2010年中考数学试卷

合集下载

2010年四川省内江市中考数学试卷及答案

2010年四川省内江市中考数学试卷及答案

内江市二O 一O 年高中阶段教育学校招生考试及初中毕业会考数学试卷本试卷分会考卷和加试卷两部分,会考卷1至6页,满分100分;加试卷7至10页,满分60分.全卷满分160分,120分钟完卷.注意事项:1.答题前,考生务必将密封线内的内容填写清楚,将自己的姓名、准考证号、考试科目等涂写在机读卡上.2.答第Ⅰ卷时,每小题选出答案后,用铅笔把机读卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后再选涂其它答案.3.只参加毕业会考的考生只需做会考卷,要参加加升学考试的考生须完成会考卷和加试卷两部分.4.考试结束后,将本试卷和机读卡一并收回.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.12010-的倒数是A .2010- B. 2010 C. 12010D. 12010-2.截止2010年4月20日23时35分,央视“情系玉树,大爱无疆”赈灾晚会共收到社会各界为玉树捐款2 175 000 000元,用科学记数法表示捐款数应为A .102.17510⨯元 B. 92.17510⨯元 C. 821.7510⨯元 D. 7217.510⨯元 3.下列图形是正方体的表面展开图的是4.下列事件中为必然事件的是 A .早晨的太阳一定从东方升起 B.打开数学课本时刚好翻到第60页 C从一定高度落下的图钉,落地后钉尖朝上. D.今年14岁的小云一定是初中学生ABCD5.将一副三角板如图放置,使点A 在D E 上,B C D E ∥,则A F C ∠的度数为A.45°B. 50°C. 60°D. 75° 6.函数1x y x+=中,自变量x 的取值范围是A.1x -≥B. 1x >-C. 1x -≥且0x ≠D. 1x >-且0x ≠ 7.方程()12x x -=的解是A .1x =- B. 2x =- C. 1212x x ==-, D.1212x x =-=,8.某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x 元,根据题意,下面所列的方程正确的是A .50%80%240x ⨯=· B.()150%80%240x +⨯=·C.24050%80%x ⨯⨯=D. ()150%24080%x+=⨯· 9.学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚B C 剪下A B C △,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那么在图③中剪下A B C △时,应使A B C ∠的度数为A.126°B. 108°C. 100°D. 90°10.在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为 A .14B.13C.12D.3411.如图,反比例函数()0ky x x=>的图象经过矩形O A B C 对角线的交点M ,分别与A B B C 、相交于点.D E 、若四边形O D B E 的面积为6,则k 的值为 A .1 B. 2 C. 3 D. 4① ② ③④12.如图,梯形A B C D 中,A D B C ∥,点E 在B C 上,AE BE =,点F 是C D 的中点,且 A F A B ⊥,若 2.746A D A F A B ===,,,则C E 的长为 A .22 B. 231- C. 2.5 D. 2.3内江市二O 一O 年高中阶段教育学校招生考试及初中毕业会考试卷数学第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷共4页,用钢笔或圆珠笔将答案直接答在试卷上.2.答题前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接填在题中横线上.)13.在一次演讲比赛中,某选手的得分情况如下:87、91、91、93、87、89、96、97,这组数据的中位数是_________. 14.化简:2111x x x x x+++=--_________.15.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.16.如图,圆内接四边形A B C D 是由四个全等的等腰梯形组成,A D 是O ⊙的直径,则B E C ∠为___________度.三、解答题(本大题共5小题,共44分)17.(7分)已知()112cos 451201012.3a b c d π-⎛⎫==+=-=-⎪⎝⎭,°,,(1)请化简这四个数;(2)根据化简结果,列式表示这四个数中“有理数的和”与“无理数的积”的差,然后计算结果.18.(9分)如图,A C D △和B C E △都是等腰直角三角形,90A C D B C E A E ∠=∠=°,交C D 于点F B D ,分别交C E A E 、于点.G H 、试猜测线段AE 和BD 的数量和位置关系,并说明理由.19.(9分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”“为0.5~1小时”部分的扇形统计图的圆心角为______度;(2)本次一共调查了_________名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.20.(9分)为建设“宜居宜业宜游”山水园林式城市,内江市正在对城区沱江河段进行区域性景观打造.如图,某施工单位为测得某河段的宽度,测量员先在河对岸边取一点A,再在河这边沿河边取两点B C、,在点B处测得点A在北偏东30°方向上,在点C处测得点A在西北方向上,量得B C长为200米.请你求出该河段的宽度(结果保留根号).21. (10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?内江市二O一O年高中阶段教育学校招生考试及初中毕业会考试卷数学加试卷(共60分)题号 一二总分 总分人 56 7 得分注意事项:加试卷共4页,请将答案直接写在试卷上.一、选择题(本大题共4小题,每小题6分,共24分.请将最简答案直接填写在题中横线上.) 1.已知2510m m --=,则22125m m m-+=___________.2.下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形共有4个,图2中以格点为顶点的等腰直角三角形共有___________个,图3中以格点为顶点的等腰直角三角形共有___________个,图4中以格点为顶点的等腰直角三角形共有___________个.3.已知非负数a b c ,,满足条件75a b c a +=-=,,设S a b c =++的最大值为m ,最小值为n ,则m n -的值为___________. 4.如图,在A B C △中,A B A C =,点E F 、分别在AB 和A C 上,C E 与BF 相交于点D ,若A E C F D =,为BF 的中点,A E A F :的值为___________.二、解答题(本大题共3个小题,每小题12分,共36分.解答题必须写出必要的文字说明、证明过程或推演步骤.) 5.(12分)阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点()()1122P x y Q x y ,、,的对称中心的坐标为1212.22x x y y ++⎛⎫⎪⎝⎭,观察应用:(1)如图,在平面直角坐标系中,若点()()120123P P -、,的对称中心是点A ,则点A 的坐标为_________;(2)另取两点()()1.62.110.B C --,、,有一电子青蛙从点1P 处开始依次关于点A B C 、、 作循环对称跳动,即第一次跳到点1P 关于点A 的对称点2P 处,接着跳到点2P 关于点B 的对 称点3P 处,第三次再跳到点3P 关于点C 的对称点4P 处,第四次再跳到点4P 关于点A 的对称点5P处,…则点38P P 、的坐标分别为_________、_________. 拓展延伸:(3)求出点2012P 的坐标,并直接写出在x 轴上与点2012P 、点C 构成等腰三角形的点的坐标.6.(12分)如图,在R t A B C △中,90C ∠=°,点E 在斜边AB 上,以AE 为直径的O ⊙与B C 相切于点.D(1)求证:A D 平分.B A C ∠ (2)若3 4.A C A E ==,①求A D 的值;②求图中阴影部分的面积.7.(12分)如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,B C M △与A B C △的面积比不变,试求出这个比值;(3)是否存在使B C M △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.参考答案及评分意见会考卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A 2.B 3.C 4.A 5.D 6.C 7.D 8.B 9.A 10.C 11.B 12.D 二、填空题(本大题共4小题,每小题5分,共20分.请将最后答案直接填在题中横线上.) 13.91 14.1x + 15.7 16.30 三、解答题(本大题共5小题,共44分) 17.解:(1)11()33n -==,22cos 451212b =+=⨯+°21=+,0(2010π)c =-1=,1221d =-=- ····························································································· 4分 (2)a c ,为有理数,b d ,为无理数, ····························································· 5分 31(21)(21)a c bd ∴+-=+-+- ··································································· 6分 =4(21)3--= ··················································································· 7分18.解:猜测 AE BD AE BD =,⊥. ···································································· 2分 理由如下:90A C D B C E ∠=∠= °,AC D D C E BC E D C E ∴∠+∠=∠+∠,即.A C E D C B ∠=∠ ·································· 3分 A C D ∴△和B C E △都是等腰直角三角形.A C C D C E CB ∴==,, ························································································ 4分 AC ED C B ∴△≌△. ····························································································· 5分 AE B D ∴=, ·········································································································· 6分 .C A E C D B ∠=∠ ·································································································· 7分 90AFC D FH D HF AC D ∠=∠∴∠=∠= ,°. ····················································· 8分AE BD ∴⊥.