氧化还原反应和电极电势

合集下载

氧化还原反应和电极电势

氧化还原反应和电极电势

氧化还原反应和电极电势知识点一:氧化还原反应一、基本概念:1、氧化值(氧化数)和原子价(化学价)氧化数:假定把化合物中成键的电子全部归于电负性大的原子后,原子所带的形式电荷数,就叫该元素的氧化数。

它与离子带的电荷表示不一样。

Zn 2+→Zn +2(与化合价表示法类似)。

氧化数与化合价含义不同。

氧化数有许多人为的规定: ①单质中,元素的氧化值为零。

②在单原子离子中,元素的氧化值等于该离子所带的电荷数 。

③在大多数化合物中,氢的氧化值为 +1;只有在金属氢化物中氢的氧化值为 -1。

④通常,氧在化合物中的氧化值为-2;但是在过氧化物中,氧的氧化值为-1,在氟的氧化物中,如OF 2和O 2F 2中,氧的氧化值分别为+2和+1。

⑤中性分子中,各元素原子氧化值的代数和为零;复杂离子的电荷等于各元素氧化值的代数和。

例:56 H I O I 7+的氧化值是;246S O S 2.5-+的氧化值是;氧化数与化合价的区别:a.含义不同,氧化数仅表示了元素原子在化合物中的化合状态;而化合价则表示元素的化合能力(原子个数比)。

b.由于化合价表示在离子化合物中原子得失电子数,共价化合物中共用电子对数,∴它只能是整数,不能是分数;而氧化数实质上是化合物中原子所带有的形式电荷数(表观电荷数),∴它可以是整数,也可以是分数。

2、氧化还原反应在一个反应中,氧化数升高的过程称为氧化;氧化数降低的过程称为还原。

在化学反应过程中,元素的原子或离子在反应前后氧化数发生了变化的一类反应称为氧化还原反应。

在氧化还原反应中,氧化数降低的物质称氧化剂;氧化数升高的物质称还原剂。

3、氧化还原电对在氧化还原反应中,氧化剂得电子氧化数降低,就变成了氧化数低的还原剂;同样,还原剂失电子后变成了氧化数高的氧化剂,这样就构成了两个共轭的氧化还原电对。

氧化还原反应是两个共轭氧化还原电对共同作用的结果。

如: Cu 2++ Zn Cu + Zn 2+. 氧化剂1 还原剂1 还原剂2 氧化剂2电对中氧化剂氧化能力越强,其共轭还原剂的还原能力越弱;还原剂还原能力越强,其共轭氧化剂的氧化能力越弱。

