高考数学专题复习_椭圆

合集下载

高考数学专题复习_椭圆

高考数学专题复习_椭圆

高考数学专题复习椭圆【考纲要求】一、考点回顾1. 椭圆的定义2. 椭圆的标准方程3. 椭圆的参数方程4 椭圆的简单几何性质5 点与椭圆的位置关系6 关于焦点三角形与焦点弦7 椭圆的光学性质8. 关于直线与椭圆的位置关系问题常用处理方法二 典例剖析1 求椭圆的标准方程【例1】(1)已知椭圆的中心在原点,焦点在x 轴上,一个焦点与短轴的两个端点的连-方程为____________(2)椭圆的中心在原点,焦点在坐标轴上,直线1y x =+交椭圆于,P Q 两点,若0OP OQ ⋅=u u u r u u u r ,且2PQ =u u u r ,则椭圆方程为_____________________【例2】设椭圆()222210x y a b a b+=>>的左焦点为F ,上顶点为A ,过A 点作AF 的垂线分别交椭圆于P ,交x 轴于Q ,且85AP PQ =u u u r u u u r(1)求椭圆的离心率。

(2)若过,,A F Q 三点的圆恰好与直线30x ++=相切,求椭圆的方程。

【例3】已知中心在原点的椭圆的左,右焦点分别为12,F F ,斜率为k 的直线过右焦点2F与椭圆交于,A B 两点,与y 轴交于点M 点,且22MB BF =u u u r u u u r(1)若k ≤(2)若k =AB 的中点到右准线的距离为10033,求椭圆的方程【例4】已知椭圆的中心在原点O ,短轴长为右准线交x 轴于点A ,右焦点为F ,且2OF FA =,过点A 的直线l 交椭圆于,P Q 两点 (1)求椭圆的方程(2)若0OP OQ ⋅=u u u r u u u r,求直线l 的方程(3)若点Q 关于x 轴的对称点为Q ',证明:直线PQ '过定点 (4)求OPQ V 的最大面积【例5】已知椭圆C的中心在原点,焦点在x轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1(1)求椭圆C的标准方程=+与椭圆交于,A B两点(,A B不是左,右顶点)且以(2)若直线:l y kx mAB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标2 椭圆的性质【例6】已知椭圆()222210x y a b a b+=>>的两个焦点分别为()1,0F c -,()2,0F c ,在椭圆上存在一点P ,使得120PF PF ⋅=u u u r u u u r(1)求椭圆离心率e 的取值范围(2)当离心率e 取最小值时,12PF F V 的面积为16,设,A B 是椭圆上两动点,若线段AB 的垂直平分线恒过定点(0,Q 。

高三数学专题复习----椭圆

高三数学专题复习----椭圆

高三数学专题复习----椭圆一 基础知识(1)椭圆的第一定义第二定义,(2)椭圆的标准方程,(3)椭圆的性质,(4)椭圆和直线的位置关系二 例题1、方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) (A)-16<m<25 (B)-16<m<29 (C)29<m<25 (D)m>29 2、已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=13、椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )3504、以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )335、若椭圆19822=++y k x 的离心率是21,则k 的值等于 ( ) (A)-45 (B)45 (C)-45或4 (D)45或4 6、椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )21或1 7、已知椭圆的对称轴是坐标轴,离心率e=32,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=18、椭圆22a x +22b y =1的两个焦点F 1, F 2三等分它的两条准线间的距离,那么它的离心率是( )。

(A )32 (B )33 (C )63 (D )669、椭圆100x 2+36y 2=1上的一点P 到它的右准线的距离是10,那么P 点到它的左焦点的距离是( )。

