精选牛吃草问题(含例题、答案、讲解)

合集下载

小学奥数之牛吃草问题(附含答案解析)

小学奥数之牛吃草问题(附含答案解析)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

牛吃草问题例题详解(含练习和答案)2017-04

牛吃草问题例题详解(含练习和答案)2017-04

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

牛吃草问题含例题答案讲解

牛吃草问题含例题答案讲解

小学数学牛吃草问题知识点总结: 牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

精选牛吃草问题(含例题、答案、讲解)

精选牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?(200-150)÷(20-10)解:假设1头牛1天吃的草的数量是1份草每天的生长量:=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?(180-150)÷(20-10)解:假设1头牛1天吃的草的数量是1份草每天的生长量:=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

牛吃草问题含例题答案解析讲解

牛吃草问题含例题答案解析讲解

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场;是17世纪英国伟大的科学家牛顿提出来的..典型牛吃草问题的条件是假设草的生长速度固定不变;不同头数的牛吃光同一片草地所需的天数各不相同;求若干头牛吃这片草地可以吃多少天..由于吃的天数不同;草又是天天在生长的;所以草的存量随牛吃的天数不断地变化..小升初冲刺第2讲牛吃草问题基本公式:1 设定一头牛一天吃草量为“1”2草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;3原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4吃的天数=原有草量÷牛头数-草的生长速度;5牛头数=原有草量÷吃的天数+草的生长速度..例1、牧场上长满了牧草;牧草每天匀速生长;这片牧草可供10头牛吃20天;可供15头牛吃10天..问:这片牧草可供25头牛吃多少天解:假设1头牛1天吃的草的数量是1份草每天的生长量:200-150÷20-10=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷25-5=5天自主训练牧场上长满了青草;而且每天还在匀速生长;这片牧场上的草可供9头牛吃20天;可供15头牛吃10天;如果要供18头牛吃;可吃几天解:假设1头牛1天吃的草的数量是1份草每天的生长量:180-150÷20-10=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷18-3=8天例2、由于天气逐渐冷起来;牧场上的草不仅不长大;反而以固定速度在减少..已知某块草地上的草可供20头牛吃5天;或可供15头牛吃6天..照此计算;可供多少头牛吃10天解:假设1头牛1天吃的草的数量是1份草每天的减少量:100-90÷6-5=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量 150-10×10÷10=5头自主训练由于天气逐渐寒冷;牧场上的牧草每天以均匀的速度减少;经测算;牧场上的草可供30头牛吃8天;可供25头牛吃9天;那么可供21头牛吃几天解:假设1头牛1天吃的草的数量是1份草每天的减少量:240-225÷9-8=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷21+15=10天例3、自动扶梯以均匀速度由下往上行驶着;两位性急的孩子要从扶梯上楼..已知男孩每分钟走20级梯级;女孩每分钟走15级梯级;结果男孩用了5分钟到达楼上;女孩用了6分钟到达楼上..问:该扶梯共有多少级男孩:20×5 =100级自动扶梯的级数-5分钟减少的级数女孩;15×6=90级自动扶梯的级数-6分钟减少的级数每分钟减少的级数= 20×5-15×6 ÷6-5=10级自动扶梯的级数= 20×5+5×10=150级自主训练两个顽皮孩子逆着自动扶梯行驶的方向行走;男孩每秒可走3级阶梯;女孩每秒可走2级阶梯;结果从扶梯的一端到达另一端男孩走了100秒;女孩走了300秒..问该扶梯共有多少级3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:2×300-3×100÷300-100=1.5级自动扶梯级数= 3×100-100×1.5=150级1. 