电极电势与氧化还原反应的关系

电极电势与氧化还原反应的关系

电极电势与氧化还原反应的关系1. 电极电势的概念电极电势是指电化学反应中电子在电极上移动所产生的电场势能。

它是一个重要的物理量,可以用来描述化学反应的进行方向和速率。

2. 电极电势的测定电极电势可以通过电池或电化学电池进行测定。

在电池的正极和负极之间产生的电势差就是电极电势。

3. 电极电势与氧化还原反应的关系氧化还原反应指的是物质失去电子(氧化)和物质获得电子(还原)的过程。

这些过程会伴随着电化学反应产生电势。

不同的氧化还原反应具有不同的电极电势。

4. 电极电势的计算根据化学反应生成或消耗的电子数目,可以利用法拉第定律和纳迪尔方程来计算电极电势。

这些定律和方程可以帮助我们理解电化学反应中电势的变化。

5. 电极电势与标准电极电势标准电极电势是指在标准状态下(通常指气压为 1 atm,溶液浓度为1 M)测定的电极电势。

它是一种用来比较不同氧化还原反应电势大小的物理量,常用标准氢电极作为参比电极。

6. 电极电势与电化学反应动力学电极电势可以影响氧化还原反应的进行速率。

通常情况下,电极电势越大,氧化还原反应越容易进行,速率越快。

7. 应用电极电势的研究在多个领域有着广泛的应用,例如在燃料电池、电化学传感器、电镀和金属腐蚀等方面都有重要的作用。

通过对电极电势的理解和控制,可以提高这些应用的效率和性能。

总结:电极电势作为电化学领域中的重要物理量,与氧化还原反应有着密切的关系。

通过对电极电势的测定、计算和应用,可以深入理解和控制氧化还原反应的进行和速率,从而推动电化学领域的发展,并促进相关应用的进步和改进。

8. 电极电势与溶液中的化学平衡在电化学反应中,溶液中的化学平衡也会影响电极电势的大小。

根据化学平衡原理,不同物质的浓度对于电极电势也会产生影响。

在有些氧化还原反应中,溶液中的氧化物或还原物质的浓度变化会导致电极电势的变化。

在研究电极电势的时候,需要考虑到溶液中的化学平衡对电极电势的影响,这可以通过应用“Nernst方程”来描述。

化学物质的氧化还原反应与电极电势

化学物质的氧化还原反应与电极电势

化学物质的氧化还原反应与电极电势在化学反应中,氧化还原反应是一种非常重要的反应类型。

氧化还原反应是指物质中某种原子失去电子,被氧化为更高氧化态,同时另一种原子获得电子,被还原为更低氧化态的反应。

这个反应的基础是电子的转移,因此电极电势的概念在氧化还原反应中扮演了关键的角色。

1. 氧化还原反应的基本概念在氧化还原反应中,发生氧化的物质称为氧化剂,它接受其他物质的电子,并自身被还原。

而发生还原的物质称为还原剂,它将电子转移给其他物质,自身被氧化。

通过电子的流动,原子的氧化态和还原态发生了变化,反应造成了原子之间电荷的重新分配。

2. 电极电势的基本概念电势差是一个用来衡量电场强度的物理量,电势差的存在使得电荷能够在电场中移动。

在氧化还原反应中,电极电势是指某一电极的电位与标准氢电极之间的差异。

标准氢电极被定义为电极电势为0V的参照物。

3. 电极电势的测量方法为了测量电极电势,可以使用电化学电池,其中包括一个被测电极和一个参比电极。

常用的参比电极是标准氢电极,由于标准氢电极的电极电势被定义为0V,因此可以用来测量其他电极的电势差。

在实际测量中,常使用电位计来测量电势差。

4. Nernst方程Nernst方程是描述电极电势与电子浓度之间关系的方程。

根据Nernst方程,电极电势与反应物浓度之间存在着明确的关系。

通过计算Nernst方程中的各项参数,可以得出电极电势的数值。

5. 影响电极电势的因素电极电势不仅与反应物浓度有关,还受到温度、压力和电解质浓度等因素的影响。

在控制这些因素的条件下,可以通过调整反应物的浓度来改变电极电势的数值。

6. 应用举例氧化还原反应和电极电势的研究在多个领域具有广泛的应用。

例如,在电化学电池中,电极电势的变化可以产生电能;在腐蚀领域,电极电势的测量可以帮助了解金属的腐蚀情况;在生物体内,氧化还原反应和电极电势的平衡对维持正常的生理功能至关重要。