专题22 椭圆(解答题压轴题)(教师版)-2024年高考数学压轴专题复习

专题22 椭圆(解答题压轴题)(教师版)-2024年高考数学压轴专题复习

专题22 椭圆(解答题压轴题)目录①椭圆的弦长(焦点弦)问题 (1)②椭圆的中点弦问题 (10)③椭圆中的面积问题 (15)④椭圆中的参数和范围问题 (22)⑤椭圆中的最值问题 (28)⑥椭圆中定点、定值、定直线问题 (35)⑦椭圆中向量问题 (42)⑧椭圆综合问题 (48)所以()2216432224m m ∆=-⨯⨯-=解得33m -<<.设()11,A x y ,()22,B x y ,则1243m x x +=-,212223m x x -=2.(2023春·甘肃白银·高二统考开学考试)已知椭圆C上一点.(1)求C的方程;(2)设M,N是C上两点,若线段MN3.(2023秋·湖北武汉·高二武汉市第十七中学校联考期末)已知椭圆椭圆上一点与两焦点构成的三角形周长为(1)求椭圆C的标准方程;(2)若直线l与C交于A,B两点,且线段则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得(x 所以()()(1212124x x x x y y +-++又因为P 是DE 中点,所以1x +3.(2023秋·安徽亳州·高三校考阶段练习)令21230t k=->,故24k=当且仅当12tt=,即23,t k=故AOBV面积的最大值为3.)由题意得,四边形ABCD为菱形,则菱形ABCD的面积1S AC=⋅令235t n -=,得2716970n n -+=,解得7n =或977n =,从而2t =±或11621t =±.故直线l 的方程为23x y =±-,或116x =±④椭圆中的参数和范围问题1.(2023·辽宁抚顺·校考模拟预测)已知动点)显然直线l 的斜率存在,设直线:1l y kx =+,1,1)y ,2(B x ,2)y ,则2(D x λ,2)y λ,四边形OAED 为平行四边形,AE =,12(E x x λ+,12)y y λ+,A ,B ,E 均在椭圆C 上,2114y +=,2222194x y +=,221212()()194x x y y λλ+++=,0,2129180x y y λ++=,依题意,设直线l 的方程为(1)(y k x =-易得12x x <.联立方程组()221,1,4y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y 并整理得则2122814k x x k +=+,()21224114k x x k -=+,)得()20A ,,设直线l 的方程为x =2214x my tx y =+⎧⎪⎨+=⎪⎩,得()2242m y mty ++()()()222Δ244416mt m t m =-+-=2mt 24t -)C 短轴顶点时,PAB V 的面积取最大值222a b c =+,解得2,a b =的标准方程为2214x y += .)1122(,),(,)P x y Q x y ,若直线PQ 的斜率为零,由对称性知1111022y y x x -==++,222y k x -=-设直线PQ 的方程为x ty n =+由()2224y k x x y ⎧=+⎨+=⎩,得(2k +()()(22121k x k x ⎡⎤++-+⎣⎦解得()22211k x k -=+或x =-))()0011,,,x y A x y ,()22,B x y ,则可设直线PA 的方程为1x my =-,其中221143x my x y =-⎧⎪⎨+=⎪⎩,化简得(234m +)为椭圆C 的左顶点,又由(1)可知:(2,0)M -,设直线联立方程可得:222(44x ty mt x y =+⎧⇒+⎨+=⎩()()22224(4)40mt t m =-+->,即设直线:l y kx m =+交该椭圆220x +将y kx m =+代入221205x y +=得()2221484200k x kmx m +++-=设()11,D x y ,()22,E x y ,则21221621k x x k +=+,12x x ∴()1212542x x x x =+-,又()2,0A -,()2,0B ,∴直线AD 的方程为()1122y y x x =++,直线BE 的方程为1.(2023·吉林长春·东北师大附中校考一模)椭圆且垂直于长轴的弦长度为1.(1)求椭圆C的标准方程;2.(2023秋·北京海淀·高三清华附中校考开学考试)已知椭圆长轴长为6.(1)求椭圆E的标准方程;(2)椭圆E的上下顶点分别为,A B,右顶点为C,过点于x轴对称,直线AP交BC于M,直线AQ交BC于点【答案】(1)221 94x y+=(2)证明见解析【详解】(1)根据题意可知26a=,可得3a=;联立直线与椭圆方程221942x y y kx ⎧+=⎪⎨⎪=+⎩,消去设(),P P P x y ,易知P x 和0是方程的两根,由韦达定理可得又2P P y kx =+,所以2218894P k y k -=+,即1.(2023秋·辽宁·高二校联考阶段练习)已知椭圆3。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

高考数学专题复习-完美版圆锥曲线知识点总结

高考数学专题复习-完美版圆锥曲线知识点总结

高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。

椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。

2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。

②对称性:椭圆关于x轴、y轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。

③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。

④离心率:椭圆的焦距与长轴的比e=c/a。

其中,c表示焦距,a表示长半轴长。

椭圆的离心率可以通过长轴和短轴的长度计算得出。

由于长轴大于短轴,因此离心率e的值介于0和1之间。

当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。

当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。

双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。

需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。

当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。

当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。

双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。

高中数学高考总复习---椭圆及其性质知识讲解及考点梳理

高中数学高考总复习---椭圆及其性质知识讲解及考点梳理



长轴长= ,短轴长=
准线方程*
焦半径*


要点诠数间的关系都有 a
>b>0 和
,a2=b2+c2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。
【典型例题】 类型一:求椭圆的标准方程
例 1. 求中心在原点,一个焦点为
且被直线
截得的弦 AB 的中点横坐标为 的椭
考点一、椭圆的定义
平面内一个动点 到两个定点 、 的距离之和等于常数(
),这个动
点 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 要点诠释:
(1)若
,则动点 的轨迹为线段 ;若
,则动点 的
轨迹无图形. (2)确定一个椭圆的标准方程需要三个条件:两个定形条件 a、b,一个定位条件焦点坐标,由 焦点坐标的形式确定标准方程的类型。 考点二、椭圆的标准方程
圆标准方程. 【思路点拨】先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数
法确定 、 (定量).
【解析】方法一:因为有焦点为

12
所以设椭圆方程为

,

,消去 得

所以 解得 故椭圆标准方程为
方法二:设椭圆方程
因为弦 AB 中点
,所以
,
,
,



,(点差法)
所以

故椭圆标准方程为
.