有一片牧场;操每天都在匀速生长每天的增长量相等;如果放牧24头牛;则6天吃完草;如果放牧21头牛;则8天吃完草;设每头牛每天的吃草量相等;问:要使草永远吃不完;最多只能放牧几头牛假设1头1天吃1个单位246=144218=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2;有一片草地;草每天生长的速度相同..这片草地可供5头牛吃40天;或6供头牛吃30天..如果4头牛吃了30天后;又增加2头牛一起吃;这片草地还可以再吃几天假设1头1天吃1个单位540=200;630=180200-180=20每天长的草:20/40-30=2原有草:200-240=120430=120 ;302=60 60/4=15天3;假设地球上新增长资源的增长速度是一定的;照此推算;地球上的资源可供110亿人生活90年;或可供90亿人生活210年;为了人类不断繁衍;那么地球最多可以养活多少亿人假设1亿人头1天吃1个单位11090=9900;90210=1890018900-9900=90009000/210-90=754;一游乐场在开门前有100人排队等候;开门后每分钟来的游客是相同的;一个入口处每分钟可以放入10名游客;如果开放2个入口处20分钟就没人排队;现开放4个入口处;那么开门后多少分钟后没人排队22010=400400-100=300300/20=15100+154=160160/410=41因为草量=原有草量+新长出的草量;而且草量是均匀增长的..所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量; 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度较多天数时的时间..同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量;即为:吃的较少天数时的总草量=草地原有草量+草的生长速度较少天数时的时间..两个一做差;式子中的“原有草量”就被减掉了;等号的左边就是两次情况之下总草量的差;右边等于草的生长速度两次情况下的时间差;所以直接把时间差除到左边去;就得到了草的生长速度了..2牛吃的草的总量包括两个方面;一是原来草地上的草;而是新增长出来的草..所以“牛头数×吃的天数”表示的就是牛一共吃了多少草;牛在这段时间把草吃干净了;所以牛一共吃了多少草就也表示草的总量..当然草的总量减去新增长出来的草的数量;就剩下原来草地上面草的数量了..牛吃草问题概念及公式问题又称为消长问题或牛顿牧场;是17世纪英国伟大的科学家牛顿提出来的..典型牛吃草问题的条件是假设草的生长速度固定不变;不同头数的牛吃光同一片草地所需的天数各不相同;求若干头牛吃这片草地可以吃多少天..由于吃的天数不同;草又是天天在生长的;所以草的存量随牛吃的天数不断地变化..解决牛吃草问题常用到四个基本公式;分别是︰1 设定一头牛一天吃草量为“1”1草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷吃的较多天数-吃的较少天数;2原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 3吃的天数=原有草量÷牛头数-草的生长速度;4牛头数=原有草量÷吃的天数+草的生长速度..这四个公式是解决消长问题的基础..由于牛在吃草的过程中;草是不断生长的;所以解决消长问题的重点是要想办法从变化中找到不变量..牧场上原有的草是不变的;新长的草虽然在变化;但由于是匀速生长;所以每天新长出的草量应该是不变的..正是由于这个不变量;才能够导出上面的四个基本公式..牛吃草问题经常给出不同头数的牛吃同一片次的草;这块地既有原有的草;又有每天新长出的草..由于吃草的牛头数不同;求若干头牛吃的这片地的草可以吃多少天..解题关键是弄清楚已知条件;进行对比分析;从而求出每日新长草的数量;再求出草地里原有草的数量;进而解答题总所求的问题..这类问题的基本数量关系是:1.牛的头数×吃草较多的天数-牛头数×吃草较少的天数÷吃的较多的天数-吃的较少的天数=草地每天新长草的量..2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草..解多块草地的方法多块草地的“牛吃草”问题;一般情况下找多块草地的最小公倍数;这样可以减少运算难度;但如果数据较大时;我们一般把面积统一为“1”相对简单些..