总结:氧化还原反应是化学反应中的重要类型,涉及到电子的转移。

氧化还原反应与电极电势

氧化还原反应与电极电势

2Fe2++Sn4+
22
第三节 电极电势
一、电极电势的产生 把金属插入含有该金属离子的溶液中,当金 属的溶解速率与金属离子的沉积速率相等时, 建立了如下平衡:
M(s)
2019/1/7
溶解 沉积
M (aq)+ne23
n+
电极表面双电层(doublecharge layer)结构 影响电极电势的因素: 氧化态还原态得失电子的能力,浓度,温度
2019/1/7
ZnSO4+Cu Zn2+ + Cu
18
Zn + Cu2+
原电池
(-) Zn│ZnSO4(c) ‖CuSO4(c') │Cu (+)
4.原电池组成式书写原则: (1)原电池的负极写在左边,正极写在右边,两电极以盐桥相 连,用“‖”表示,在盐桥两侧是两个电极的电解质溶液。 (2)电极板与电极其余部分(电解质溶液)的界面用 “∣”分开。 同一相中不同物质之间,及电极中其它相界面用“,”分开。 (3)当气体或液体不能直接与普通导线相连时,应以不活泼的 惰性金属(如铂)或石墨作电极板起导电作用。 (4)纯气体、纯液体和固体,如H2(g)、O2(g)、I2(s)、Br2(l), 需紧靠电极板,并注明以何种状态存在。 (5)溶液注明浓度,气体注明分压。标准状态下浓度表示为cθ。 标准状态下的铜锌原电池的电池符号表示为:
在单质或化合物中假设把每个化学键中的电子指定给所连接的两原子中电负性较大的一个原子这样所得的某元素一个原子的电荷数就是该元素的氧化数即氧化数是某元素一个原子的形式荷电数表观荷电数apparentchargenumber这种荷电数由假设把每个化学键中的电子指定给电负性更大的原子而求得

氧化还原反应和电极电势

氧化还原反应和电极电势

常见元素电负性(鲍林标度)
氢 2.1 锂 1.0 铍 1.57 硼 2.04 碳 2.55 氮 3.04 氧 3.44 氟 4.0
钠 0.93 镁 1.31 铝 1.61 硅 1.90 磷 2.19 硫
2.58 氯 3.16
钾 0.82 钙 1.00 锰 1.55 铁 1.83 镍 1.91 铜
1.9 锌 1.65 镓 1.81 锗 2.01 砷 2.18 硒 2.48 溴
2.96

铷 0.82 锶 0.95 银 1.93 碘 2.66 钡 0.89 金
2.54 铅 2.33
一般来说,电负性大于1.8的是非金属元素,
小于1.8的是金属元素,在1.8左右的元素既有金
确定氧化值的方法如下: (1) 在单质中,元素的氧化值为零。 (2) O 元素的氧化值,在正常氧化物中皆为 -2; 但在过氧化物中为 -1;在 OF2 中为 +2。 (3) H 元素在一般化合物中的氧化值为 +1;但 在金属氢化物中为 -1。 (4) 在简单离子中,元素的氧化值等于该元素离 子的电荷数;在复杂离子中,元素的氧化值代数和 等于离子的电荷数。 (5) 分子中所有元素氧化值代数和等于零。
2H+ (aq) 2e H2 (g)
这种产生在 100 kPa H2 饱和了的铂 片与 H+ 活度为1的酸溶液之间的电势 差,称为标准氢电极的电极电势。规 定标准氢电极的电极电势为零:
E (H /H2 ) 0.0000 V
(二) 标准电极电势的测量 (-)标准氢电极 待测标准电极(+)
====
三、氧化还原电对
任何氧化还原反应都是由两个“半反应”组成的,一个是氧化剂被还原的半 反应,一个是还原剂被氧化的半反应。