.
【举一反三】 【变式 1】已知椭圆的焦点是 ① 求椭圆的方程; ② 设点 P 在椭圆上,且
,直线 ,求
是椭圆的一条准线. .
【答案】①
.
14
②设

高考椭圆专题知识点总结

高考椭圆专题知识点总结

高考椭圆专题知识点总结椭圆作为数学中的一个重要概念,是高考数学中的一个重要考点。

本文将对椭圆的相关知识进行总结,从基本概念到具体应用进行阐述,探讨其在高考中的应对策略。

一、椭圆的基本概念椭圆是平面上的一个几何图形,其定义为到两个定点F₁、F₂的距离之和等于定值2a的点集合。

F₁、F₂称为椭圆的焦点,而直线段F₁F₂的长度为椭圆的主轴。

与主轴垂直的直径称为椭圆的次轴,两轴的交点称为椭圆的中心。

二、椭圆的数学描述椭圆的数学表示是(x/a)²+(y/b)²=1或(x/a)²/(y/b)²=1,其中a为椭圆的长半轴,b为椭圆的短半轴。

根据椭圆的性质,由于离心率e=√(a²-b²)/a<1,椭圆是离心率小于1的一类曲线。

三、椭圆的参数方程椭圆的参数方程是x=a*cosθ,y=b*sinθ,其中θ为参数。

通过参数方程,我们可以很方便地求得椭圆上的各个点的坐标。

此外,椭圆的参数方程还可以用来求椭圆中心、焦点等相关信息。

四、椭圆的常见性质1. 椭圆的离心率e满足0<e<1,离心率为0时即为圆。

2. 椭圆的长半轴a和短半轴b满足a>b>0。

3. 椭圆的焦距2c满足c²=a²-b²,其中c为焦点F₁F₂到中心的距离。

五、椭圆的相关定理1. 椭圆的切线定理:椭圆上任意一点处的切线斜率等于该点对应的椭圆的切线的倾角的正切值。

2. 椭圆的法线定理:椭圆上任意一点处的法线斜率等于该点对应的椭圆的切线的倾角的负倒数。

3. 椭圆的切线和法线的判定:切线和法线的直线方程满足x²/a²+y²/b²=1和bx/a²y+ay/b²x=1。

六、椭圆的应用椭圆在现实生活中有丰富的应用。

例如,椭圆的形状被广泛应用于汽车或自行车的轮胎、卫星的轨道等。

在高考数学中,椭圆的知识点也常常涉及到与其他几何图形的相互关系以及坐标变换等问题。

高考数学专题复习:椭圆

高考数学专题复习:椭圆

高考数学专题复习:椭圆一、单选题1.在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1C 1D -2.如果方程22216x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .()2-∞-,B .(6)(3)-∞-⋃+∞,, C .(62)(3)--⋃+∞,, D .(3)+∞,3.已知O 为坐标原点,F 是椭圆C :22221x y a b+=(0a b >>)的左焦点,A 、B 分别为椭圆C的左、右顶点,P 为椭圆C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则椭圆C 的离心率为( ) A .13B .12C .23D .344.椭圆()222210x y a b a b+=>>的左右焦点分别是1F ,2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( ).A B C 1 D 5.已知点()3,15M 是椭圆22221x y a b+=上的一点,椭圆的长轴长是焦距的32倍,则该椭圆的方程为( )A .2212520x y +=B .22212745x y +=C .2211810x y +=D .2213620x y +=6.椭圆221259x y +=与椭圆22219x y a +=有( )A .相同短轴B .相同长轴C .相同离心率D .前三个答案都不对7.椭圆22221(0)x y a b a b+=>>的左焦点1F 的坐标为(1,0)-,则右焦点2F 的坐标是( ).A .(1,2)B .(2,1)-C .(2,0)-D .(1,0)8.已知椭圆22:14x y C m+=的一个焦点为(1,0),则m 的值为( )A B .3 C .D .69.已知1F ,2F 是椭圆2212516x y +=的左右焦点,P 是椭圆上任意一点,过1F 引12 ∠F PF 的外角平分线的垂线,垂足为Q ,则Q 与短轴端点的最近距离为( ) A .4B .3C .2D .110.点1F ,2F 为椭圆C :22143x y +=的两个焦点,点P 为椭圆C 内部的动点,则12PF F △周长的取值范围为( ) A .()2,6 B .[)4,6 C .()4,6D .[)4,811.椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则||ON 等于( ) A .2B .4C .6D .1.512.如图所示,设椭圆()222210x y a b a b+=>>的左、右两个焦点分别为1F ,2F ,短轴的上端点为B ,短轴上的两个三等分点P ,Q ,且四边形12F PF Q 为正方形,若过点B 作此正方形的外接圆的一条切线l 在x 轴上的截距为 )A .22198x yB .221109x y +=C .2212018x y +=D .2212516x y +=二、填空题13.设椭圆22221x y a b+=的左、右焦点为12,F F ,过点1F 的直线与椭圆相交于A ,B 两点,22::3:4:5AB AF BF =,则椭圆的离心率是________.14.椭圆22221(0)1x y m m m+=>+的焦点为1F ,2F ,上顶点为A ,若123F AF π∠=,则m =________.15.已知椭圆C 的焦点在坐标轴上,且经过(2)A -和(B -两点,则椭圆C 的标准方程为________.16.椭圆221x my +=的长轴长是短轴长的两倍,则m 的值为________. 三、解答题17.已知椭圆2222:1(0)x y E a b a b+=>>经过点()()122,0,2,0A A -,点B 为椭圆E 的上顶点,且直线1A B 与直线20x =相互垂直. (1)求椭圆E 的方程;(2)若不垂直x 轴的直线l 过椭圆E 的右焦点2F ,交椭圆于,C D 两点(C 在x 轴上方),直线12,AC A D 分别与y 轴交于,S T 两点,O 为坐标原点,求证:13OSOT =.18.已知椭圆2222:1(0)x y E a b a b +=>>E 的四个顶点构成的四边形面积为(1)求E 的方程;(2)设E 的左,右焦点分别为1F ,2F ,经过点(2,0)M -的直线l 与E 交于A ,B 两点,且12//F A F B ,求l 的斜率.19.已知中心在坐标原点O ,焦点在x C 过点12⎫⎪⎭.