“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐华图名师姚璐例1有一块牧场;可供10头牛吃20天;15头牛吃1 0天;则它可供25头牛吃多少天A.3B.4C.5D.6华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天;这片草场可供25头牛吃Y天根据核心公式代入200-150/20-10=5 1020-520=100 100/25-5=5天璐例2有一块牧场;可供10头牛吃20天;15头牛吃10天;则它可供多少头牛吃4天A.20B.25C.30D.35华图名师姚璐答案C华图名师姚璐解析设该牧场每天长草量恰可供X头牛吃一天;根据核心公式代入20×10-15×10=5 10×20-5×20=100 100÷4+5=30头华图名师姚璐例3如果22头牛吃33公亩牧场的草;54天后可以吃尽;17头牛吃28公亩牧场的草;84天可以吃尽;那么要在24天内吃尽40公亩牧场的草;需要多少头牛A.50B.46C.38D.35华图名师姚璐答案D华图名师姚璐解析设每公亩牧场每天新长出来的草可供X头牛吃1天;每公亩草场原有牧草量为Y ;24天内吃尽40公亩牧场的草;需要Z头牛根据核心公式:;代入;因此 ;选择D华图名师姚璐注释这里面牧场的面积发生变化;所以每天长出的草量不再是常量..下面我们来看一下上述“牛吃草问题”解题方法;在真题中的应用..华图名师姚璐例4有一个灌溉用的中转水池;一直开着进水管往里灌水;一段时间后;用2台抽水机排水;则用40分钟能排完;如果用4台同样的抽水机排水;则用16分钟排完..问如果计划用10分钟将水排完;需要多少台抽水机广东2006上A.5台B.6台C.7台D.8台华图名师姚璐答案B华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量;共需Y台抽水机有恒等式:解 ;得 ;代入恒等式华图名师姚璐例5有一水池;池底有泉水不断涌出;要想把水池的水抽干;10台抽水机需抽8小时;8台抽水机需抽12小时;如果用6台抽水机;那么需抽多少小时北京社招2006A.16B.20C.24D.28华图名师姚璐答案C华图名师姚璐解析设每分钟流入的水量相当于X台抽水机的排水量;共需Y小时有恒等式:解 ;得 ;代入恒等式华图名师姚璐例6林子里有猴子喜欢吃的野果;23只猴子可在9周内吃光;21只猴子可在12周内吃光;问如果有33只猴子一起吃;则需要几周吃光假定野果生长的速度不变浙江2007A.2周B.3周C.4周D.5周华图名师姚璐答案C华图名师姚璐解析设每天新生长的野果足够X只猴子吃;33只猴子共需Y周吃完有恒等式:解 ;得 ;代入恒等式华图名师姚璐例7物美超市的收银台平均每小时有60名顾客前来排队付款;每一个收银台每小时能应付80名顾客付款..某天某时刻;超市如果只开设一个收银台;付款开始4小时就没有顾客排队了;问如果当时开设两个收银台;则付款开始几小时就没有顾客排队了浙江20 06A.2小时B.1.8小时C.1.6小时D.0.8小时华图名师姚璐答案D华图名师姚璐解析设共需X小时就无人排队了..例题:1、旅客在车站候车室等车;并且排队的乘客按一定速度增加;检查速度也一定;当车站放一个检票口;需用半小时把所有乘客解决完毕;当开放2个检票口时;只要10分钟就把所有乘客OK了求增加人数的速度还有原来的人数设一个检票口一分钟一个人1个检票口30分钟30个人2个检票口10分钟20个人30-20÷30-10=0.5个人原有1×30-30×0.5=15人或2×10-10×0.5=15人2、有三块草地;面积分别是5;15;24亩..草地上的草一样厚;而且长得一样快..第一块草地可供10头牛吃30天;第二块草地可供28头牛吃45天;问第三块地可供多少头牛吃80天这是一道牛吃草问题;是比较复杂的牛吃草问题..把每头牛每天吃的草看作1份..因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天;每亩面积长84-60=24份所以;每亩面积每天长24÷15=1.6份所以;每亩原有草量60-30×1.6=12份第三块地面积是24亩;所以每天要长1.6×24=38.4份;原有草就有24×12=288份新生长的每天就要用38.4头牛去吃;其余的牛每天去吃原有的草;那么原有的草就要够吃80天;因此288÷80=3.6头牛所以;一共需要38.4+3.6=42头牛来吃..两种解法:解法一:设每头牛每天的吃草量为1;则每亩30天的总草量为:1030/5=60;每亩45天的总草量为:2845/15=84那么每亩每天的新生长草量为84 -60/45-30=1.6每亩原有草量为60-1.630=12;那么24亩原有草量为1 224=288;24亩80天新长草量为241.680=3072;24亩80天共有草量3 072+288=3360;所有3360/80=42头解法二:10头牛30天吃5亩可推出30头牛30天吃15亩;根据28头牛4 5天吃15亩;可以推出15亩每天新长草量28×45-30×30/45-30=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24头2 4亩需牛:180/80+2424/15=42头。