氧化还原反应和电极电势hwn

氧化还原反应和电极电势hwn


氧化还原反应和电极电势hwn
确定氧化值的规则
(1)单质的氧化值为零。 (2)H在化合物中的氧化值一般是+1,
但在金属氢化物中的氧化值为-1(CaH2) (3)O在化合物中的氧化值一般是-2,
在过氧化物中氧化值为-1(H2O2); 在超氧化物中氧化值为-1/2(KO2); 在OF2中为+2。 (4)卤素在卤化物中的氧化值为-1。 (5)碱金属的氧化值是+1。 (6)碱土金属的氧化值是+2。
CO2 (g) +2H2O (g)
氧的氧化值:0→-2;氧化值降低,发生了还原反应。 碳的氧化值:-4→+4;氧化值升高,发生了氧化反应。
氧化值降低的物质称为氧化剂(oxidant), 氧化值升高的物质称为还原剂(reductant)
氧化还原反应和电极电势hwn
失电子,氧化值升高,发生氧化反应,做还原剂 得电子,氧化值降低,发生还原反应,做氧化剂
原电池的特点
定义:将氧化还原反应的化学能转变为电能的装置。 电池反应:Zn +Cu2+ Cu+Zn2+ 组成:原电池由两个 半电电极池 组成。
负极:Zn
正极:Cu
电极反应:Zn- 2e- →Zn2+ 电极反应: Cu2++2e-→Cu
氧化反应
还原反应
还原剂
氧化剂
氧化还原反应和电极电势hwn
二、电池的书写方式
③注明物质状态:溶液注明浓度;气体注明分压。 (1mol/L与一个标准大气压可不标注)
④如果电极中没有电极导体,应以不活泼的惰性导 体(如铂或石墨)做极板。
溶液紧靠盐桥书写。
氧化还原反应和电极电势hwn
例8.1:将下列氧化还原反应设计成原电池,写出电极 反应及电池符号。(1)Cl2 + 2I- = 2Cl- + I2