(1)求椭圆C 的标准方程;(2)是否存在不过原点O 的直线:l y kx m =+与C 交于PQ 两点,使得OP 、PQ 、OQ 的斜率依次成等比数列.若存在,求出k 、m 满足条件;若不存在,请说明理由.20.如图,椭圆C :2223x y a +=.(1)求椭圆C 的离心率;(2)若a =M ,N 是椭圆C 上两点,且MN =MON △面积的最大值.21.已知椭圆2222:1x y C a b +=(0a b >>)经过点12⎫⎪⎭,且长轴是短轴的两倍.(1)求椭圆C 的方程;(2)设O 为坐标原点,()0,1A ,直线:l y kx t =+(1t ≠±)与曲线C 交于P ,Q 两点,直线AP 与x 轴相交于点M ,直线AQ 与x 轴相交于点N ,若4OM ON ⋅=,求证:直线l 经过定点.22.已知椭圆C :22221x y a b +=(0a b >>)的焦点为1F 、2F ,点P 为椭圆C 上的动点,12PF F △的周长为4+ (1)求椭圆C 的标准方程;(2)已知()0,7T ,直线l :y kx m =+(0m <)与椭圆C 交于M ,N 两点,若TM TN ⋅为定值,则直线l 是否经过定点?若经过,求出定点坐标和TM TN ⋅的定值;若不经过,请说明理由.参考答案1.D 【分析】根据等腰Rt ABC ,可得||BC ,然后4AB AC BC a ++=可得a ,假设FA x =,依据椭圆定义可得x ,根据222||4AC AF c +=可得c ,最后可得离心率.【详解】设另一个焦点为F ,如图所示,∵||||1AB AC ==,||BC ,42AB AC BC a ++==a =,设FA x =,则12x a +=,12x a -,∴x =,2214c +=,c ,∴c e a =故选:D. 2.C 【分析】根据方程表示焦点在x 轴上的椭圆列不等式组,解不等式组求得a 的取值范围. 【详解】由于椭圆的焦点在x 轴上,∴2660a a a ⎧>+⎨+>⎩,解得62a -<<-或3a >.故选:C 3.A 【分析】由AF a c =-,OF c =,OB a =,利用//MF OE ,两次应用平行线性质求MF 得出,a c 的关系式,从而求得离心率. 【详解】如图,由题意得(0)A a -,、0B a (,)、(0)F c -,,设(0)E m ,,由//PF OE 得MF AF OEAO =,则()m a c MF a-=①, 又由//OE MF ,OE 中点为H ,得OH BO MFBF=,则()2m a c MF a+=②, 由①②得1()2a c a c -=+,即3a c =,则13c e a ==, 故选:A. 4.C 【分析】由圆的切线及椭圆定义可得出,a c 的等式,从而求得离心率. 【详解】由题意2PF c =,12PF PF ⊥,所以1PF =,所以122PF PF c a +=+=,所以离心率为1ce a ===.故选:C . 5.D 【分析】由长轴长是焦距的32得32a c =,再把已知点的坐标代入,结合222a b c =+可解得,a b 得椭圆方程. 【详解】由题意22222329151a b c a c a b ⎧⎪=+⎪⎪=⎨⎪⎪+=⎪⎩,解得6a b =⎧⎪⎨=⎪⎩2213620x y +=.故选:D . 6.D 【分析】由于椭圆22219x y a +=中,由于2a 与9的大小关系无法确定,所以无法确定椭圆的焦点位置,以及长轴和短轴长、离心率,即可得正确答案. 【详解】在221259x y +=中,15a =,13b =,可得:14c = 所以其长轴长为10,短轴长为6,离心率11145c e a ==,在椭圆22219x y a +=中,由于2a 与9的大小关系无法确定,所以无法确定椭圆的焦点位置,以及长轴和短轴长、离心率, 所以选项ABC 都不正确, 故选:D. 7.D 【分析】根据椭圆的几何性质可得答案. 【详解】因为椭圆22221(0)x y a b a b+=>>的左焦点1F 的坐标为(1,0)-,所以右焦点2F 的坐标是(1,0),故选:D. 8.B 【分析】根据椭圆焦点坐标确定参数c 及长轴的位置,进而求m 的值.【详解】由题意知:1c =且长轴在x 轴上, ∴241m c -==,即3m =. 故选:B 9.D 【分析】根据角平分线的性质和椭圆的定义可得OQ 是12F F M △的中位线, ||5OQ a ==,可得Q 点的轨迹是以O 为圆心,以5为半径的圆,由此可得选项. 【详解】P 是焦点为1F 、2F 的椭圆2212516x y+=上一点,PQ 12F PF ∠的外角平分线,1QF PQ ⊥,设1FQ 的延长线交2F P 的延长线于点M ,1∴=PM PF ,12210+==PF PF a ,22||210∴=+==MF PM PF a ,由题意知OQ 是12F F M △的中位线, ||5∴==OQ a ,Q ∴点的轨迹是以O 为圆心,以5为半径的圆,∴当点Q 与y 轴重合时,Q 与短轴端点取最近距离541=-=-=d a b ,故选:D . 10.C 【分析】根据椭圆的定义及简单性质,转化求解即可得出答案. 【详解】解:由椭圆C :22143x y +=,得:2,1a c ==,当点P 在椭圆上时,12PF F △周长最大,为226a c +=, 当点P 在x 轴上时,去最小值,为44c =, 又因点P 为椭圆C 内部的动点, 所以12PF F △周长的取值范围为()4,6. 故选:C. 11.B 【分析】设椭圆另一焦点为2F ,根据椭圆定义12210MF MF a +==,故28MF =,再结合中位线定理即可得答案. 【详解】设椭圆另一焦点为2F ,根据椭圆定义12210MF MF a +==,故28MF =,12MF F △中, N 是1MF 的中点,O 是12F F 的中点,故ON 是中位线, 2118422ON MF ==⨯=. 故选:B. 12.B 【分析】根据题意,求得切线l 的方程,根据四边形12F PF Q 为正方形,可得b ,c 的关系,根据直线l 与圆相切,可得圆心到直线的距离等于半径,即可求得b ,c 的值,根据a ,b ,c 的关系,即可得2a ,即可得答案. 【详解】因为切线l 在x轴截距为y 轴截距为b , 所以切线l1yb =,即330y b -+=,因为正方形12F PF Q 的对角线122F F PQ c ==, 所以1223b c ⨯=,即3b c =,则正方形12F PF Q 外接圆方程为:222x y c +=,c =,解得3,1b c ==,又22210a b c =+=,所以椭圆方程为221109x y +=.故选:B13【分析】由题意可得2AB AF ⊥,设3AB k =,24AF k =,25BF k =,根据椭圆的定义可得3a k =,再由勾股定理求出c ,由ce a=即可求解. 