········································································································· 9分 19.解:(1)54 ······································································································ 2分 (2)200 ················································································································ 4分······························································································································ 7分 (3)20005%100⨯=(人) ···································9分20.解:过点A 作A D B C ⊥于点D . ·························1分 据题意,90306045ABC AC D ∠=-=∠=°°°,°. ····2分 45C AD AC D C AD ∴∠=∴∠=∠°,, AD C D ∴=,200.BD BC C D AD ∴=-=- ···································4分 在R t A B D △中,tan A D A B D B D∠=,tan (200)tan 603(200)AD BD ABD AD AD ∴=∠=-=-··°. ··························· 7分3200 3.AD AD ∴+= 2003300100 3.31A D ∴==-+ ············································································ 9分答:该河段的宽度为(3001003-)米.21.解:(1)设应安排x 天进行精加工,y 天进行粗加工, ································· 1分 根据题意得 12515140.x y x y +=⎧⎨+=⎩, ··············································································· 3分 解得48.x y =⎧⎨=⎩,答:应安排4天进行精加工,8天进行粗加工. ······················································ 4分(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m +························································································· 6分 ② 要求在不超过10天的时间内将所有蔬菜加工完,14010515mm-∴+≤ 解得 5m ≤································································· 8分05m ∴<≤又 在一次函数1000140000W m =+中,10000k =>,W ∴随m 的增大而增大,∴当5m =时,5140000145000.W ⨯+=最大=1000 ········································· 9分 ∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元. ······ 10分 加试卷(共60分)一、填空题(本大题共4小题,每小题6分,共24分.请将最简答案直接填在题中横线上.)1.28 2.10,28,50 3.7 4.512+二、解答题(本大题共3个小题,每小题12分,共36分.解答题必须写出必要的文字说明、证明过程或推演步骤.)5.解:(1)(1,1)······························································································ 2分(2)( 5.21.2-,) ································································································ 4分(2,3) ················································································································ 6分(3)1(01)P ,-→2(23)P ,→3( 5.21.2)P -,→4(3.2 1.2)P -,→5( 1.23.2)P -,→6(21)P -,→7(01)P -,→8(23)P ,…∴7P 的坐标和1P 的坐标相同,8P 的坐标和2P 的坐标相同,即坐标以6为周期循环.20126÷= 335…2,2012P ∴的坐标与2P 的坐标相同,为2012(23)P ,; ····················································· 8分 在x 轴上与点2012P 、点C 构成等腰三角形的点的坐标为(32)(20)(3210)(50)---1,0,,,,,,,································································ 12分 6.(1)证明:连接O D ,则O A O D =,D A O O D A ∴∠=∠. ································ 1分 B C 是O ⊙的切线,.O D B C ∴⊥A CBC OD A C ∴ ⊥,∥, ·········································2分.C AD O D A ∴∠=∠D A O C A D A D ∴∠=∠∴,平分.B A C ∠ ······················4分(2)①连结ED ,AE 为直径,90A D E C ∴∠=∠=°.又由(1)知D AO C AD AD E AC D ∠=∠∴,△∽△,·············································· 6分A DA CA E A D ∴=, ········································································································ 7分 34A C A E == ,,23412AD AE AC ∴==⨯=·,1223AD ∴==. ······························································································ 8分 ②在R t A D E △中,233cos 42ADD AE AE ∠===,30D AE ∴∠=°. ···································································································· 9分 120 2.A O D D E ∴∠==°,111 3.222A O D A D E S S AD D E ∴==⨯=△△· ·························································· 10分2120π24π.3603AOD S ⨯=扇形= ··················································································· 11分4π 3.3A O D A O D S S S ∴-=-△阴影扇形= ··································································· 12分 7.解:(1)22223(23)(1)4y m x m x m m x x m x m =--=--=-- ,∴抛物线顶点M 的坐标为(1,4-m ) ································································· 2分 抛物线223(0)y m x m x m m =-->与x 轴交于A B 、两点, ∴当0y =时,2230mx mx m --=,20230.m x x >∴--= ,解得1213x x =-=,,A B ∴、两点的坐标为(10-,)、(30,). ·························································· 4分(2)当0x =时,3y m =-,∴点C 的坐标为(03)m ,-.13(1)366.2A B C S m m m ∴=⨯--⨯-==△ ························································· 5分 过点M 作M D x ⊥轴于点D ,则12O D BD O B O D ==-=,,44.M D m m =-=BC M BD M O BC O C M D S S S S ∴=+-△△△梯形=111()222BD D M O C O M O D O B O C ++-··· =11124(34)133222m m m m ⨯⨯++⨯-⨯⨯=3m. ······································································································· 7分 :1:2.BC M ABC S S ∴=△△ ························································································· 8分(3)存在使B C M △为直角三角形的抛物线.过点C 作C N D M ⊥于点N ,则C M N △为R t △,13C N O D D N O C m ====,, .M N D M D N m ∴=-=22221.CM CN MN m ∴=+=+在R t O B C △中,222299BC OB OC m =+=+,在R t B D M △中,2222416.BM BD DM m =+=+①如果B C M △是R t △,且90B M C ∠=°,那么222CM BM BC +=, 即222141699m m m +++=+, 解得22m =±,20.2m m >∴= ,∴存在抛物线2232222y x x =--使得B C M △是R t △; ··························· 10分②如果B C M △是R t △,且90B C M ∠=°,那么222BC CM BM +=,。