化学反应的氧化还原反应与电极电势

化学反应的氧化还原反应与电极电势

化学反应的氧化还原反应与电极电势化学反应是物质之间发生相互转化的过程,而氧化还原反应则是其中一种最常见且重要的反应类型。

氧化还原反应是指物质中的原子、离子或分子失去或获得电子的过程。

在氧化还原反应中,物质可以被氧化剂接受电子而被氧化,同时也可以作为还原剂给予电子而被还原。

在这种反应中,电子的转移导致了反应的进行。

在氧化还原反应中,电极电势的概念十分重要。

电极电势是指在电池中,电极上电子供体和电子受体之间转移电子的能力。

由于电子流是从电子供体流向电子受体,因此电子供体在电极上为负电势,而电子受体在电极上为正电势。

电极电势的差异驱动着氧化还原反应的进行。

氧化还原反应中的电极分为两类:氧化电极和还原电极。

氧化电极是指在反应过程中发生氧化反应的电极,而还原电极则是指发生还原反应的电极。

在氧化电极上,物质失去电子并被氧化,而在还原电极上,物质获得电子并被还原。

电极电势的测量往往以标准氢电极为参照。

标准氢电极的电势被定义为零电势,其他电极的电势则相对于标准氢电极来进行测量。

标准氢电极由酸性溶液中的氢气和可溶于溶液中的氯化铂电极构成。

该电极下的氧化还原反应为:2H⁺ + 2e⁻ → H₂其中,酸性溶液中的氢离子被还原成氢气。

标准氢电极被用作电势参照是因为其电位极其稳定,并且在实验中易于操作。

在氧化还原反应中,电极电势的差异决定着反应的进行方向。

如果两个电极的电势差大于零,即氧化电极的电势高于还原电极的电势,那么反应将自发地进行。

反之,如果两个电极的电势差小于零,则反应不会自发地进行。

氧化还原反应的方向也可以通过研究标准电势来预测。

电极电势可以通过测量电池中两个电极的电势差来获得。

标准电势是在标准状态下测量得到的,与物质的浓度、温度等因素无关。

标准电势可以用于判断不同氧化还原对的强弱关系。

根据标准电势,可以把氧化还原反应分为两类:正电势反应和负电势反应。

正电势反应是指具有正标准电势的氧化还原对,其电势差大于零,反应自发进行。

氧化还原反应与电极电势

氧化还原反应与电极电势

氧化还原反应与电极电势
氧化还原反应与电极电势是一种国际公认的形式,用来描述电池的工作原理和发电的
过程,可以更加清楚地了解电池电极间的电子传递过程。

氧化还原反应是一种化学过程,它描述了一种元素通过氧化过程将另一种元素转化为
氧化物的反应过程。

它也是电池有效发电的关键,使得电极区域中的元素生成和分解氧化物。

电极上的氧化反应在电极电势的作用下发生,该电位是由电极的外界条件决定的,如
溶液的离子浓度、电极表面的激活性など。

电极电势是一个对称性参数,描述了电极之间的电势差异,是极细胞发生氧化还原反
应的基础。

不同类型的电极电势会带有不同的符号,表述同一种离子在两种不同电极间的
电势不平衡。

通常来说,负载氧化还原反应一般涉及正负两股电流,正电极上会产生氧化
反应,而负电极上则会发生还原反应。

电极电势的增加会促使电极间的氧化还原反应的速度加快,而降低会使氧化还原反应
停止,其原理在于—此刻电极间的电位差已经不足以承担有电荷离子穿过时所需的能量需求,使得电荷离子无法迁移,从而影响氧化还原反应的速度。