牛吃草问题经典例题10道

牛吃草问题经典例题10道

牛吃草问题经典例题10道牛吃草问题常被认为是经典的运筹学题目,在这里我们汇总了10道牛吃草问题的理论例题,以帮助大家学习这些问题的解决方法,加深对运筹学的理解。

例题一:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,那么它最少要移动几次,才能将草地吃完?解答:首先,要吃完草地,牛至少要移动L/a次,也就是说,牛要吃完草地,它最少要移动L/a次,例如当L=12,a=4时,牛需要移动3次才能吃完草地。

例题二:有一片长度为L的草地,有两头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:这里我们可以使用二分法来求解,即每次移动时,两头牛分别前进a/2的距离,最后再合起来这样移动L/a次便可将草地吃完,即当L=12,a=4时,两头牛最少要移动6次,分别前进2次,才能将草地吃完。

例题三:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,那么它们最少要移动几次,才能将草地吃完?解答:牛的数量与它们吃掉草地的最少次数没有关系,只要它们每次移动距离等于a,那么无论有多少头牛,它们最少要移动L/a次,例如当L=12,a=4时,无论有几头牛,它们最少要移动3次才能吃完草地。

例题四:有一片长度为L的草地,有若干头牛,它们每移动一次可以吃掉草地的长度为a的草,而每头牛的移动速度不同,那么它们最少要移动几次,才能将草地吃完?解答:考虑到牛的不同移动速度,它们吃完草地的最少次数取决于最慢移动的牛,即其吃掉草地的总时间就等于最慢移动的牛移动的时间,也就是说最慢移动的牛最少要移动L/a次才能吃完草地,例如当L=12,a=4时,无论有几头牛,最慢的牛最少要移动3次才能将草地吃完。

例题五:有一片长度为L的草地,有一头牛,它每移动一次可以吃掉草地的长度为a的草,但是牛有一定的消耗,每移动一次需要消耗b的能量,它有总共c的能量,那么它最多可以移动几次?解答:由于牛有一定的消耗,所以它最多可以移动c/b次,例如当L=12,a=4,b=1,c=8时,牛最多可以移动8次。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

六年级数学下册《牛吃草问题》例题+答案

六年级数学下册《牛吃草问题》例题+答案
注水的速度:(15×3-6×6)÷(15-6)=1(份/分钟)
原有水量:15×3-15×1=30(份)
需要的时间:30÷(4-1)=10(分钟)
答:10分钟后可以将水排光。
解析∶设1头牛1天吃草1份
每天固定减少的草量:(20×5-15×6)÷(6-5)=10(份/天)
原有草总量=牛吃草量+固定减少草量
原有草量:20×5+10×5=150(份)
牛的头数:150÷10-10=5(头)
答:这块草地可供5头牛吃10天。
4.牧场上有一片青草,每天匀速生长,已知 15 头牛 10 天可以吃完这片青草,25 头牛 5 天可吃完这片青草,如果有 30 头牛,那么几天可吃完这片青草?
六年级数学下册
《牛吃草问题》例题+答案,练习掌握
牛吃草问题的重要公式
前提条件∶每头牛单位时间内吃的草量是相同的四个公式∶
①草长速度=总草量差÷总时间差
②原草量数=总草量数-草长速度×吃草时间
③吃草时间=原草量数÷(牛的总数-吃新草牛数)
④牛的总数=原草量数÷吃草时间+吃新草牛数
1.若这片草地,草匀速生长。该草地可供14头牛吃30天或供20头牛吃20天。那么该片草地每天新长的草可供2头牛吃多少天?
5.小诗博士的实验室内有一个水槽,水槽有1根注水管和6根排水管。打开注水管后,水不停地匀速流入水槽。若干分钟后,小诗博士想把水排出。如果将排水管全部打开,6分钟可以将水排光如果只打开3根排水管,15分钟可以将水排光。如果小诗博士同时打开4根排水管,多少分钟后可以将水排光?
解析∶假设一根排水管一分钟排出1份水
解析∶假设1头牛1天吃1份草;
那么,14头牛30天吃14×1×30=420(份)
20头牛20天吃20×1×20=400(份)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学牛吃草问题知识点总结:牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份……原草量+20天的生长量原草量:200-20×5=100 或150-10×5=100份15×10=150份……原草量+10天的生长量 100÷(25-5)=5天[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)÷(20-10)=3份9×20=180份……原草量+20天的生长量原草量:180-20×3=120份或150-10×3=120份15×10=150份……原草量+10天的生长量 120÷(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(100-90)÷(6-5)=10份20×5=100份……原草量-5天的减少量原草量:100+5×10=150 或90+6×10=150份15×6=90份……原草量-6天的减少量(150-10×10)÷10=5头[自主训练]由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?解:假设1头牛1天吃的草的数量是1份草每天的减少量:(240-225)÷(9-8)=15份30×8=240份……原草量-8天的减少量原草量:240+8×15=360份或220+9×15=360份25×9=225份……原草量-9天的减少量 360÷(21+15)=10天例3、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