广西来宾市2010年中考数学试卷(含答案)

广西来宾市2010年中考数学试卷(含答案)

2010年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题试题)和第Ⅱ卷(答卷,含解答题)两部分。

第Ⅰ卷共2页,第Ⅱ卷共6页。

考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封。

2.答题前,请考生务必将自己的姓名、准考证号按规定填写在第Ⅱ卷左边的密封线内。

3.填空题和选择题的答案必须填写在第Ⅱ卷中规定的位置,在第Ⅰ卷上作答无效。

一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.计算:2-7=__________.2.命题“如果一个数是偶数,那么这个数能被2整除”的逆命题是__________________________ _________________________________________________. 3.分解因式:x 2-4x +4=____________________. 4.已知|x |=2,则x =______________.5.请写出一个图象通过点(0,1)的一次函数的关系式,你所写的一次函数关系式是__________ ____________________.6.如果一个多边形的内角和等于其外角和,那么这个多边形是______边形. 7.分式方程112-=x x 的解是__________. 8.一元二次方程x 2+x -2=0的解是____________________. 9.如图,已知AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点, 且∠BAC =50°,则∠ACD = __________°.10.如图,已知扇形的圆心角是直角,半径是2,则图中阴影部分的面积是______________.(不要求计算近似值) (第9题图)(第10题图)二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中. 11.水银的密度为13600kg/m 3,这一数字保留两位有效数字的正确记法是A .14000B .1.4×104C .1.4×105D .1.36×10412.右图是由若干个相同的小正方体组合而成的几何体,则这个几何体的俯视图是13.使函数2+=x y 有意义的自变量x 的取值范围是A .x ≥-2B .x >-2C .x ≥2D .x >214.下列运算结果正确的是A .a -(b +c )=a -b +cB .632x x x =⋅ C .()ab a b a a -=-⋅222D .()b a a ab 22=÷-15.已知⊙O 1与⊙O 2相切,⊙O 1的半径为4,圆心距为10,则⊙O 2的半径是A .6B .14C .6或14D .716.在平面直角坐标系中,点A (-2,-1)绕原点O 逆时针旋转180°得到点B ,则点B 的坐标是A .(-1,-2)B .(-2,1)C .(2,-1)D .(2,1)17.如图,已知点D 、E 、F 分别是△ABC 边AB 、AC 、BC 的中点,设△ADE 和△BDF 的周长分别为L 1和L 2,则L 1和L 2的大小关系是 A .L 1=L 2 B .L 1<L 2C .L 1>L 2D .L 1与L 2的大小关系不确定18.将函数y =x 2的图象向左平移1个长度单位所得到的图象对应的函数关系式是A .y =x 2-1B .y =x 2+1C .y =(x -1)2D .y =(x +1)2AB C D(第12题图)(第17题图)2010年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅱ卷一、填空题:请将答案填写在相应题号后的横线上.(每小题3分,共30分)1.________;2._________________________________________________________________; 3.______________; 4._______________; 5._______________; 6._______________; 7.______________; 8._______________; 9._______________; 10.______________.二、选择题:请将正确答案前的字母填写在下表相应题号下的空格中.(每小题3分,共24分)三、解答题:本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.19.(本小题满分5分)计算:()91231-+--π.20.(本小题满分7分)下图是根据上海世博会官方网站公布的世博会自2010年5月1日开展至6月9日共40天,每10天入园参观人数累计所作的折线统计图.(1)这组数据的中位数是__________________________________________; (2)这组数据的极差是____________________________________________;(3)根据上述数据,选取适当的样本预测上海世博会自2010年5月1日开展至2010年10月31日闭展共185天入园参观的总人数(精确到0.1万人).21.(本小题满分8分)根据来宾市统计局2010年公布的数据,2009年底全市普通中小学在校学生共32.02万人,小学在校学生比普通中学在校学生多3.58万人.问2009年底我市普通中学和小学在校学生分别是多少万人?(第20题图)22.(本小题满分8分)已知在Rt △ABC 中,∠C =90°,点E 在边AB 上,且AE =AC ,∠BAC 的平分线AD 与BC 交于点D .(1)根据上述条件,用尺规在图中作出点E 和∠BAC 的平分线AD (不要求写出作法,但要保留作图痕迹);(2)证明:DE ⊥AB .23.(本小题满分8分)儿童活动乐园中的跷跷板AB 的支撑架位于板的中点O 处(如图),一端压下与地面接触于点A ,翘起的板与地面AC 所成的最大角度为15°,为了安全,要求此时翘起一端的端点B 离地面的最大高度是0.8米,最小高度是0.6米,试求出跷跷板的长度L 的取值范围(要求列不等式(组)求解,精确到0.01米).(参考数据:sin15°≈0.259, cos15°≈0.966,tan15°≈0.268)(第23题图)(第22题图)24.(本小题满分8分)已知反比例函数的图象过点(-2,-2).(1)求此反比例函数的关系式;(2)过点M (4,4)分别作x 、y 轴的垂线,垂足分别为A 、B ,这两条垂线与x 、y 轴围成一个正方形OAMB (如图),用列表法写出在这个正方形内(包括正方形的边和内部)且位于第一象限,横、纵坐标都是整数的点的坐标;并求在这些点中任取一点,该点恰好在所求反比例函数图象上的概率P .(第24题图)(1)试用t表示点N的坐标,并指出t的取值范围;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)是否存在某个时刻t,使得点O、N、M三点同在一条直线上?若存在,则求出t的值;若不存在,请说明理由.(第25题图)如图,在矩形ABCD (AB <AD )中,将△ABE 沿AE 对折,使AB 边落在对角线AC 上,点B 的对应点为F ,同时将△CEG 沿EG 对折,使CE 边落在EF 所在直线上,点C 的对应点为H .(1)证明:AF ∥HG (图(1)); (2)证明:△AEF ∽△EGH (图(1));(3)如果点C 的对应点H 恰好落在边AD 上(图(2)). 求此时∠BAC 的大小.(第26题图)2010年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分. 1.-5;2.如果一个数能被2整除,那么这个数是偶数; 3.