黄冈中学中考数学公式定理知识点考点总结
黄冈中学中考数学公式定理知识点考点汇总

黄冈中学中考数学公式定理知识点考点汇总初中数学知识点总结1.整数(包括正整数、0和负整数)和分数(包括有限小数和无限循环小数)是有理数。
例如:-3、-0.231、0.7373?,,无限非循环小数叫做无理数。
例如,π,-,0.1010010001?(两1)之间依次还有一个0)。
有理数和无理数统称为实数。
2.绝对值:a≥ 0丨a丨=a;a≤0A=-A.例如:丨=;Α 3.14 - π = π - 3.143、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.以±a310n的形式书写一个数字(其中1≤ a<10,n是整数)。
这种计数方法被称为科学计数法。
例如:-40700=-4.073105,0.000043=4.3310-5.5。
乘法公式(反之,因子分解公式):① (a+b)(a-b)=A2-B2。
分机:1n?n?1??n?n?1n?n?1??n?n?1??n?n?12② (a±b)2=A2±2Ab+B2。
扩展:或1?1?1?1?22a?2??a2?aa?2?2a?aa?a??2同理:还是1?1.1.1.22x?2.十、2.十、十、2.2倍?xx?十、22③(a+b)(a2-ab+b2)=a3+b3。
④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)b)2-4ab.公式扩展:⑥ (x?Y?Z)3?x3?y3?z3?3x2y?3xy2?3y2z?3yz2?3x2z?3xz2?6xyz⑦x3?y3?z3?3xyz?(x?y?z)(x2?y2?z2?xy?yz?xz)⑧x4?x2y2?y4?(x2?xy?y2)(x2?xy?y2)⑨1?2?3(n?1)?n?n(n?1)⑩1?3?5(2n?3)?(2n?1)?n22⑾2?4?6(2n?2)?2n?n (n?1)6.功率运行特性:①am3an=am+n.如:a33a2=a5;②am÷an=am-n.如:a6÷a2=a4;③(am)n=amn.如:(a3)2=a6,(3a3)3=27a9,④(ab)n=anbn.⑤()n=aˉnbn1.⑥特别的:()n=(n)。
初中数学定理公式总结(附带背诵口诀)

初中数学定理公式总结(附带背诵口诀)1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度平均数:对于n 个数x 1,x 2 … x n ,我们把(x 1+x 2+…+x n )/n 叫做这个n 个数的算术平均数,记为12n x x x x n++⋅⋅⋅+= 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
方差公式:2222121()()()n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎣⎦其中x 是n 个数x 1,x 2 … x n 的平均数二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理 三角形两边的和大于第三边16、推论 三角形两边的差小于第三边17、三角形内角和定理 三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法:22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质:30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3 等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定:34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
2023黄冈市中考数学考点

2023黄冈市中考数学考点黄冈市中考数学考点分式1.分式:一般地,用a、b表示两个整式,a÷b就可以表示为的形式,如果b 中含有字母,式子叫做分式.2.有理式:整式与分式统称有理式;即.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则:.8.分式的乘方:.9.负整指数计算法则:(1)公式:a0=1(a≠0),a-n=(a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式:(-1)-2=1,(-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数相同因式的次幂.12.同分母与异分母的分式加减法法则:.13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.中考数学考点总结【因式分解】1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的公约数相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式”.中考数学考点一、圆的面积s=π×r×r其中,π是周围率,约等于3.14r是圆的半径。
初中中考数学常用公式及重要性质和定理(重新整理)

【中考必备】初中几何定理必背总结大全1、过两点有且只有一条直线。
2 、两点之间线段最短。
3 、同角或等角的补角相等。
4、同角或等角的余角相等。
5 、同一平面内,过一点有且只有一条直线和已知直线垂直。
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7 、平行公理:(1)在同一平面内,不相交的两条直线收做平行线。
(2)经过直线外一点,有且只有一条直线与这条直线平行。
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9 、同位角相等,两直线平行。
10 、内错角相等,两直线平行。
11 、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13 、两直线平行,内错角相等。
14 、两直线平行,同旁内角互补。
15 、定理:三角形两边的和大于第三边。
16 、推论:三角形两边的差小于第三边。
17 、三角形内角和定理:三角形三个内角的和等于180°18 、推论1 :直角三角形的两个锐角互余。
19 、推论2 :三角形的一个外角等于和它不相邻的两个内角的和。
20 、推论3 :三角形的一个外角大于任何一个和它不相邻的内角。
21 、全等三角形的对应边、对应角相等。
22、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(SAS)23 、角边角公理:有两角和它们的夹边对应相等的两个三角形全等(ASA)24 、推论:有两角和其中一角的对边对应相等的两个三角形全等(AAS)25 、边边边公理:有三边对应相等的两个三角形全等(SSS)26 、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(HL)27 、定理1 :在角的平分线上的点到这个角的两边的距离相等(垂线段长)28 、定理2 :到一个角的两边的距离相同的点,在这个角的平分线上。
29 、角的平分线是到角的两边距离相等的所有点的集合。
30 、等腰三角形的性质定理:等腰三角形的两个底角相等。
31 、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。
中考数学公式和定理(数学公式定理)