【详解】12,F F 是椭圆22221x y a b +=的左、右焦点, 过点1F 的直线与椭圆相交于A ,B 两点,22::3:4:5AB AF BF =,则2AB AF ⊥,不妨设3AB k =,24AF k =,25BF k =, 由椭圆的定义可得3454k k k a ++=,解得3a k =, 所以122642AF a AF k k k =-=-=,22222221212441620F F c AF AF k k k ==+=+=,解得c =,所以c e a ==,故答案为:14【分析】由题意利用椭圆的几何性质,得到1,c b m ==,结合16F AO π∠=,列出方程,即可求解.【详解】 由题意,椭圆22221(0)1x y m m m+=>+,可得22221,a m b m =+=, 则2221c a b =-=,所以1(1,0)F -,2(1,0)F ,且上顶点(0,)A m , 如图所示,因为123F AF π∠=,可得16F AO π∠=,则11tan F AO m ∠==,解得m =15.221155x y += 【分析】设所求椭圆方程为:221mx ny +=(0m >,0n >,m n ≠)将A 和B 的坐标代入方程,即可得到答案;【详解】设所求椭圆方程为:221mx ny +=(0m >,0n >,m n ≠)将A 和B 的坐标代入方程得:341121m n m n +=⎧⎨+=⎩,解得11515m n ⎧=⎪⎪⎨⎪=⎪⎩, 所求椭圆的标准方程为:221155x y +=. 故答案为:221155x y +=. 16.4或14【分析】将椭圆方程化为标准形式,分成焦点在x 轴、y 轴两种情况进行分类讨论,由此求得m 的值.【详解】将221x my +=转换成2211y x m +=,当焦点在x 轴时,长轴长是2,短轴长是1=,则4m =, 当焦点在y 轴时,短轴长是2,长轴长是4,则14m =, 综上填4或14. 故答案为:4或1417.(1)22143x y +=;(2)证明见解析. 【分析】(1)依题意求得a ,由直线1A B与直线20x =垂直求得b ,进而得椭圆方程; (2)依题意设直线():10l x my m =+≠,与椭圆方程联立,进而得()()211221231333my y y y OSOT y my -+-=+,结合韦达定理可得结果. 【详解】(1)由()22,0A ,得2a =.直线1A B与直线20x =相互垂直,则12b ⎛⋅=- ⎝,解得b =所以椭圆E 的方程为22143x y +=.(2)依题意设直线():10l x my m =+≠,联立l 和椭圆C 的方程得:()2243690m y my ++-=,设()()1122,,,C x y D x y ,则有12122269,4343m y y y y m m --+==++. ()111:22y AC y x x =++,令0x =,则1122S y y x =+,同理:2222T y y x -=-. 所以()()()()121221212123S T y x y my OSy OT y y x y my --===-++. 则()()()()()12212112212131323133333y my y my my y y y OSOT y my y my --+-+-==++, 分子()12122296232304343m my y y y m m m --⎛⎫⎛⎫-+=⨯-⨯= ⎪ ⎪++⎝⎭⎝⎭,所以13OS OT =.18.(1)2212x y +=;(2)12或12-. 【分析】(1)由题意可得:2ab =⎪⎩ (2)设直线l 的方程为2x ty =-,联立222,1,2x ty x y =-⎧⎪⎨+=⎪⎩利用根与系数的关系,再结合1//2F A F B 的坐标关系,建立等式即可求解【详解】(1)依题意可得:2ab =⎪⎩解得a 1b =,所以椭圆E 的方程为2212x y +=. (2)由题可知:直线l 的斜率存在且不为零,故设直线l 的方程为2x ty =-,设()11,A x y ,()22,B x y ,由(1)可知:1(1,0)F -,2(1,0)F ,则()1111,F A x y =+,()2221,F B x y =-,因为1//2F A F B ,所以()()122111x y x y +=-,10y ≠,20y ≠,化简得213y y =,所以1214y y y +=,21213y y y ⋅=,得()()21212163y y y y ⋅+=. 联立222,1,2x ty x y =-⎧⎪⎨+=⎪⎩消去x 得,()222420t y ty +-+=,由0∆>得22t >, 12242t y y t +=+,12222y y t =+, 则()222216162322t t t =++,解得2t =或2t =-, 故l 的斜率为12或12-. 19.(1)2214x y +=;(2)存在,12k =±,m 1m ≠±且0m ≠. 【分析】(1)设椭圆的方程为22221x y a b +=C过点1)2,列方程组222221()21c e a b a b c ⎧==⎪⎪=⎪=+⎪⎪⎪⎩,解得2a ,2b ,即可得出答案. (2)设1(P x ,1)y ,2(Q x ,2)y ,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,结合韦达定理可得12x x +,12x x ,12y y ,由OP ,PQ ,OQ 的斜率成等比数列,得到2OP OQ PQ k k k =,解出k ,由∆0>,且120x x ≠,求出m 的范围.【详解】解:(1)设椭圆的方程为22221x y a b+=,C过点1)2,所以222221()21c e a b a b c ⎧==⎪⎪=⎪=+⎪⎪⎪⎩,解得24a =,21b =, 所以椭圆的方程为2214x y +=. (2)联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得222(14)84(1)0(0)k x kmx m m +++-=≠, 设1(P x ,1)y ,2(Q x ,2)y ,则122841km x x k +=-+,21224(1)41m x x k -=+, 所以2212121212()()()y y kx m kx m k x x mk x x m =++=+++,因为OP ,PQ ,OQ 的斜率成等比数列,所以2OP OQ PQ k k k =,所以21212y y k x x ⋅=, 所以222121212()mk x x m k k x x x x +++=, 所以2222228(41)04(1)4(1)k m m k m m -++=--,所以12k =±, 因为222(8)4(41)4(1)0km k m ∆=-+⨯->,所以2224120k m m -+=->,所以m <因为120x x ≠,所以210m -≠,解得1m ≠±, 综上所述,12k =±,m <1m ≠±且0m ≠.