(x -2)2; 4.±2;5.形如y =kx +1的一次函数式均可; 6.四; 7.x =2; 8.x =-2或x =1;9.40; 10.π-2.二、选择题:本大题共8小题,每小题3分,共24分.11.B ; 12.C ; 13.A ; 14.C ; 15.C ; 16.D ; 17.A ; 18.D .三、解答题:本大题共8小题,满分66分. 19.解:原式=31211-+………………3分(每个知识点1分) =6236-+ ………………4分=67 ……………………5分20.解:(1)(247.81+364.33)÷2=306.07(万人);…………………………………2分(2)421.65-156.4=265.25(万人);……………………………………………4分(3)40天中每天入园参观人数=7529406542133364812474156.....≈+++(万人)……6分所以,185天参观总人数为:29.75×185≈5503.8(万人)………………………7分说明:如果只用其中10天的数据预测总人数且数据正确(可能结果:2893.4,4585.3,4585.5,6739.6,6740.1,7800.5,7801.5),给1分,用中位数(可能结果:5662.3,5662.9)或两个极端数据(可能结果:5346.5,5347.0)预测总人数且数据正确的给3分,其余用20天的数据预测总人数且数据正确(可能结果:3738.9,4816.8,4817.4,6192.0,6192.5,7270.3,7270.5),给2分,用30天数据预测总人数的按上述步骤给分(30天数据的可能结果: 4739.3,4739.7,5810.9,5811.3,6375.0,6375.1;40天数据的另一结果:5504.6)21.解:设2009年底我市普通中学在校学生为x 万人,小学在校学生为y 万人,由题意得……1分⎩⎨⎧=-=+58.302.32x y y x ……………………………………………………………5分解得⎩⎨⎧==8.1722.14y x…………………………………………………………………7分答:2009年底我市普通中学在校学生为14.22万人,小学在校学生为17.8万人.……8分 22.解:(1)共3分.(作出点E 给1分,作出点P 给1分,连AP(2)∵AD 平分∠BAC .∴∠CAD =∠EAD …………………………4分在△CAD 与△EAD 中 AD =AD (公共边)∠CAD =∠EAD AC =AE (已知) ∴△CAD ≌△EAD…………………………6分∴∠DEA =∠DCA =90° ……………………7分 ∴DE ⊥AB……………………………………8分23.解:过点B 作BD ⊥AC 于D在Rt △ABD 中,BD =AB·sin15°=0.259L ……1分 由题意得:0.6≤0.259L ≤0.8…………5分即⎩⎨⎧≥≤6.0259.08.0259.0L L 解得:2.32≤L ≤3.08……………………7分答:跷跷板的长度L 的取值范围是不小于2.32米,不大于3.08米. …………8分24.解:(1)设反比例函数为xky =……………………1分 则由已知可得:22-=-k ……………………2分所以k =4所以,所求反比例函数关系式为y 4= …………3分 (2)…………………………6分(注:写对5个以上不足10个点给1分,写对10个以上不足16(第22(2)题参考图2)(第22(1)题参考图1)AA个点给2分,全对给3分;若将坐标轴上的点也写出来,共写出25个点,全对的,给2分,对10个以上但不全对的给1分)由上表及(1)知,只有点(1,4),(2,2),(4,1)在反比例函数xy 4=的图象上.……7分 所以,所求概率163=P . …………………………………………………………………8分 25.解:(1)过点N 作NP ⊥OA 于P ,则CN =AM =t ,AN =5-t ,由△APN ∽△AOC 得()t OC AC AN PN -=⋅=554…………………………1分()t OA AC AN PA -=⋅=553 ……………………2分t PA OA OP 53=-=∴点N 的坐标是(t 53,t 544-)(0≤t ≤4) …………4分(t 的取值范围占1分)(2)AP AM NP OA S S S AMN OAN OAMN ⋅+⋅=+=∆∆2121多边形……5分()()t t t -⋅⋅+-⨯⨯=55321554321 61031032++-=t t (0≤t ≤4)………………6分(3)存在t 使得O ,N ,M 三点在同一直线上. ………………………………………7分 【方法一】经过点O ,M 的直线表达式为x ty 3=………………………………………8分 若O ,N ,M 三点在同一直线上,则点N (t 53,t 544-)在直线x ty 3=上,那么t t t 533544⋅=- ………………………………………………………………………9分化简得:t 2+4t -20=0解得:262-=t 或0262<--=t (舍去)∴当()262-=t 秒时,O ,N ,M 三点在同一直线上.……………………………10分【方法二】若O ,N ,M 三点在同一直线上,则△OPN ∽△OAM…………………8分∴OA OP AM NP =,即353544tt t =- …………………………………………………9分化简得:t 2+4t -20=0(第25题图)解得:262-=t 或0262<--=t (舍去)∴当()262-=t 秒时,O ,N ,M 三点在同一直线上.………………………………10分 【方法三】若O ,N ,M 三点在同一直线上,则O AM O AMN S S ∆=多边形 …………………8分 即t t t 2361031032=++-…………………………………………………9分化简得:t 2+4t -20=0解得:262-=t 或0262<--=t (舍去)∴当()262-=t 秒时,O ,N ,M 三点在同一直线上.………………………………10分 26.证明:(1)根据折叠的轴对称性知,∠AFE =∠ABE =∠EFC =90°∠EHG =∠ECG =90° …………………………1分 ∴∠EFC =∠EHG…………………………2分∴AF ∥HG……………………………………3分(2)根据折叠的轴对称性知,∠AEB =∠AEF ,∠GEH =∠GEC ………………4分 ∵∠AEB +∠AEF +∠GEH +∠GEC =180° ∴2∠AEF +2∠GEH =180°∴∠AEF +∠GEH =90° …………………………5分 ∵∠EAF +∠AEF =90° ∴∠EAF =∠GEH …………………………6分 又∵∠AFE =∠EHG =90°∴△AEF ∽△EGH…………………………7分(3)【方法一】连结HC ,交EG 于点P ………………8分由折叠的轴对称性知, CH ⊥EG ∴∠HPG =90° 由(2)知∠AEG =90°∴AE ∥HC …………………………………………9分 又∵AH ∥EC∴四边形AECH 是平行四边形 ………………10分∵AC ⊥EH∴四边形AECH 是菱形 ∴∠HAF =∠F AE………………………………11分∵∠F AE =∠BAE∴∠HAF =∠F AE =∠BAE =30°∴∠BAC =60° ……………………………………12分 【方法二】设AB =a ,BE =b ,CE =c ,则AD =b +c 根据折叠的轴对称性知,HE =c ,EF =b ,AF =a ,HF =c -b ………………8分∵cb aa b c HAF +=-=∠tan ……………………9分 ∴a 2+b 2=c 2 又∵AE 2=a 2+b 2∴AE =EC =c………………………………10分∴∠EAC =∠ECA又∵AD ∥BC ∴∠CAD =∠ECA………………………………11分∴∠CAD =∠EAC =∠BAE =30°∴∠BAC =60° ……………………………………12分。

