 随EC 增大而增大,∴max CD =.………………………7分。

二次函数的最值问题(典型例题)

二次函数的最值问题(典型例题)

二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 2y=-;(2) (2);(3)8练习一答案【例题精讲】答案:a =【拓展练习】答案:(1) k≤2;(2)①k值为-1;②y的最大值为32,最小值为-3.详解:(1)当k=1时,函数为一次函数y= -2x+3,其图象与x轴有一个交点. 当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1.由题意得(k-1)x12+(k+2)=2kx1(*),将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)

二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值@变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式当x为多长时,花园面积最大·例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多设销售单价为x元,(0<x≤元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)@(4)所获利润可以表示为__________________;(5)当销售单价是________元时,可以获得最大利润,最大利润是__________。

~变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量其中自变量是_______,因变量是___________.(2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结_________个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数典型例题——最大面积
1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且
OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F.
(1)若抛物线过点 A 、B、C, 求此抛物线的解析式;
(2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积;
(3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积
是多少?求出此时点M 的坐标.
解:(1)∵OB=1 ,OC=3
∴C(0,-3),B(1,0)
∵△OBC 绕原点顺时针旋转90°得到△ OAE
∴A(-3,0)
所以抛物线过点A(-3 ,0),C(0,-3),B(1,0)
设抛物线的解析式

y 2 ax bx c(a 0) ,可得
a+b+c 0a1
c -3解得b2
9a-3b c 0c-3
∴过点A,B,C 的抛物线的解析式为y x2 2x-3
(2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD
∴ E(0,-1),D(-1,0)
1 可求出直线AE 的解析式为y 1x 1
3直线DC 的解析式为y 3x 3
∵点F为AE、DC 交点
∴F(-3,-3)
44
3
S
四边形
ODFE =S △AOE -S △ADF =
4
3)连接 OM ,设 M 点的坐标为 (m ,n )
2
2、在平面直角坐标系 xOy 中,抛物线 y mx 2
(m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD.
(1)求证: ACO BCD ;
(2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E.
①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标.
∵点 M 在抛物线上,∴ n 2
m 2m

S AMC S AMO S OMC
S AOC
= 12OA m
= 32(m 2
11
OC n OA OC 2
2
3m) 3(m 因为 0 m 3 ,所以当 m
所以当点 M
3
的坐标为 ( , 2
3 9 3 (m n) (m n 3) 2 2 2
3 2 27
2) 8
3
时,
2
15
- ) 时, 4
n
15
,△AMA ' 的面积有最大值
4
△ AMA '的面积有最大值
解:(1}丫抛物线y =皿口(皿42)沙2过点(2,4),
1
•・・抛物线解析式为:r= -y^a+-|^4-2.
•"(・1,0) ,5(6,0) ,€(0,2) • 作M丄CD,
交CD延长线于点M, 在RiZ\DOC 中,
0C = 0D =2 ・
・•・乙CD0=厶BDM=45SCD=2"・在RtABMD中,
•/ BD =4,
:・DM=BM=2/L
在R2CM3中,仙Z.BCM二粵二笔二占.
CM 4/2 2
直线CD的解析式为-x + 2.
•1 Q(X9-% +2)<
在RlA/lOC 中.tanZ^CO 0A
1
0G 一
2
.*< tan Z BCM = tan Z
ACO.
LBCD^ LACO.
(2)®£3(4,y),£2(6-|-/i0,|/i0)・
(2)^ F(X, -yx2 +yx +2),
过点P作为轴的垂线,垂足为点F,交CD延长线于点Q、
12
3、如图,一次函数y x 2 分别交y 轴、x 轴于A、B 两点,抛物线y x 2 bx c
2
过A、 B 两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x t ,在第一象限交直线AB于点M ,交这个抛物线于点N.求当t 取何值时,MN有最大值,最大值是多少?
mx n 交于点 D .过点 D 作 DC ⊥x 轴,垂足为点 C .
(1)求二次函数的表达式;
(2)点 N 是二次函数图象上一点(点 N 在BD 上方),过 N 作NP ⊥x 轴,垂足为点 P ,交 BD 于点 M ,求 MN 的最大值 .
解:
( 1)易得 A (0, 2),B (4, 0) ⋯⋯⋯⋯⋯⋯ 1 分
将 x =0, y =2 代入 y x 2 bx c 得 c 2 ⋯⋯⋯⋯⋯⋯ 2 分
将 x =4, y =0, c 2 代入 y x 2 bx c
得到 b 7,
2
2
7 y x x 2 ⋯⋯⋯⋯⋯⋯ 3分 2
1 2 7 2)由题意,易得 M (t, t 2),N(t, t 2
t 2) ⋯⋯⋯⋯⋯⋯ 4分 22 从而得到 MN t 2
7
t 2 ( 1
t 2)
t 2 4t (0 t 4)⋯⋯
22
当 t 2 时, MN 有最大值 4 . ⋯⋯⋯⋯⋯⋯ 6 分
5分
延庆县) 二次函数 y
x 2
mx 的图象经过点 A (﹣ 1,4),B ( 1,0),
12x b
经过点 B ,且与二次函数 A (﹣ 1,4),B (1,
石景山) 已知关于 x 的方程 mx 2
3m 1 x 2m 2 0 .
( 1)求证:无论 m 取任何实数时,方程恒有实数根;
( 2)若关于 x 的二次函数 y mx 2
3m 1 x 2m 2 的图象经过坐标原点,得到抛 物线
C 1 .将抛物线 C 1向下平移后经过点 A 0, 2 进而得到新的抛物线 C 2,直线 l 经过 点 A 和点 B 2,0 ,求直线 l 和抛物线 C 2 的解析式;
3)在直线 l 下方的抛物线 C 2上有一点 C ,求点 C 到直线 l 的距离的最大值.
0 1 m n
∴ m=-2,n=3 ∴二次函数的表达式为 y
x 2
2x
1
2) y
x b 经过点 B 1 ∴b 2
画出图形 设M (m, 1m
12),则
N m,
2
1 1 2m 3 设MN m 2
2m 3 ( 21m 12)
3 m
2 34)2 49 ∴ MN 的最大值为
16
∴ MN ∴ MN
(m
2
49 16 m 0
时,
3m 2
1 4m 2m
2
9m
2
6m 1 2
8m 2
8m
2
m 2m 1
m 2 12
m 2
1 0,
3分
2
综上所述:无论 m 取任何实数时,方程恒有实数
根;
2)∵ 二次函数 y mx 2
(3m
1)x 2m 2 的图象经过坐标原点
2m 20
m 1⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分
抛物线
C 1 的解析式为: y
2 x 2x
抛物线 C 2 的解析式为:
y
2
x 2x 2
设直线 l 所在函数解析式
为:
y
kx b
将 A 和点 B 2,0 代入 y kx b
∴直线 l 所在函数解析式为: y
2⋯⋯⋯
3)据题意:过点 C 作 CE x 轴交 AB 于 E ,
DEC OAB 45 ,则 CD
2EC
2
2 , E t, t 2 , 0 t
3 t 2 3t 可证

C
t,t 2
2t 5分 ∴ EC
y E
y C
2
6分
∵0
3
2
3
时, 2 时,
EC max 9
max
4 ∵ CD 随 EC 增大而增
大,
∴当 t
∴ CD
max 89
2 为所求 .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分。

相关文档
最新文档