【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,难度较大. 20.(1(2【分析】(1)将椭圆方程化成标准方程,代入离心率公式计算即可;(2)对直线MN 的斜率讨论,设方程为y kx b =+,联立方程组,根据弦长公式k ,b 的关系,利用0∆>得出k 的范围,求出O 到直线MN 的距离d 的范围即可得出结论.【详解】解:(1)由椭圆的标准方程:222213x y a a +=, ∴2222233a a c a =-=,即c =, ∴椭圆C的离心率c e a ==. (2)a 22162x y +=, 显然直线MN 的斜率存在.①当0k =时,把x 1y =,∴O 到直线MN 的距离为1,∴112MON S =⨯=△ ②当直线MN 斜率不为零时,设直线MN 的方程为y kx b =+, 联立方程组22162y kx b x y =+⎧⎪⎨+=⎪⎩,得()222136360k x kbx b +++-=, ∴()()222236413360k b k b =-+->∆,解得2262b k <+,设()11,M x y ,()22,N x y ,则122613kb x x k +=-+,21223613b x x k-=+, ∴MN ==213k =+,整理得42223211k k b k -++=+, ∴4222321621k k k k-++<++,解得20k ≥. ∴O到直线MN 的距离d∴()242222222321411111b k k d k k k -++===-+⎛⎫++ ⎪⎝⎭. ∴21d <,即1d <,∴12MON S d =⨯<△ 综上,MON △21.(1)2214x y +=;(2)证明见解析. 【分析】(1)由条件可知2a b =,再将点代入椭圆方程,即可求解;(2)首先直线l 与椭圆方程联立,得到韦达定理,再利用坐标分别表示直线,AP AQ ,并求得,OM ON ,利用韦达定理表示4OM ON ⋅=,即可求得定点.【详解】(1)解:∵椭圆22221x y C a b+=:长轴是短轴的两倍, 2a b ∴=,设方程为222214x y b b+=, 又∵椭圆经过点12⎫⎪⎭,,将点代入方程解得1b =, 则2a =,∴椭圆方程为2214x y +=. (2)证明:设11(,)P x y ,22(,)Q x y , 联立直线与椭圆的方程:2214y kx t x y =+⎧⎪⎨+=⎪⎩,, 整理得222(14)8440k x ktx t +++-=, 则122814kt x x k -+=+,21224414t x x k-=+, 122214t y y k +=+,22122414t k y y k -=+, 又(0,1)A ,则直线1111y AP y x x --=:,令0y =,则111x x y =-, 则11||1x OM y =-,同理22||1x ON y =-,()21212212121244||||411121x x x x t OM ON y y y y y y t t ⋅-⋅=⋅===---++⋅-+, 又∵1t ≠±,∴0t =,则直线:l y kx =,过定点()0,0,得证.22.(1)2214x y +=;(2)直线l 过定点10,5⎛⎫- ⎪⎝⎭,TM TN ⋅的定值为48. 【分析】(1)由12PF F △的周长与离心率,列方程组,解得,a b ,进而可得答案; (2)由221,4.x y y kx m ⎧+=⎪⎨⎪=+⎩消元整理得()()222418410k x kmx m +++-=,利用根与系数的关系结合平面向量的数量积坐标运算,即可求解【详解】(1)令222c a b =-,由题意可得:224c a a c ⎧=⎪⎨⎪+=+⎩,故21a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为2214x y +=. (2)直线l 的方程为y kx m =+(0m <)由221,4.x y y kx m ⎧+=⎪⎨⎪=+⎩消元整理得()()222418410k x kmx m +++-=, 所以()()()22222264441411641k m k m k m ∆=-+⋅-=-+,设()11,M x y ,()22,N x y ,由根与系数的关系可得,122841km x x k -+=+,()21224141m x x k -=+. 而()11,7TM x y =-,()22,7TN x y =-.所以()()121277TM TN x x y y ⋅=+--()()121277x x kx m kx m =++-+-()()()22121217(7)k x x k m x x m =++-++- ()()()()222224181774141m km k k m m k k --=+⨯+-⨯+-++ 2224485144541k m m k ⨯+-+=+. 由TM TN ⋅为定值,可得24485144541m m ⨯-+=, 251430m m --=,解得15m =-或3m =(舍), 故直线l 的方程为15y kx =-. 所以直线l 过定点10,5⎛⎫- ⎪⎝⎭,此时TM TN ⋅的定值为48.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习椭圆【考纲要求】一、考点回顾1. 椭圆的定义2. 椭圆的标准方程3. 椭圆的参数方程4 椭圆的简单几何性质5 点与椭圆的位置关系6 关于焦点三角形与焦点弦22(,)B x y ,AB7 椭圆的光学性质8. 关于直线与椭圆的位置关系问题常用处理方法2)y 代入椭圆方程,并将两式相减,可得二 典例剖析1 求椭圆的标准方程【例1】(1)已知椭圆的中心在原点,焦点在x 轴上,一个焦点与短轴的两个端点的连-方程为____________(2)椭圆的中心在原点,焦点在坐标轴上,直线1y x =+交椭圆于,P Q 两点,若0OP OQ ⋅=,且102PQ =,则椭圆方程为_____________________ 10PQ =【例2】设椭圆()222210x y a b a b+=>>的左焦点为F ,上顶点为A ,过A 点作AF 的垂线分别交椭圆于P ,交x 轴于Q ,且85AP PQ =(1)求椭圆的离心率。