2010年南充市中考数学试卷及答案

2010年南充市中考数学试卷及答案

南充市二O 一O 年高中阶段学校招生统一考试数 学 试 卷(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分) 每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1. 计算-(-5)的结果是( ).(A )5 (B )-5 (C )15 (D )-152. 如图,立体图形的主视图是( ).3. 下列等式成立的是( ).(A )26a a =3() (B)223a a a -=- (C )632a a a ÷= (D )2(4)(4)4a a a +-=-4. 三根木条的长度如图,能组成三角形的是( ).正面(第2题)(A )(B ) (C ) (D )5. 计算111xx x ---结果是( ). (A )0 (B )1 (C )-1 (D )x 6. 如图,小球从点A 运动到点B ,速度v (米/秒)和时间t (秒)的函数关系式是v =2t .如果小球运动到点B 时的速度为6米/秒,小球从点A 到点B 的时间是( ). (A )1秒 (B )2秒 (C )3秒 (D )4秒7. A 、B 、C 、D 四个班各选10名同学参加学校1 500米长跑比赛,各班选手平均用时及(A )A 班 (B )B 班 (C )C 班 (D )D 班8. 甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是( ).(A )从甲箱摸到黑球的概率较大 (B )从乙箱摸到黑球的概率较大 (C )从甲、乙两箱摸到黑球的概率相等 (D )无法比较从甲、乙两箱摸到黑球的概率 9. 如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ). (A )1(B )2 (C )3 (D )4 10. 如图,直线l1∥l 2,⊙O 与l 1和l 2分别相切于点A 和2cm 2cm 5cm(A )2cm2cm 4cm(B )2cm3cm 5cm(C )2cm3cm 4cm(D )(第6题)2N点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误..的是().(A)MN=(B)若MN与⊙O相切,则AM=(C)若∠MON=90°,则MN与⊙O相切(D)l1和l2的距离为2二、填空题(本大题共4个小题,每小题3分,共12分) 请将答案直接填写在题中横线上.11.x 取值范围是______.12. 如图,□ABCD 中,点A 关于点O 的对称点是点____. 13. 在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是___________. 14. 如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为_______.三、(本大题共3个小题,每小题6分,共18分)15. 计算:()228cos303-+︒--.(第12题)16. 如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD .求证:四边形ABCD 是等腰梯形.17. 电视台在南充城市某居民小区对电视节目的收视情况进行抽样调查,每人只能在被调查的五类电视节目中选择一类“最喜欢”的电视节目,将统计结果绘制了两幅不完整的统计图(图1,图2).请根据图中信息解答问题:(1)这次抽样调查了多少人?(2)在扇形统计图中,最喜欢娱乐节目对应的圆心角比最喜欢戏曲节目对应的圆心角大90°,调查中最喜欢娱乐节目比最喜欢戏曲节目的多多少人? (3)估计南充城区有100万人中最喜欢体育节目的有多少人?新闻体育动画娱乐戏曲 (图1) (图2)四、(本大题共2个小题,每小题8分,共16分)18. 关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根.19. 如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连结BD 并延长与CE交于点E .(1)求证:△ABD ∽△CED .(2)若AB =6,AD =2CD ,求BE 的长.五、(本题满分8分)20.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?六、(本题满分8分)21.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=12 BC.(1)求∠BAC的度数.(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.求证:四边形AFHG是正方形.(3)若BD=6,CD=4,求AD的长.七、(本题满分8分)22. 已知抛物线2142y x bx =-++上有不同的两点E 2(3,1)k k +-+和F 2(1,1)k k ---+.(1)求抛物线的解析式. (2)如图,抛物线2142y x bx =-++与x 轴和y 轴的正半轴分别交于点A 和B ,M 为AB 的中点,∠PMQ 在AB 的同侧以M 为中心旋转,且∠PMQ =45°,MP 交y 轴于点C ,MQ 交x 轴于点D .设AD 的长为m (m >0),BC 的长为n ,求n 和m 之间的函数关系式. (3)当m ,n 为何值时,∠PMQ 的边过点F .南充市二O 一O 年高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 正式阅卷前务必认真阅读参考答案和评分意见,明确评分标准,不得随意拔高或降低标准.2. 全卷满分100分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3. 参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4. 要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、选择题(本大题共10个小题,每小题3分,共30分)二、填空题(本大题共4个小题,每小题3分,共12分)11.12. C ;13. 接近16; 14.13三、(本大题共3个小题,每小题6分,共18分)15. 解:原式=4283+⨯- ……(4分)=43+=1. ……(6分) 16. 证明:∵ MA =MD ,∴ △MAD 是等腰三角形,∴ ∠DAM =∠ADM . ……(1分) ∵ AD ∥BC ,∴ ∠AMB =∠DAM ,∠DMC =∠ADM .∴ ∠AMB =∠DMC . ……(3分) 又∵ 点M 是BC 的中点,∴ BM =CM . ……(4分) 在△AMB 和△DMC 中,,,,AM DM AMB DMC BM CM =⎧⎪∠=∠⎨⎪=⎩∴ △AMB ≌△DMC . ……(5分)∴ AB =DC ,四边形ABCD 是等腰梯形. ……(6分)17. 解:(1)这次抽样调查人数为:600300020%=(人); ……(2分) (2)最喜欢娱乐节目比最喜欢戏曲节目的多:903000360⨯=750(人);…(4分)(3)估计南充城区最喜欢体育节目的有:10025%⨯=25(万人). ……(6分)答:(1)这次抽样调查了3000人;(2)最喜欢娱乐节目比最喜欢戏曲节目的多750人;(3)估计南充城区最喜欢体育节目的有25万人.四、(本大题共2个小题,每小题8分,共16分)18. 解:(1)方程有两个不相等的实数根,∴ 2(3)4()k --->0.即 49k >-,解得,94k >-. ……(4分) (2)若k 是负整数,k 只能为-1或-2. ……(5分) 如果k =-1,原方程为 2310x x -+=.解得,1x =2x =. ……(8分)(如果k =-2,原方程为2320x x -+=,解得,11x =,22x =.)19. (1)证明:∵ △ABC 是等边三角形, ∴ ∠BAC =∠ACB =60°.∠ACF =120°. ∵ CE 是外角平分线, ∴ ∠ACE =60°. ∴ ∠BAC =∠ACE . ……(2分) 又∵ ∠ADB =∠CDE ,∴ △ABD ∽△CED . ……(4分) (2)解:作BM ⊥AC 于点M ,AC =AB =6.∴ AM =CM =3,BM =AB ·sin60°=∵ AD =2CD ,∴ CD =2,AD =4,MD =1. ……(6分)在Rt △BDM 中,BD……(7分)由(1)△ABD ∽△CED 得,BD AD ED CD=2=, ∴ ED,∴ BE =BD +ED= ……(8分) 五、(本题满分8分)20. 解:(1)以点O 为原点,AB 所在直线为x 轴建立直角坐标系(如图). ……(1分)M (0,5),B (2,0),C (1,0),D (32,0)设抛物线的解析式为2y ax k =+, 抛物线过点M 和点B ,则 5k =,54a =-. 即抛物线解析式为2554y x =-+. ……(4分) 当x =时,y =154;当x =32时,y =3516.即P (1,154),Q (32,3516)在抛物线上.当竖直摆放5个圆柱形桶时,桶高=310×5=32.∵ 32<154且32<3516,∴网球不能落入桶内. ……(5分)(2)设竖直摆放圆柱形桶m 个时网球可以落入桶内,由题意,得,3516≤310m ≤154. ……(6分)解得,7724≤m ≤1122.∵ m 为整数,∴ m 的值为8,9,10,11,12.∴ 当竖直摆放圆柱形桶8,9,10,11或12个时,网球可以落入桶内.……(8分)六、(本题满分8分)21. (1)解:连结OB 和OC .∵ OE ⊥BC ,∴ BE =CE .∵ OE =12BC ,∴ ∠BOC =90°,∴ ∠BAC =45°. ……(2分) (2)证明:∵ AD ⊥BC ,∴ ∠ADB =∠ADC =90°. 由折叠可知,AG =AF =AD ,∠AGH =∠AFH =90°,∠BAG =∠BAD ,∠CAF =∠CAD , ……(3分) ∴ ∠BAG +∠CAF =∠BAD +∠CAD =∠BAC =45°. ∴ ∠GAF =∠BAG +∠CAF +∠BAC =90°.∴ 四边形AFHG 是正方形. ……(5分) (3)解:由(2)得,∠BHC =90°,GH =HF =AD ,GB =BD =6,CF =CD =4. 设AD 的长为x ,则 BH =GH -GB =x -6,CH =HF -CF =x -4. ……(7分) 在Rt △BCH 中,BH 2+CH 2=BC 2,∴ (x -6)2+(x -4)2=102. 解得,x 1=12,x 2=-2(不合题意,舍去).∴ AD =12. ……(8分) 七、(本题满分8分) 22. 解:(1)抛物线2142y x bx =-++的对称轴为122bx b =-=⎛⎫⨯- ⎪⎝⎭. ……..(1分)∵ 抛物线上不同两个点E 2(3,1)k k +-+和F 2(1,1)k k ---+的纵坐标相同,∴ 点E 和点F 关于抛物线对称轴对称,则 (3)(1)12k k b ++--==,且k ≠-2.∴ 抛物线的解析式为2142y x x =-++. ……..(2分) (2)抛物线2142y x x =-++与x 轴的交点为A (4,0),与y 轴的交点为B (0,4), ∴ AB=AM =BM= ……..(3分) 在∠PMQ 绕点M 在AB 同侧旋转过程中,∠MBC =∠DAM =∠PMQ =45°, 在△BCM 中,∠BMC +∠BCM +∠MBC =180°,即∠BMC +∠BCM =135°, 在直线AB 上,∠BMC +∠PMQ +∠AMD =180°,即∠BMC +∠AMD =135°. ∴ ∠BCM =∠AMD .故 △BCM ∽△AMD . ……..(4分) ∴BC BM AM AD =,即m =,8n m =. 故n 和m 之间的函数关系式为8n m =(m >0). ……..(5分) (3)∵ F 2(1,1)k k ---+在2142y x x =-++上,∴ 221(1)(1)412k k k ---+--+=-+,化简得,2430k k -+=,∴ k 1=1,k 2=3.即F 1(-2,0)或F 2(-4,-8). ……..(6分) ①MF 过M (2,2)和F 1(-2,0),设MF 为y kx b =+,则 2220.k b k b +=⎧⎨-+=⎩, 解得,121.k b ⎧=⎪⎨⎪=⎩,∴ 直线MF 的解析式为112y x =+.直线MF 与x 轴交点为(-2,0),与y 轴交点为(0,1). 若MP 过点F (-2,0),则n =4-1=3,m =83; 若MQ 过点F (-2,0),则m =4-(-2)=6,n =43. ……..(7分) ②MF 过M (2,2)和F 1(-4,-8),设MF 为y kx b =+,则 2248.k b k b +=⎧⎨-+=-⎩, 解得,534.3k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴ 直线MF 的解析式为5433y x =-.直线MF 与x 轴交点为(45,0),与y 轴交点为(0,43-).若MP 过点F (-4,-8),则n =4-(43-)=163,m =32; 若MQ 过点F (-4,-8),则m =4-45=165,n =52. ……..(8分)故当118,33,m n ⎧=⎪⎨⎪=⎩226,4,3m n =⎧⎪⎨=⎪⎩333,2163m n ⎧=⎪⎪⎨⎪=⎪⎩或4416,552m n ⎧=⎪⎪⎨⎪=⎪⎩时,∠PMQ 的边过点F .。