电极之间的氧化还原反应是电池有效发电的关键,对电极电势的检测和控制至关重要,可以更加准确地进行电极间的电子传递,可以保证极细胞的正常发电,维持池内的压力平衡,最终获得更高的性能和可靠的发电效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断一种物质是做氧化剂还是做还原剂,通 常可以依据以下原则:
(1) 当元素的氧化值为最高值时,它的氧化 值不能再增大,只能做氧化剂。
(2) 当元素的氧化值为最低值时,它的氧化 值不能再减小,只能做还原剂。
(3) 当元素的氧化值为中间值时,它既可以
做氧化剂,也可以做还原剂。
三、氧化还原电对
在氧化还原反应中,氧化剂与它的还原产物 及还原剂与它的氧化产物分别组成一个氧化还原 电对,简称为电对。在氧化还原电对中,组成元 素的氧化值较高的物质称为氧化型物质;组成元 素的氧化值较低的物质称为还原型物质。书写电 对时,氧化型物质写在左侧,还原型物质写在右 侧,中间用斜线“/”隔开。
在等温、等压条E件= 下E+,-系E-统的吉布斯自由能变
等于系统所做的最大非体积功。对电池反应来说, 最大非体积功就是最大电功。
(rG)T , p Wz nEF
(rGm )T , p
nFE
zEF
如果电池反应是在标准状态下进行:
例题
(rGm )T zE F
第三节 电极电势
一、电极电势的产生 二、标准电极电势的测定 三、能斯特方程
分别在两个半电池中发生的氧化反应或还原 反应,称为半电池反应或电极反应。原电池的两 极所发生的总的氧化还原反应称为电池反应。
在原电池中,流出电子的电极称为负极, 负极发生氧化反应;流入电子的电极称为正极, 正极发生还原反应。
原电池中的盐桥是一支倒置的U型管,管 中填满了用饱和 KCl(或NH4NO3) 溶液和琼脂 调制成的胶冻,这样 KCl 溶液不致流出,而 阳离子和阴离子可以自由移动。盐桥的作用是 构成原电池的通路和维持溶液的电中性。
(5) 在中性分子中,所有元素的氧化值代数 和等于零。
例题
二、氧化剂和还原剂
元素的氧化值发生变化的反应称为氧化还 原反应。在氧化还原反应中,元素的氧化值升 高的过程称为氧化;元素的氧化值降低的过程 称为还原。氧化过程和还原过程总是同时发生 的。
在氧化还原反应中,组成元素的氧化值升 高的物质称为还原剂,它的反应产物称为氧化 产物。组成元素的氧化值降低的物质称为氧化 剂,它的反应产物称为还原产物。
二、原电池的表示方法
为简便起见,原电池装置常用原电池符号表示。 书写原电池符号的规则如下:
(1) 在半电池中用“ | ”表示电极导体与电解 质
溶液之间的界面。
(2) 原电池的负极写在左侧,正极写在右侧, 并用“+”、“-”标明正、负极, 把正极与负极 用盐桥连接,盐桥用“ ”表示, 盐桥两侧是两个 电极的电解质溶液。若溶液中存在几种离子时,离 子间用逗号隔开。
确定氧化值的规则如下: (1) 在单质中,元素的氧化值为零。 (2) O 的氧化值一般为 -2;在过氧化物中为 -1;在超氧化物中为 -1/2;在 OF2 中为 +2。
(3) H 的氧化值一般为+1;在金属氢化物中 为 -1。
(4) 在单原子离子中,元素等于离子的电荷数。
在氧化还原电对中,氧化型物质得电子,在 反应中做氧化剂;还原型物质失电子,在反应中 做还原剂。
四、氧化还原反应方程式的配平
(一)氧化值法
在氧化还原反应中,氧化剂中组成元素氧化 值降低的总数等于还原剂中组成元素氧化值升高 的总数。配平步骤如下:
(1)写出反应物和产物的化学式; (2)标出氧化值发生变化的元素的氧化值, 计算出氧化值升高和降低的数值; (3)利用最小公倍数确定氧化剂和还原剂的 化学计量数。 (4)配平氧化值没有变化的元素原子,并将 箭号改成等号。 例题
一、电极电势的产生
把金属插入含有该金属离子的溶液中,当金属
的溶解速率与金属离子的沉积速率相等时,建立了
如下平衡:
M(s)
溶解 沉积
Mz (aq)
ze
达到平衡时,如果金属溶解的趋势大于金属离
子沉积的趋势,金属表面带负电,而金属表面附近
的溶液带正电;若金属离子沉积的趋势大于金属溶
解的趋势,金属表面带正电,而金属表面附近的溶
(二)离子-电子法
先将两个半反应配平, 再将两个半反应合并 为氧化还原反应的方法称为离子-电子法。 离子-
电子法的配平步骤如下:
(1) 写出氧化还原反应的离子方程式; (2) 将氧化还原反应分为两个半反应;
(3) 分别配平两个半反应; (4) 将两个半反应分别乘以相应系数,使其 得、失电子数相等,再将两个半反应合并为一个 配平的氧化还原反应的离子方程式。 最后,在配平的离子方程式中添加不参与反
液带负电。这种产生于金属表面与含有该金属离子
的溶液之间的电势差称为金属电对的电极电势。
金属电极的电极电势主要取决于金属和金属离
子的本性,此外受离子浓度和温度的影响。
金属电极的电极电势
二、标准电极电势的测定
单个电极的电极电势是无法测定的。通常选定 一个电极作比较标准,规定其标准电极电势为零, 确定各个电极对此比较电极的相对电极电势。
第七章 氧化还原反应和电极电势
第一节 第二节 第三节 第四节 第五节
氧化还原反应的基本概念 原电池 电极电势 电极电势的应用 元素标准电极电势图和电势-pH图
第一节 氧化还原反应的基本概念
一、氧化值 二、氧化剂和还原剂 三、氧化还原电对 四、氧化还原反应方程式的配平
一、氧化值
氧化值定义为某元素一个原子的荷电数,这 种荷电数由假设把每个化学键中的电子指定给电 负性较大的原子而求得。
应的阳离子和阴离子,写出相应的化学式。
例题
第二节 原 电 池
一、原电池的组成 二、原电池的表示方法 三、原电池的电动势与反应的摩尔吉布斯
自由能变的关系
一、原电池的组成
利用氧化还原反应将化学能转变为电能的装 置称为原电池。从理论上讲,任何自发进行的氧 化还原反应都可以设计成原电池。
原电池由两个半电池组成。半电池又称电极, 每一个电极都是由电极导体和电解质溶液组成。
====
(3) 溶液要注明浓度,气体要注明分压力 。 (4) 如果电极中没有电极导体,必须外加一 惰性电极导体,惰性电极导体通常是不活泼的金 属(如铂)或石墨。
例题
三、原电池的电动势与反应的摩尔吉布斯 自由能变的关系
在原电池中,当电流趋于零时,正极的电极电 势与负极的电极电势之差称为原电池的电动势。
相关文档
最新文档