人教版八年级数学上册- 多边形教案
人教版数学八年级上册11.3.1《多边形》教学设计

3.教师强调多边形知识在实际生活中的应用,激发学生学习兴趣。
"多边形的知识不仅可以帮助我们解决几何问题,还可以应用于建筑、设计、艺术等领域。希望同学们能够认识到数学的广泛应用,努力学习,不断提高自己的数学素养。"
3.教师进一步提问,引导学生思考多边形的相关性质。
"那么,多边形有哪些性质呢?它们之间有什么关系?今天我们将一起探讨这些问题。"
(二)讲授新知,500字
1.教师讲解多边形的定义、对角线、边、角等基本概念,并通过例图进行说明。
"多边形是由不在同一直线上的几条线段首尾顺次相接组成的封闭平面图形。这些线段叫做多边形的边,相邻两边的夹角叫做多边形的内角,对角线是多边形中不相邻的两个顶点之间的线段。"
五、作业布置
为了巩固本节课所学知识,培养学生的应用能力和创新意识,特布置以下作业:
1.请同学们回顾教材第11.3.1节的内容,复习多边形的定义、性质以及内角和与外角和的计算方法。
2.完成课后练习第1、2、3题,运用多边形的性质解决实际问题。
"请同学们尝试解决这些练习题,注意运用我们今天学到的多边形知识,看看谁能够准确地解答出来。"
1.学生对多边形概念的理解程度,部分学生可能对多边形的边、角等元素的理解存在困难。
2.学生在解决多边形相关问题时,可能缺乏系统的解题思路和方法。
3.学生在合作交流过程中,可能存在沟通不畅、分工不明确等问题。
4.部分学生对几何学科的兴趣不足,学习积极性有待提高。
针对以上学情,教师应采取有针对性的教学策略,如加强概念讲解,设计有趣的教学活动,激发学生学习兴趣;注重引导学生形成解题思路,培养学生解决问题的能力;组织有效的合作学习,提高学生的团队协作能力。通过本章节的学习,使学生在掌握多边形相关知识的同时,提高几何学科素养。
人教版数学八年级上册11.3.1多边形优秀教学案例

(二)问题导向
1.引导学生提出问题,如“多边形有哪些性质?”“如何计算多边形的面积和周长?”等,激发学生思考,培养学生的问题意识。
2.设计具有挑战性的数学问题,如让学生探究多边形面积和边数的关系,引导学生独立思考,提高解决问题的能力。
本节课的教学内容与过程,旨在让学生掌握多边形的定义、性质和计算方法,培养他们的观察力、思考力和动手操作能力。通过导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等环节,让学生在轻松愉快的氛围中学习,提高他们的学习兴趣和效果。
(一)导入新课
本节课的导入环节,我采用了生活实例导入法。首先,我在黑板上画出一个教室窗户的图形,引导学生观察这个图形,并提问:“这个图形是什么图形?它有什么特点?”学生回答后,我接着提问:“这个图形的边数是多少?它的内角和是多少?”通过这样的问题,引导学生思考多边形的性质。然后,我拿出一个足球,提问:“这个足球是一个多边形吗?它的边数是多少?”学生回答后,我总结道:“像这样的图形,我们称之为多边形。今天,我们就来学习多边形的性质和计算方法。”
在学生小组讨论后,我进行了总结归纳。我引导学生回顾本节课所学的知识,总结多边形的定义、性质和计算方法。我强调多边形在生活中的重要性,并鼓励学生运用所学知识解决实际问题。
(五)作业小结
最后,我布置了作业,让学生巩固所学知识。作业包括计算多边形的面积和周长,以及找出生活中的多边形实例。我要求学生在完成作业时,认真思考,培养他们的动手操作能力和观察力。同时,我也提醒学生在完成作业后,及时复习,巩固所学知识。
人教版数学八年级上册11.3.1多边形优秀教学案例
一、案例背景
本节课为人教版数学八年级上册11.3.1多边形章节内容,主要教学目标是让学生掌握多边形的定义、性质以及多边形的基本计算方法。通过对多边形的学习,培养学生对图形的观察、思考和动手操作能力,提高他们的空间想象力。
人教版数学八年级上册《11.3.1多边形》优秀教学案例

在教学过程中,我会注重小组合作的学习方式,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
(四)反思与评价பைடு நூலகம்
1.引导学生对自己的学习过程进行反思,如“我在学习中遇到了什么困难?我是如何解决的?”;
2.组织学生进行自我评价,如“我认为我在本节课中学到了什么?我还需加强哪些方面的学习?”;
人教版数学八年级上册《11.3.1多边形》优秀教学案例
一、案例背景
本节内容为“人教版数学八年级上册”的《11.3.1多边形》,旨在让学生掌握多边形的概念、性质以及多边形的基本计算。在教学过程中,我以“以人为本”的教育理念为指导,结合学生的认知规律和兴趣,设计了一系列具有针对性和实用性的教学活动。