2010年福建省莆田市中考数学试卷(含答案)

2010年福建省莆田市中考数学试卷(含答案)

2010年莆田市初中毕业、升学考试试卷数学试题(满分:150分;考试时间:120分钟)注意:本试卷分为“试题”和“答题卡”两部分,答题时请按答题卡中的“注意事项”要求认真作答,答案写在答题卡上的相应位置.一、精心选一选:本大题共8小题,每小题4分,共32分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得40分.1.2-的倒数是().A .2B .12 C .12- D .-2有意义,则x 的取值范围是( ).A .1x ≥B .1x ≤C .0x >D .1x >3.下列图形中,是中心对称图形的是( ).4.下列计算正确的是( ).A .325()a a = B .23a a a +=C .33a a a ÷=D .235a a a =·5.已知1O ⊙和2O ⊙的半径分别是3cm 和5cm ,若12O O =1cm ,则1O ⊙与2O⊙的位置关系是().A .相交B .相切C .相离D .内含 6.如图是由五个小正方体搭成的几何体,它的左视图...是( ).第3题 第6题7.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( ).A .(1)10x x -=B .(1)102x x -= C .(1)10x x += D .(1)102x x += 8.11()A x y ,、22()B x y ,是一次函数2(0)y kx k =+>图象上不同的两点,若1212()()t x x y y =--,则( ).A .0t <B .0t =C .0t >D .0t ≤ 二、细心填一填:本大题共8小题,每小题4分,共32分. 9.化简:22(1)(1)a a +--=________.10.2009年我国全年国内生产总值约335000亿元,用科学记数法表示为________亿元. 11.如图,D 、E 分别是ABC △边AB 、AC 的中点,BC =10,计算:22|2.-解不等式213436x x --≤,并把它的解集在数轴上表示出来.19.(本小题满分8分)如图,四边形ABCD 的对角线AC 、DB 相交于点O ,现给出如下三个条件:AB DC AC DB OBC OCB ==∠=∠①②③.(1)请你再增加一个..条件:________,使得四边形ABCD 为矩形(不添加其它字母和辅助线,只填一个即可,不必证明);(2)请你从①②③中选择两个条件________(用序号表示,只填一种情况),使得AOB DOC △≌△,并加以证明.第19题如图,在边长为1的小正方形组成的网格中,AOB △的三个顶点均在格点上,点A 、B 的坐标分别为(23)31.A B --,、(,)(1)画出AOB △绕点O 顺时针...旋转90°后的11AOB △; (2)点1A 的坐标为_______; (3)四边形11AOA B 的面积为_______.21.(本小题满分8分)如图,A 、B 是O ⊙上的两点,120AOB ∠=°,点D 为劣弧 AB 的中点.(1)求证:四边形AOBD 是菱形;(2)延长线段BO 至点P ,交O ⊙于另一点C ,且BP =3OB ,求证:AP 是O ⊙的切线.第20题第21题在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法表示出(x,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数4yx=的图象上的概率;(3)求小明、小华各取一次小球所确定的数x、y满足4yx<的概率.23.(本小题满分10分)一方有难,八方支援.2010年4月14日青海玉树发生地震,全国各地积极运送物资支援灾区.现在甲、乙两车要从M地沿同一公路运输救援物资往玉树灾区的N地,乙车比甲车先行1小时,设甲车与乙车之间的路程..........为y(km),甲车行驶时间为t(h),y(km)与t(h)之间函数关系的图象如图所示.结合图象解答下列问题(假设甲、乙两车的速度始终保持不变):(1)乙车的速度是_________km/h;(2)求甲车的速度和a的值.第23题如图1,在Rt ABC △中,9068ACB AC BC ∠===°,,,点D 在边AB 上运动,DE平分CDB ∠交边BC 于点E ,CM BD ⊥垂足为M EN CD ⊥,,垂足为N.(1)当AD=CD 时,求证:DE AC ∥;(2)探究:AD 为何值时,BME △与CNE △相似?(3)探究:AD 为何值时,四边形MEND 与BDE △的面积相等?第24题如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且54OD =. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直接写出....所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O ′处?第25题2010年莆田市初中毕业、升学考试试卷数学参考答案及评分标准说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分. (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位1分,得分或扣分都不能出现小数点. 一、精心选一选(本大题共8小题,每小题4分,共32分) 1.C 2.A 3.B 4.D 5.D 6.A 7.B 8.C二、细心填一填(本大题共8小题,每小题4分,共32分)9.4a 10. 53.3510⨯ 11. 5 12. 6 13. 2 14. 1 15.40217.(本小题满分8分)解:原式=2·························· 6分 =2- ························································ 8分注:2|24(2)=分18.(本小题满分8分)解:去分母,得2(21)x -·························· 2分去括号,得4234x x --≤ ··················································································· 4分 移项,合并同类项,得2x -≤ ∴不等式的解集为2x -≤ ····················································································· 6分 该解集在数轴上表示如下:································································································································· 8分 19.(本小题满分8分) (1)AD BC =(或AO OC =或BO OD =或90ABC ∠=°等) 3分 (2)解法1:②③ ··················································· 4分 证明:OBC OCB ∠=∠ OB OC ∴= ····························································· 5分第19题又AC DB OA OD =∴= ················································································ 6分 又AOB DOC ∠=∠ AOB DOC ∴△≌△ ······························································································ 8分 解法2:①② ··········································································································· 4分 证明:∵AB=DC ,DB=AC ,AD=DA ∴ABD DCA △≌△ ····························································································· 6分 ∴∠ABO=∠DCO ········································································································· 7分又∵∠AOB=∠DOC A O B D O C ∴△≌△ ······················································· 8分(注:若选①③第(2)小题得0分) 20.(本小题满分8分) (1)正确画出1OA 、1OB 、11A B 各得1分 ·························································· 3分 (2)(3,2) ·········································································································· 5分 (3)8 ······················································································································ 8分 21.(本小题满分8分) 证明:(1)连接OD . ·································· 1分D 是劣弧 AB 的中点,120AOB ∠=°60AOD DOB ∴∠=∠=° ························· 2分 又∵OA=OD ,OD=OB∴△AOD 和△DOB 都是等边三角形 ·········· 3分 ∴AD=AO=OB=BD∴四边形AOBD 是菱形 ······························· 4分(2)连接AC.∵BP =3OB ,OA=OC=OB ∴PC=OC=OA ········································································································· 5分12060AOB AOC ∠=∴∠= °°OAC ∴△为等边三角形∴PC=AC=OC ········································································································· 6分 ∴∠CAP =∠CP A又∠ACO =∠CP A +∠CAP 30CAP ∴∠=°90PAO OAC CAP ∴∠=∠+∠=° ······································································ 7分 又OA 是半径AP ∴是O ⊙的切线 ································································································ 8分 22.(本小题满分10分) 解:(1)第21题································································································································· 3分 (2)可能出现的结果共有16个,它们出现的可能性相等. ································· 4分 满足点(x ,y )落在反比例函数4y x=的图象上(记为事件A )的结果有3个,即(1,4),(2,2),(4,1),所以P (A )=316. ····································································· 7分 (3)能使x ,y 满足4y x<(记为事件B )的结果有5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (B )=516·········································································· 10分23.(本小题满分10分) (1)40 ···················································································································· 3分 (2)解法1:设甲车的速度为x km/h ,依题意得12(121)40200x =+⨯+ ······················································································· 5分解得x =60 ················································································································· 6分 又(1)4060a a +⨯=⨯ ··························································································· 8分 ∴a =2 ························································································································ 9分 答:甲车的速度为每小时60千米,a 的值为2. ················································ 10分 解法2:设甲车的速度为x km/h ,依题意得40(1)(12)(40)200ax a a x =+⎧⎨--=⎩ ························································································ 7分 解得602.x a =⎧⎨=⎩··········································································································· 9分答:甲车的速度为每小时60千米,a 的值为2. ················································ 10分 24.(本小题满分12分) (1)证明:AD CD DAC DCA =∴∠=∠2BDC DAC ∴∠=∠ ································· 1分又∵DE 是∠BDC 的平分线 ∴∠BDC=2∠BDE∴∠DAC =∠BDE ········································· 2分∴DE ∥AC ···················································· 3分 (2)解:(Ⅰ)当BME CNE △∽△时,得MBE NCE ∠=∠ ∴BD=DC∵DE 平分∠BDC ∴DE ⊥BC ,BE=EC.又∠ACB =90° ∴DE ∥AC . ···················································································· 4分 ∴BE BD BC AB =即152BD AB === ∴AD =5 ···················································································································· 5分第24题(Ⅱ)当BME ENC △∽△时,得EBM CEN ∠=∠∴EN ∥BD又∵EN ⊥CD∴BD ⊥CD 即CD 是△ABC 斜边上的高 ································································· 6分 由三角形面积公式得AB ·CD=AC ·BC ∴CD=245∴185AD == ·················································································· 7分 综上,当AD =5或185时,△BME 与△CNE 相似. (3)由角平分线性质易得12MDE DEN S S DM ME ==△△· BDE MEND S S = △四边形12BD EM DM EM ∴=·· 即12DM BD = ······················································ 8分 ∴EM 是BD的垂直平分线.∴∠EDB=∠DBE∵∠EDB =∠CDE ∴∠DBE =∠CDE又∵∠DCE =∠BCD∴CDE CBD △∽△ ······················· 9分CD CE DE BC CD BD∴==① ············ 10分 2CD BE BE BC BD BM ∴== 即4BE CD = 5454=⨯= ······························································ 11分 25843939cos 5810B =⨯= 39112105-⨯= ······························································ 12分 25.(本小题满分14分)解:(1)OA =1,OC =2则A 点坐标为(0,1),C 点坐标为(2,0)设直线AC 的解析式为y=kx+b0120b k b +=⎧∴⎨+=⎩ 第24题解得121k b ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为112y x =-+ ······································································ 2分 (2)123555(0)(0)(02))384P P P --,,,,,或3(0P (正确一个得2分) ······························································································· 8分(3)如图,设(1)O x ′,过O ′点作O F OC ⊥′于F 222251()4O D O F DF x ='+=+-′ 由折叠知OD O D =′ 22551()()44x ∴+-= 12x ∴=或2············································· 10分第25题。