(2)若过,,A F Q 三点的圆恰好与直线30x ++=相切,求椭圆的方程。

)由(1)得:(3,Q c【例3】已知中心在原点的椭圆的左,右焦点分别为12,F F ,斜率为k 的直线过右焦点2F与椭圆交于,A B 两点,与y 轴交于点M 点,且22MB BF = (1)若k ≤(2)若k =AB 的中点到右准线的距离为10033,求椭圆的方程c【例4】已知椭圆的中心在原点O ,短轴长为右准线交x 轴于点A ,右焦点为F ,且2OF FA =,过点A 的直线l 交椭圆于,P Q 两点 (1)求椭圆的方程(2)若0OP OQ ⋅=,求直线l 的方程(3)若点Q 关于x 轴的对称点为Q ',证明:直线PQ '过定点 (4)求OPQ 的最大面积2k-时,取“【例5】已知椭圆C的中心在原点,焦点在x轴上,椭圆C上的点到焦点的距离的最大值为3,最小值为1(1)求椭圆C的标准方程=+与椭圆交于,A B两点(,A B不是左,右顶点)且以(2)若直线:l y kx mAB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标所以()(2243316434343m m mkkk-+++++2 椭圆的性质【例6】已知椭圆()222210x y a b a b+=>>的两个焦点分别为()1,0F c -,()2,0F c ,在椭圆上存在一点P ,使得120PF PF ⋅= (1)求椭圆离心率e 的取值范围(2)当离心率e 取最小值时,12PF F 的面积为16,设,A B 是椭圆上两动点,若线段AB 的垂直平分线恒过定点(0,Q 。

①求椭圆的方程;②求直线AB的斜率k的取值范围。

①②【注1】在方法二中,也可由QA QB =得到②【注2】求取值范围问题通常要建立不等式,关于不等式的来源有以下几种情况:(1)已知不等式;(2)椭圆上的点的横坐标满足0a x a -≤≤;(3)0∆>;(4)椭圆内部的点()00,x y 满足2200221x y a b+<;【例7】椭圆的中心在原点,焦点在x 轴上,斜率为1的直线过椭圆的右焦点2F 与椭圆交于,A B 两点,OA OB +与向量()3,1a =-共线。

(1)求椭圆的离心率e(2)设M 为椭圆上任一点,若(),OM OA OB R λμλμ=+∈,求证:22λμ+为定值【例8】已知A 为椭圆()222210x y a b a b+=>>上一动点,弦,AB AC 分别过焦点12,F F ,当AC x ⊥轴时,恰有123AF AF =. (1)椭圆的离心率(2)设111AF F B λ=,222AF F C λ=,判断12λλ+是否为定值?11AF y F B-6有一个斜率不存在,不妨设【例9】设00(,)P x y 是椭圆()222210x y a b a b+=>>上的定点,过P 点作两条直线,PA PB与椭圆分别交于,A B 两点(异于P 点)且满足直线PA 与PB 的倾斜角互补,求证:直线AB 的斜率为定值2b (②3. 最值问题【例10】已知12,F F 是椭圆2214x y +=的左,右焦点以及两定点()1,,0,222M N ⎛⎫⎪⎝⎭(1)设P 为椭圆上一个动点①求1PF PM +的最大值与最小值;②求12PF PF ⋅的最大值与最小值。