在教学准备阶段,我通过查阅相关资料,了解到学生在学习多边形之前已掌握了线段、射线、三角形等基本几何概念,因此,在教学过程中要充分利用学生已有的知识基础,引导学生通过观察、思考、探究,自主发现多边形的性质和规律。
2.设计有趣的数学问题,如“一个正多边形的外角和是多少?”引导学生思考多边形的性质;
3.创设实际问题情境,如“计算学校操场地的面积”,让学生运用多边形的知识解决实际问题。
在导入环节,我会通过展示生活中的多边形图片,引发学生的兴趣,然后提出问题,引导学生思考多边形的性质。这样既能激发学生的学习兴趣,又能自然地引入新课。
在教学过程中,我会注重情景的创设,将生活中的多边形引入课堂,让学生在真实的情境中感受数学与生活的紧密联系,从而激发学生的学习兴趣。
(二)问题导向
1.提出具有启发性的问题,引导学生进行观察、思考、探究,如“多边形的边数与面积有什么关系?”;
2.鼓励学生提出自己的疑问,如“为什么正多边形的内角和是(n-2)×180°?”;
11.3.1多边形教案2022-2023学年人教版八年级数学上册

11.3.1 多边形教案一、教学目标1.了解多边形的定义和特点;2.掌握多边形的分类方法;3.培养发现问题、分析问题和解决问题的能力。
二、教学重点1.多边形的定义和特点;2.多边形的分类。
三、教学难点1.多边形的分类方法。
四、教学过程1. 导入•引入多边形的概念,让学生回顾以往关于线段、角度等几何概念的学习。
2. 多边形的定义和特点•让学生观察图片或实物,引导他们提出多边形的定义和特点。
帮助学生理解多边形是由若干条线段组成,而且相邻的线段有公共的端点,并且线段的排列要能够首尾相接,形成一个封闭的图形。
3. 多边形的分类•引导学生根据边的性质将多边形进行分类。
讲解凸多边形和凹多边形的概念。
让学生观察不同的多边形形状,尝试给出分类。
4. 多边形分类的讨论和总结•调整学生的思路,让他们参与讨论和总结多边形的分类方法。
通过学生的发言和讨论,引导他们理解正多边形、直角三角形、等腰三角形等特殊多边形的概念和性质。
5. 练习•让学生通过练习题巩固对多边形分类方法的理解。
提供一些多边形的图形,让学生判断其分类,并用简单的理由说明分类的依据。
6. 拓展•引导学生思考:是否所有的多边形都可以通过分类方法进行归类?是否存在无法分类的多边形?通过学生的讨论和思考,进一步拓展他们对多边形的理解。
7. 归纳总结•教师对多边形的定义、特点和分类方法进行总结,并确保学生理解和记忆。
五、课堂小结•教师对上述内容进行小结,强调学生在课堂中的学习收获,帮助学生巩固知识点。
六、作业布置•布置与多边形相关的作业,要求学生运用所学知识判断图形的分类,并写出简单的理由。
七、课后拓展•鼓励学生进行一些相关的拓展阅读,提高他们对多边形的理解和应用能力。
通过以上教学过程,学生能够全面了解多边形的定义、特点和分类方法,培养他们的观察发现问题的能力以及分析、解决问题的能力。
希望同学们能够积极参与课堂讨论并主动思考,巩固所学的知识,为今后的学习打下坚实的基础。
人教版八年级数学上册-多边形教案

11・3多边形及其内角和11. 3.1 多边形1•掌握多边形的定义及其有关概念,理解正多边形及其相关概念. (重点)2•正确区分凹多边形和凸多边形. (重点)3.理解多边形的对角线的概念,探索一个多边形能画几条对角线. (难点)学习重点:了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别学习难点:凸多边形的辨别.、情境导入利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形)•问题:请学生观察图片,在图中能找出哪些多边形?长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.二、合作探究探究点一:多边形的概念【类型一】多边形及其概念F列图形不是凸多边形的是()解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形•由此可得选项D的图形不是凸多边形•故选 D.方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180 ° .通常所说的多边形指凸多边形.【类型二】确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为()A.14 或15 或16 B •15 或16C. 14 或16 D . 