2010年河北中考数学试卷及答案

2010年河北中考数学试卷及答案

图9B2010年河北省中考数学试卷一、选择题(本大题共12个小题,每小题2分,共24分) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-6 2.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70° C .80° D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3, 则□ABCD 的周长为A .6B .9C .12D .15 5.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a- B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x 9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8 C .9 D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2) C .(3,3) D .(4,3) 12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.-的相反数是 . 14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为1-,则点B 所对应的数为 .15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α,则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”). 三、解答题(本大题共8个小题,共78分) 19.(8分)解方程:1211+=-x x .A B C D 图2图10-1 图10-2A BCD 40°120° 图1 图3 图5 图7 图8图4 A B D C 图6-1 图6-2A B C D20.(8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).21.(9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °. (2)请你将图12-2的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.图11-2A图11-1B乙校成绩扇形统计图 图12-1乙校成绩条形统计图图12-2图15-2AD O BC 21MN图15-1A D BMN1 2图15-3AD O BC 21MNO 23.(10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是 分米;点Q 与点O 间的最大距离是 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l 的距离最小.”事实上,还存在着点P 到l 距离最大的位置,此时,点P 到l 的距离是 分米;②当OP 绕点O 左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.24.(10分)在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.l图14-3l 图14-2图14-125.(12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止. 设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积.(3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.26.(12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为 常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线的顶点坐标是24(,)24b ac b a a--.2(0)y ax bx c a =++≠P Q图16 (备用图)2010年河北省中考数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. =三、解答题 19.解:)1(21-=+x x , 3=x .经检验知,3=x 是原方程的解.20.解:(1)如图1;【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】 (2)∵90π346π180⨯⨯=, ∴点P 经过的路径总长为6 π.21.解:(1)144;(2)如图2;(3)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.22.解:(1)设直线DE 的解析式为b kx y +=, ∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2).(2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4.∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1). ∵ 当4=x 时,y =4x= 1,∴点N 在函数 xy 4=的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ 2≠PQ 2 + OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=, ∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE , ∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBO ACBE =.又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD =.D 图1图4A D OB C21 MNE FA O BC1D 2图5MNE分数图2 l图325.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB = BC 21= 4,MP = MQ = 3,∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,Q E 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°, ∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.(4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+.若w 内 < w 外,则a <32.5; 若w 内 = w 外,则a = 32.5; 若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售;当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.图7图6。