问:该扶梯共有多少级?男孩:20×5 =100(级)自动扶梯的级数-5分钟减少的级数女孩;15×6=90(级)自动扶梯的级数-6分钟减少的级数每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级)自动扶梯的级数= 20×5+5×10=150(级)[自主训练]两个顽皮孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问该扶梯共有多少级?3×100=300自动扶梯级数+100秒新增的级数2×300=600自动扶梯级数+300秒新增的级数每秒新增的级数:(2×300-3×100)÷(300-100)=1.5(级)自动扶梯级数= 3×100-100×1.5=150(级)1. 有一片牧场,操每天都在匀速生长(每天的增长量相等),如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草,设每头牛每天的吃草量相等,问:要使草永远吃不完,最多只能放牧几头牛?假设1头1天吃1个单位24*6=14421*8=168168-144=24每天长的草可供24/2=12头牛吃最多只能放12头牛2,有一片草地,草每天生长的速度相同。

这片草地可供5头牛吃40天,或6供头牛吃30天。

如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?假设1头1天吃1个单位5*40=200;6*30=180200-180=20每天长的草:20/(40-30)=2原有草:200-2*40=1204*30=120 ,30*2=60 60/4=15天3,假设地球上新增长资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为了人类不断繁衍,那么地球最多可以养活多少亿人?假设1亿人头1天吃1个单位110*90=9900;90*210=1890018900-9900=90009000/(210-90)=754,一游乐场在开门前有100人排队等候,开门后每分钟来的游客是相同的,一个入口处每分钟可以放入10名游客,如果开放2个入口处20分钟就没人排队,现开放4个入口处,那么开门后多少分钟后没人排队?2*20*10=400400-100=300300/20=15100+15*4=160160/(4*10)=4(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。

所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量,即为:吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。

同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度*较少天数时的时间。

两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度*两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了。

(2)牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草。

所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量。

当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了。

牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰1) 设定一头牛一天吃草量为“1”1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`3)吃的天数=原有草量÷(牛头数-草的生长速度);4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。

“牛吃草”问题分析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐【华图名师姚璐例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【华图名师姚璐答案】C【华图名师姚璐解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天根据核心公式代入(200-150)/(20-10)=5 10*20-5*20=100 100/(25-5)=5(天)璐例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【华图名师姚璐答案】C【华图名师姚璐解析】设该牧场每天长草量恰可供X头牛吃一天,根据核心公式代入(20×10-15×10)=5 10×20-5×20=100 100÷4+5=30(头)【华图名师姚璐例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【华图名师姚璐答案】D【华图名师姚璐解析】设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,24天内吃尽40公亩牧场的草,需要Z头牛根据核心公式:,代入,因此,选择D【华图名师姚璐注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。

下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。

【华图名师姚璐例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。

问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】A.5台B.6台C.7台D.8台【华图名师姚璐答案】B【华图名师姚璐解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机有恒等式:解,得,代入恒等式【华图名师姚璐例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?【北京社招2006】A.16B.20C.24D.28【华图名师姚璐答案】C【华图名师姚璐解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时有恒等式:解,得,代入恒等式【华图名师姚璐例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)【浙江2007】A.2周B.3周C.4周D.5周【华图名师姚璐答案】C【华图名师姚璐解析】设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完有恒等式:解,得,代入恒等式【华图名师姚璐例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

相关文档
最新文档