15 或16 或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14, 15或16.故选A.方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画条对角线,从五边形的一个顶点出发可画 条对角线,从六边形的一个顶点 出发可画 条对角线,请猜想从七边形的一个顶点出发有 条对角线,从 n边形的一个顶点出发有 ___________ 条对角线,从而推导出 n 边形共有 _____________ 条对角线.解析:根据n 边形从一个顶点出发可引出 (n — 3)条对角线.从n 个顶点出发引出n (n — 3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画 1条对角线,从五边形的一个顶点出发可画 2条对角线,从六边形的一个顶点出发可画 3条对角线,从七边形的一个顶点出发有 4条对角线,从方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有 多边形有n 条边,对角线的条数为【类型二】 根据对角线条数确定多边形的边数n 边形的一个顶点出发有(n — 3)条对角线,从而推导出 n 边形共有n (n —3)条对角线.(n — 3)条;(2)从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是()A. 6 B . 7C. 8 D . 9解析:设这个多边形是n边形•依题意,得n—3 = 5 ,解得n= 8.故这个多边形的边数是8.故选C.【类型三】根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是()A.五边形B .六边形C七边形D •八边形解析:设原多边形是n边形,则n—2= 6 ,解得n= 8.故选D.方法总结:从n边形的一个顶点出发可引出(n—3)条对角线,这(n —3)条对角线把n边形分成(n —2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是()A.等腰三角形B.长方形C.正方形D五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选 C.方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.三、板书设计多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n边形从一个顶点出发的对角线条数为(n —3)条;n边形共有对角,ti n (n — 3) Q线2 条5≥3).4•正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼, 明白了和他人怎样合作,取长补短•在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.当堂清一、判断题.1•由四条线段首尾顺次相接组成的图形叫四边形. ()2•由不在同一直线上的四条线段首尾顺次相接组成的图形叫四边形. ()3•在同一平面内,四条线段首尾顺次连接组成的图形叫四边形. ()二、填空题.4•从n边形的一个顶点可以引__________ 条对角线,它们把n边形分成 ________ 个三角形5•多边形的任何所在的直线,整个多边形都在这条直线的_______________ ,这样的多边形叫凸多边形.6•各个角__________ ,各条边_____________ 的多边形,叫正多边形.11.3.1 多边形知识与技能教学目标复习:1•什么是三角形?怎样表示?2•什么是三角形的边,角以及外角? 图片观赏:你能从图中找出几个由一些线段围成的图形吗? 学生回答,相互补充,教师点明本节课题• 这些线段围成的图形有何特性? 【(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺 次相接组成的.】 这些图形中有三角形、四边形、五边形、六边形、八 边形,那么什么叫做多边形呢?你能仿照三角形的定义给多边形定义吗?归纳:在平面内,由一些线段首尾顺次相接组成的图 形叫做多边形.如果一个多边形由 n 条线段组成,那么这个多边 形叫做n边形.(一个多边形由几条线段组成,就叫 做几边形•) 明确概念:过程与方 法能由实物中辨别寻找出几何图形,由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性 认识情感态度 价值观了解类比这种重要的数学学习方法, 体验生活中处处有数学的道理.教学重点了解多边形、内角、外角、对角线等数学概念以及凸多边形的形 状的辨别。