安徽省2010年中考数学真题及答案解析

安徽省2010年中考数学真题及答案解析

2010年安徽省中考试题数 学一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2010安徽,1,4分)在-1,0,1,2这四个数中,既不是正数也不是负数的是………………( )A .1-B .0C .1D .2【分析】大于0的数是正数,小于0的数是负数. 【答案】B【涉及知识点】正、负数的概念【点评】本题考查有理数的概念,考查知识点单一,属于基础题. 【推荐指数】★ 2.(2010安徽,2,4分)计算x x ÷3)2(的结果正确的是…………………………( ) A .28x B .26x C .38x D .36x【分析】先将系数相除得2,再将字母及其指数相除得2x 【答案】A【涉及知识点】单项式除法【点评】熟悉单项式除法法则即可解决,属于简单题. 【推荐指数】★3.(2010安徽,3,4分)如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( )A .500.B .550C .600D .650【分析】可将∠3看成三角形的一个内角,利用两直线平行,同位角相等和对顶角相等可求出三角形的其他两个内角,再用三角形内角和即可求出∠3.【答案】C【涉及知识点】平行线的性质,三角形的内角和【点评】本题考查综合运用平行线的性质和三角形的内角和两个知识点,属于简单题. 【推荐指数】★★4.(2010安徽,4,4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………()A.2.89×107. B.2.89×106 .C.2.89×105. D.2.89×104.【分析】289万=2890000【答案】B【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★5.(2010安徽,5,4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是【分析】正方体的三视图都是正方形;球的三视图都是圆;直三棱柱的主视图是矩形,两边长分别是棱长、底面上的高,俯视图是矩形,两边长分别是棱长、底面的边长,左视图是正三角形;圆柱的主视图、俯视图都是矩形且这两个矩形全等;左视图是圆,符合题意.【答案】D【涉及知识点】视图与投影【点评】本题主要考查已知物体画三视图的能力,属于简单题.【推荐指数】★★★★6.(2010安徽,6,4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是………………()A.1~2月份利润的增长快于2~3月分利润的增长B.1~4月份利润的极差于1~5月分利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份利润的的中位数为120万元【分析】1~2月份利润增长10万元,2~3月份利润增长20万元;1~4月份利润的极差与1~5月份利润的极差都是30万元;1~5月份利润的的中位数为115万元【答案】C【涉及知识点】折线统计图、极差、众数、中位数【点评】折线统计图是统计图之一,极差、众数、中位数等都是统计学中的重要概念,准确理解概念的内涵是解决此类问题的“法宝”,属于中档题.【推荐指数】★★★★7.(2010安徽,7,4分)若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A .0,5B .0,1C .—4,5D .—4,1【分析】可将配方后的式子展开,比较两个解析式的系数,二次项系数都是1,一次项系数相等,常数项相等【答案】D【涉及知识点】配方法、待定系数法【点评】配方法是数学中一种重要思想方法,在二次项系数是1的情况下,一般是配上一次项系数一半的平方,本题将顶点式化简成一般式,再由待定系数法即可写出b 、k 的值,属于中档题.【推荐指数】★★★ 8.(2010安徽,8,4分)如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为………………( ) A .10 B .32 C .13 D .23【分析】因为等腰直角三角形和圆都是轴对称图形,延长AO 交BC 于D ,连接OB ,则AD=BD=DC=21BC=3,所以OD=A D -OA=2,由勾股定理,得:OB=13 【答案】C【涉及知识点】垂径定理,勾股定理【点评】求圆的半径是圆中常见的计算题,基本方法是构造以半径为斜边,半弦长、弦心距为直角边的直角三角形,利用勾股定理求出,属于中档题.【推荐指数】★★★【典型错误】选D ,将AB 当成圆的半径;选B ,仍将AB 当成圆的半径,但以为:AB=33BC ;选A 的同学还是将AB 当成圆的半径了,用:101322=+。

2010年安徽中考数学试题及答案(解析版)

2010年安徽中考数学试题及答案(解析版)

2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s 和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.门票价格一览表指定日普通票2 00元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:20鲜鱼销售单价(元/kg)单位捕捞成本(元5﹣/kg)捕捞量(kg)950﹣10x(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b >c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2考点:有理数。

2010年龙岩市中考数学试卷(含答案)

2010年龙岩市中考数学试卷(含答案)

2010年龙岩市初中毕业、升学考试数 学 试 题 (满分:150分 考试时间:120分钟) 注意:请把所有答案填涂或书写到答题卡上!请不要错位、越界答题!在本试题上答题无效。

提示:抛物线y=ax 2+bx+c (a ≠0)的对称轴是2b x a =-,顶点坐标是24(,)24b ac b a a -- 一、选择题(本大题共10题,每题4分,共40分。

每题的四个选项中,只有一个符合题意,请将正确的选项填涂到答题卡...上)1.-3的绝对值是A .-3B .-13C .3D .132.下列运算正确的是A .x 4+ x 4=2 x 8B .x 2·x 3= x 5C .x 8÷x 2= x 4D .(-x 2)4=-x 83.下列事件是不可能事件的是A .掷一次质地均匀的正方体骰子,向上的一面是5点B .在只装有红球和绿球的袋子中摸出一个球,结果是黄球C .经过城市中某一有交通信号灯的路口,遇到绿灯D .通常加热到100℃时,水沸腾4.若关于x 的一元二次方程20x x a -+=的一个根为2,则a 的值是A .6B .-6C .2D .-25.如图所示的几何体是由三个同样大小的正方体搭成的,其左视图是(第5题图) A B C D6.如图,若圆锥底面圆的半径为3,则该圆锥侧面展开图扇形的弧长为A .2 πB .4 πC .6 πD .9 π7.从4张分别写有数字-6,-4,0,3的卡片中,任意抽取一张,卡片上的数字是正数的概率是A .34B .12C .13D .14 8.把多项式x 2-6x +9分解因式,所得结果正确的是A .(x -3)2B .(x+3)2C .x (x -6)+9D .(x +3)(x -3) 考室座位号(第6题图)9.如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,∠B =25°,则∠D 等于A .25°B .40°C .30°D .50°10.对于反比例函数k y x=,当x >0时,y 随x 的增大而增大, 则二次函数2y kx kx =+的大致图象是A B C D(第10题图)二、填空题(本大题共7题,每题3分,共21分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年中考数学试卷
一、选择题(每小题3分,共18分)
1.的相反数是【 】
(A) (B) (C) (D)
2.我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】
(A)元 (B)元
(C)元 (D)元
3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:
1.71,1.85,1.85,1.96,
2.10,2.31.则这组数据的众数和极差分别是【 】
(A)1.85和0.21 (B)2.11和0.46
(C)1.85和0.60 (D)2.31和0.60
4.如图,△ABC中,点DE分别是ABAC的中点,则下列结论:①BC=2DE;
②△ADE∽△ABC;③.其中正确的有【 】
(第4题)
(A)3个 (B)2个
(C)1个 (D)0个
5.方程的根是【 】
(A) (B) (C) (D)
6.如图,将△ABC绕点C(0,-1)旋转180°得到△ABC,设点A的坐标为则点A的坐标为【 】
(第6题)
(A) (B)
(C) (D)
二、填空题(每小题3分,共27分)
7.计算=__________________.
(第8题)
8.若将三个数表示在
数轴上,其中能被如图所示的墨迹覆盖的数是__________________.9.写出一个y随x增大而增大的一次函数的解析式:
__________________.
10.将一副直角三角板如图放置,使含30°角的三角板的段直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.
(第10题)
(第11题)
11.如图,AB切⊙O于点A,BO交⊙O于点C,点D是上异于点C、A的一点,若∠ABO=32°,则∠ADC的度数是______________.
12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.
(第14题)
(第15题)
(第13题)
主视图
左视图
14.如图矩形ABCD中,AD=1,AD=,以AD的长为半径的⊙A交BC于点E,则图中阴影部分的面积为______________________.
15.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是___________________.
三、解答题(本大题共8个大题,满分75分)
16.(8分)已知将它们组合成或的形式,请你从中任选一种进行计算,先化简,再求值其中.
17.(9分)如图,四边形ABCD是平行四边形,△AB’C和△ABC关
于AC所在的直线对称,AD和B’C相交于点O,连接BB’.
(1)请直接写出图中所有的等腰三角形(不添加字母);
(2)求证:△AB’O≌△CDO.
18.(9分)“校园手机”现象越来越受到社会的关注.“五
一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态
度的学生的概率是多少?
学生及家长对中学生带手机
的态度统计图
学生及家长对中学生带手机的态度统计图
图① 图②
19.(9分)如图,在梯形ABCD中,AD//BC,E是BC的中
点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长
为x.
(1)当x的值为____________时,以点P、A、D、E为顶点的四边形
为直角梯形;
(2)当x的值为____________时,以点P、A、D、E为顶点的四边形
为平行四边形;;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能
否构成菱形?试说明理由.
20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2.单价和为80元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?
21.(9分)如图,直线与反比例函数的图象交于A,B两点.(1)求、的值;
(2)直接写出时x的取值范围;
(3)如图,等腰梯形OBCD中,BC//OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
22.(10分)
(1)操作发现
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到
△GBE,且点G在举行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,若DC=2DF,求的值;
(3)类比探求
保持(1)中条件不变,若DC=nDF,求的值.
23.(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的
面积为S.求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.。

相关文档
最新文档