(2)过N 点作直线l 与椭圆交于,A B 两点,若AOB ∠为锐角(O 为原点),求直线l 的斜率的取值范围-,即点P 为椭圆短轴端点时,,由向量的数量积定义及余弦定理可得:12PF PF =⋅⋅22212121212PF PF F F PF PF PF +-⋅⋅⋅ 2⎢⎣⎦3y -(以下同解法一))显然直线0x =不满足题设条件,【例11】已知椭圆22:143x yC+=,AB是垂直于x轴的弦,直线4x=交x轴于点N,F为椭圆C的右焦点,直线AF与BN交于点M (1)证明:点M在椭圆C上(2)求AMN面积的最大值2y =)1,函数h【例12】已知椭圆的中心在原点,左,右焦点分别为())120,0F F ,右顶点为()2,0A ,设11,2M ⎛⎫⎪⎝⎭,过原点O 的直线与椭圆交于,B C 两点,求MBC的最大值【例13】(08 山东)已知曲线()1:10x yC ab a b+=>>所围成的封闭图形的面积为曲线1C 的内切圆半径为3,记2C 是以1C 与坐标轴的交点为顶点的椭圆 (1)求椭圆2C 的标准方程(2)设AB 是过椭圆2C 中心的任意弦,l 是AB 线段的垂直平分线,M 是l 上异于椭圆中心的点。

①若MO OA λ=(O 为坐标原点)当A 点在椭圆2C 上运动时,求点M 的轨迹方程; ②若点M 是l 与椭圆2C 的交点,求AMB 的最小面积2y45+2OM 281(1=+OA OM ,【例14】已知椭圆22:143x y C +=的左,右焦点分别为12,F F ,过1F 的直线与椭圆交于,A B 两点(1)求2AF B 的面积的最大值(2)当2AF B 的面积最大值时,求12tan F AF ∠的值2y =(2211243k +=+【例15】(2009山东卷) 设椭圆E: ()222210x y a b a b+=>>过M (2) ,,1)两点,O 为坐标原点, (1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

(3)设直线l 与椭圆222:(2C x y r r +=<<相切于P 点,与椭圆E 只有一个公共点Q ,当r 取何值时,PQ 取得最大值?并求此最大值1=于是22221212121228()()(+)12m ky y kx m kx m k x x km x x m k -=++=++=+要使OA OB ⊥,需使 12120x x y y +=,所以 223880m k --=, ①因为直线y kx m =+为圆心在原点的圆的一条切线, 所以圆的半径为2222(1)1m r m r k k=⇒=++②由 ① ② 可得:263r =,所求的圆为2283x y +=,而当切线的斜率不存在时,切线为263x =±,与椭圆22184x y+=的两个交点为2626(,)33±或2626(,)33-±,满足OA OB ⊥。

综上, 存在圆心在原点的圆2283x y +=,使得该圆的任意一条切线与椭圆E恒有两个交点A 、B ,且OA OB ⊥.②因为, 1224+12km x x k-=+,21222812m x x k -=+, 所以 22212121211(+)4AB k x x k x x x x =+-=+-22222428141212km m k k k ⎛⎫--⎛⎫=+- ⎪ ⎪++⎝⎭⎝⎭()()222228(84)112k m kk -+=++ 2223245132134413441k k k k k k k ++⎛⎫=⋅=+ ⎪++++⎝⎭ⅰ)当0k ≠时,32111344AB k k ⎛⎫=+ ⎪++ ⎪⎝⎭。

因为221448k k ++≥ 所以221101844k k <≤++,, 即 3232111213344k k ⎛⎫<+≤ ⎪++ ⎪⎝⎭, 所以46||233AB <≤,当且仅当22k =±时取”=”.ⅱ)当0k =时,46||3AB =.= 0OP OQ ⊥,且圆的方程为222222a bx y a b+=+;反之,若OP OQ ⊥,则O 点到直线PQ 的距离为定值. 当k PQ ba =±时,|PQ|取得最大值;当2k 0PQ =或PQ x ⊥轴时,|PQ|.4 直线与椭圆的位置关系【例16】已知12,F F 是椭圆22:14x C y +=的左,右焦点,直线l 与椭圆相切。

(1)分别过12,F F 作切线l 的垂线,垂足分别为M N ,,求12FM F N ⋅的值 (3)设直线l 与x 轴,y 轴分别交于两点,A B ,求AB 的最小值。

【例17】已知椭圆22:194x yC+=,过点()03P,作直线l与椭圆顺次交于,A B两点(A在,P B之间)。

(1)求PAPB的取值范围;(2)是否存在这样的直线l,使得以弦AB为直径的圆经过坐标原点?若存在,求l的方程,若不存在,说明理由。

x4 )0,1,故求得:2222x y ⎨⎪+=,即 y【例18】设,A B 是椭圆()2230x y λλ+=>上两点,点()3N 1,是线段AB 的中点,线段AB 的垂直平分线交椭圆于,C D 两点 (1)确定λ的取值范围,并求直线AB 的方程(2)是否存在这样的实数λ,使得,,,A B C D 四点在同一圆上?并说明理由【例19】(2010江苏)已知椭圆22:195x y C +=的左,右焦点为12,F F ,左,右顶点为,A B ,过点()T t m ,的直线,TA TB 分别交椭圆于点()()()112212,0,0M x y N x y y y ><,,(1)设动点P ,满足2224PF PB -=,求点P 的轨迹方程(2)当1x =2,213x =时,求T 点的坐标(3)设9t =,求证:直线MN 过x 轴上的定点三 解题小结两点,点。

相关文档
最新文档