人教版八年级数学上册:11.3.1多边形(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了多边形的定义、性质、内角和与外角和等基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对多边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
本节教学内容旨在帮助学生掌握多边形的定义、性质、分类及计算方法,培养空间想象能力和解决实际问题的能力。
二、核心素养目标
1.培养学生的逻辑推理能力:通过多边形定义、性质的学习,使学生能够运用逻辑推理方法,分析多边形的特征,推导内角和、外角和等性质,提高逻辑思维水平。
2.培养学生的空间想象力:通过对多边形分类、特殊多边形的认识,激发学生空间想象力,为解决多边形相关问题奠定基础。
五、教学反思
今天在教授多边形这一章节时,我发现学生们对于多边形的定义和性质掌握得还算不错,但是在实际应用方面,特别是在解决不规则多边形面积问题时,明显感到有些吃力。这让我意识到,在今后的教学中,需要更加注重将理论知识与实际应用相结合。
在讲解多边形内角和与外角和定理时,我尝试通过动态图示和实际操作,让学生更直观地感受内角与外角的变化规律。从学生的反馈来看,这种方法效果不错,有助于他们理解定理的推导过程。但我也注意到,部分学生在运用定理解决具体问题时,仍然存在一定的困难。我想在接下来的课程中,可以多设计一些类似的问题,让学生多加练习,以提高他们运用定理解决问题的能力。
-多边形的分类及特殊多边形的性质:识别不同分类的多边形,了解矩形、菱形、正方形等特殊多边形的独特性质。
-举例:对比分析矩形与菱形的性质差异,强调正方形的特殊性质,如对角线相等、垂直平分等。
人教版数学八年级上册11.3.1多边形教案

-了解直角三角形的性质及勾股定理
3.四边形的分类与性质
-了解四边形的分类(梯形、矩形、菱形、正方形)
-掌握各种四边形的性质及判定方法
-了解四边形的不稳定性
4.多边形的对角线及其性质
-了解多边形对角线的定义及性质
-掌握多边形对角线数量的计算方法
-了解多边形对角线与内角、外角的关系
4.加强口语训练,提高学生的表达能力和逻辑思维。
5.布置针对性的练习题,帮助学生巩固知识点。
三、教学难点与重点
1.教学重点
-多边形的定义及性质:理解多边形的定义,掌握内角和定理和外角和定理,能够运用这些性质解决相关问题。
-举例:计算任意多边形的内角和、外角和,解释多边形外角与内角的关系。
-三角形和四边形的性质:了解三角形和四边形的分类,掌握等腰三角形、等边三角形、直角三角形、矩形、菱形、正方形的性质及其判定方法。
2.培养学生的空间观念和几何直观,能够观察和理解多边形的特征,发展对几何图形的认识。
3.培养学生的逻辑思维和推理能力,通过多边形性质的学习,让学生掌握严密的逻辑推素养,使学生能够运用多边形知识构建数学模型,解决实际问题。
5.培养学生的团队协作和交流能力,通过小组讨论、合作完成多边形相关问题的探究,提高学生的沟通与协作能力。
在新课讲授环节,我发现学生们对多边形内角和定理、外角和定理的理解较为困难。在讲解过程中,我尽量使用简洁明了的语言和丰富的例子,但仍有部分学生表示难以消化。针对这一问题,我考虑在下一节课增加一些互动环节,让学生自己动手操作,以便更直观地感受定理的推导过程。
实践活动环节,学生们分组讨论和实验操作的表现总体良好,但部分小组在讨论过程中出现了偏离主题的现象。为了提高讨论效率,我计划在下次活动中明确讨论要求和目标,并在讨论过程中适时给予指导和提示。
多边形-人教版八年级数学上册教案

多边形-人教版八年级数学上册教案一、教学目标1.了解多边形的定义;2.熟悉常见的多边形名称和性质;3.学会判断多边形和不是多边形;4.能够计算多边形的内角和和外角和;5.能够应用多边形的性质解决实际问题。
二、教学内容1.多边形的定义和分类;2.多边形的性质(包括内角和、外角和、对角线、对称轴);3.判断多边形和不是多边形的方法;4.应用多边形的性质解决实际问题。
三、教学重点和难点1.教学重点:多边形的性质;2.教学难点:如何判断一个图形是多边形。
四、教学方法1.示范教学法;2.探究式教学法;3.讨论式教学法;4.归纳总结法。
五、教学过程1. 导入新课教师出示一些多边形的图片,引导学生讨论并且介绍多边形的定义和分类。
2. 学习多边形的性质(1)对角线教师出示一些多边形的图片,让学生发现多边形的对角线并讲解对角线性质,包括:1.任意一个三角形没有对角线;2.任意一个四边形有两条对角线;3.任意一个五边形有 5 条对角线;4.任意一个六边形有 9 条对角线;5.任意一个 n 边形有 n*(n-3)/2 条对角线。
(2)内角和和外角和教师出示正多边形的图片并讲解内角和和外角和的性质,包括:1.n 边形的内角和为 (n-2)×180°;2.n 边形的外角和为 360°;3.正 n 边形的内角为 (n-2)×180°/n;4.正 n 边形的外角为 360°/n。
3. 判断多边形和不是多边形的方法(1)什么是多边形多边形的定义:至少三条线段组成的图形叫做多边形。
(2)如何判断一个图形是多边形讨论学生能够想到的多边形的判断方法,并让学生互相交流、讨论,最后归纳总结。
4. 应用多边形的性质解决实际问题让学生通过例题,了解如何运用多边形的性质解决实际问题。
六、教学反思本节课通过对多边形的性质、定义、分类、内角和和外角和进行了讲解,培养了学生的思维能力和学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.3多边形及其内角和
11.3.1多边形
1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)
2.正确区分凹多边形和凸多边形.(重点)
3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)
学习重点:了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别学习难点:凸多边形的辨别.
一、情境导入
利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).
问题:请学生观察图片,在图中能找出哪些多边形?
长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.
二、合作探究
探究点一:多边形的概念
【类型一】多边形及其概念
下列图形不是凸多边形的是( )
解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.
方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.
【类型二】确定多边形的边数
若一个多边形截去一个角后,变成十五
边形,则原来的多边形的边数可能为( )
A.14或15或16 B.15或16
C.14或16 D.15或16或17
解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.
方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.
探究点二:多边形的对角线
【类型一】 确定多边形的对角线的条数
从四边形的一个顶点出发可画
________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.
解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.
解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从
n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)
2
条对角线.
方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为
n (n -3)
2
.
【类型二】 根据对角线条数确定多边形的边数
从一个多边形的任意一个顶点出发都
只有5条对角线,则它的边数是( )
A.6 B.7
C.8 D.9
解析:设这个多边形是n边形.依题意,得n-3=5,解得n=8.故这个多边形的边数是8.故选C.
【类型三】根据分成三角形的个数,确定多边形的边数
连接多边形的一个顶点与其他顶点的
线段把这个多边形分成了6个三角形,则原多边形是( )
A.五边形 B.六边形
C.七边形 D.八边形
解析:设原多边形是n边形,则n-2=6,解得n=8.故选D.
方法总结:从n边形的一个顶点出发可引出(n-3)条对角线,这(n-3)条对角线把n 边形分成(n-2)个三角形.
探究点三:正多边形的有关概念
下列图形中,是正多边形的是( )
A .等腰三角形
B .长方形
C .正方形
D .五边都相等的五边形
解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.
方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.
三、板书设计
多边形
1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.
2.相关概念:顶点、边、内角、对角线.
3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线
n (n -3)
2
条(n ≥3).
4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.
本节课采取的是合作探究的教学方式,在小组活动中,每个学生都能发挥自己的作用,都有表达和倾听的机会,每个人的价值作用都能显现出来.在这个过程中,学生得到了锻炼,明白了和他人怎样合作,取长补短.在教学设计时要从学生的角度出发,设计出合理的,具有可操作性的探究步骤,充分估计探究中的不确定因素和障碍点,并在教学过程中加强组织引导和巡视力度.
当堂清
一、判断题.
1.由四条线段首尾顺次相接组成的图形叫四边形.()
2.由不在同一直线上的四条线段首尾顺次相接组成的图形叫四边形.()
3.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()
二、填空题.
4.从n边形的一个顶点可以引条对角线,它们把n边形分成个三角形
5.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.
6.各个角,各条边的多边形,叫正多边形.
11.3.1 多边形
过程与方法能由实物中辨别寻找出几何图形,由几何图形联想或设计一些实物形状,丰富学生对几何图形的感性认识
情感态度价值观了解类比这种重要的数学学习方法,体验生活中处处有数学的道理.
教学重点了解多边形、内角、外角、对角线等数学概念以及凸多边形的形状的辨别。
教学难点正多边形的正确理解以及凸多边形的辨别。
教学准备教师:多媒体课件(某几个重点教学片段使用)、三角尺。
教学过程(师生活动)设计理念
引入新课复习:1.什么是三角形?怎样表示?
2.什么是三角形的边,角以及外角?
图片观赏:
你能从图中找出几个由一些线段围成的图形吗?
学生回答,相互补充,教师点明本节课题.
利用现实生活
情境吸引学生
尽快投入到数
学课堂中来。
让
学生们观察、回
答、补充,既能
体现主体性,又
能较自然地过
渡到新课教学
中来。
新知探究这些线段围成的图形有何特性?
【(1)它们在同一平面内.
(2)它们是由不在同一条直线上的几条线段首尾顺
次相接组成的.】
这些图形中有三角形、四边形、五边形、六边形、八
边形,那么什么叫做多边形呢?
你能仿照三角形的定义给多边形定义吗?
归纳:在平面内,由一些线段首尾顺次相接组成的图
形叫做多边形.
如果一个多边形由n条线段组成,那么这个多边
形叫做n边形.(一个多边形由几条线段组成,就叫
做几边形.)
明确概念:
运用类比
方法学习新知
识,便于发现新
旧知识的异同
点,同时完善学
生的认知结构。
1.多边形相邻两边组成的角叫做多边形的内角
2.多边形的边与它的邻边的延长线组成的角叫做
多边形的外角.
3.多边形的对角线
连接多边形的不相邻的两个顶点的线段,叫做多
边形的对角线.
让学生画出五边形的所有对角线.
4.凸多边形与凹多边形
在图(1)中,画出四边形ABCD的任何一条边所
在的直线,整个图形都在这条直线的同一侧,这样的
四边形叫做凸四边形,这样的多边形称为凸多边形;
而图(2)就不满足上述凸多边形的特征,因为我们
画BD所在直线,整个多边形不都在这条直线的同一
侧,我们称它为凹多边形,今后我们在习题、练习中
提到的多边形都是凸多边形.
5.正多边形
由正方形的特征出发,得出正多边形的概念.
各个角都相等,各条边都相等的多边形叫做正多
边形.
通过对
比,学习凸多边
形与凹多边形
的概念,加深认
识
巩固练习
课本P21练习1.2.
小结与作业
课堂小结
1、今天本节课学习的主要内容(概念)。
2、本节课学习新知识过程中运用哪种重要的思想
方法。
生活中处处有
几何。