中考数学公式和定理(数学公式定理)中考数学公式和定理(数学公式定理)在平时的学习中,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。
掌握知识点是我们提高成绩的关键!下面是小编精心整理的中考数学公式和定理,欢迎大家分享。
中考数学公式和定理一、二项式定理二项式定理是指这样一个展开式的公式.它是(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3…等等展开式的一般形式,在初等数学中它与各章节的联系似乎不太多,而在高等数学中它是许多重要公式的共同基础,根据二项式定理的展开,才求得y=xn的导数公式y′=nxn-1,同时e≈2.718281…也正是由二项式定理的展开规律所确定。
二、掌握二项展开式的特点1.项数:共n+1项.2.系数:组合数Crm叫做二项式系数.要注意"二项式系数"是严格定义的概念,仅指展开式中的组合数,它与"项的系数"是不同的概念.3.指数:按通项公式记准升幂与降幂的规律.4.因为二项式系数就是组合数,所以应将上一节学过的组合数的两个性质与本节学习的性质综合起来概括出组合数的所有有用的性质.中考数学公式和定理分享一、指数函数的定义指数函数的一般形式为y=a^x(a>0且≠1) (x∈R).二、指数函数的性质1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)高中数学知识点:幂函数一、定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y>0,图像在第一;二象限.这时(-1)^p的指数p的奇偶性无关.如果函数的指数的分母m是偶数,而分子n是任意整数,则x>0(或x>=0);y>0(或y>=0),图像在第一象限.与p的奇偶性关系不大。
中考数学重点公式、定理、推论总结

中考数学重点公式、定理、推论总结数学是研究数量、构造、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面是分享的中考数学重点公式、定理、推论总结,欢迎大家学习!1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理:经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理:三角形两边的和大于第三边16推论:三角形两边的差小于第三边17三角形内角和定理:三角形三个内角的和等于180°18推论1:直角三角形的两个锐角互余19推论2:三角形的一个外角等于和它不相邻的两个内角的和20推论3:三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理:有两边和它们的夹角对应相等的两个三角形全23角边角公理:有两角和它们的夹边对应相等的两个三角形全24推论:有两角和其中一角的对边对应相等的两个三角形全等25边边边公理:有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1:在角的平分线上的点到这个角的两边的间隔相等28定理2:到一个角的两边的间隔相同的点,在这个角的平分线上29角的平分线是到角的两边间隔相等的所有点的集合30等腰三角形的性质定理:等腰三角形的两个底角相等31推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1:三个角都相等的三角形是等边三角形36推论2:有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理:线段垂直平分线上的点和这条线段两个端点的间隔相40逆定理:和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42定理1:关于某条直线对称的两个图形是全等形43定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)X180°51推论:任意多边的外角和等于360°52平行四边形性质定理1:平行四边形的对角相等53平行四边形性质定理2:平行四边形的对边相等54推论:夹在两条平行线间的平行线段相等55平行四边形性质定理3:平行四边形的对角线互相平分56平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58平行四边形判定定理3:对角线互相平分的四边形是平行四边形59平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60矩形性质定理1:矩形的四个角都是直角61矩形性质定理2:矩形的对角线相等62矩形判定定理1:有三个角是直角的四边形是矩形63矩形判定定理2:对角线相等的平行四边形是矩形64菱形性质定理1:菱形的四条边都相等65菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积二对角线乘积的一半,即S二(aXb)三267菱形判定定理1:四边都相等的四边形是菱形68菱形判定定理2:对角线互相垂直的平行四边形是菱形69正方形性质定理1:正方形的四个角都是直角,四条边都相等70正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1:关于中心对称的两个图形是全等的72定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理:等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等。
中考数学重点公式、定理、推论总结

数学辅导:中考数学重点公式、定理、推论总结1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理:三角形两边的和大于第三边16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°18 推论1:直角三角形的两个锐角互余19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理:有两边和它们的夹角对应相等的两个三角形全等23 角边角公理:有两角和它们的夹边对应相等的两个三角形全等24 推论:有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理:有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1:在角的平分线上的点到这个角的两边的距离相等28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理:等腰三角形的两个底角相等31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1:三个角都相等的三角形是等边三角形36 推论2:有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1:关于某条直线对称的两个图形是全等形43 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47 勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论:任意多边的外角和等于360°52 平行四边形性质定理1:平行四边形的对角相等53 平行四边形性质定理2:平行四边形的对边相等54 推论:夹在两条平行线间的平行线段相等55 平行四边形性质定理3:平行四边形的对角线互相平分56 平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3:对角线互相平分的四边形是平行四59 平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60 矩形性质定理1:矩形的四个角都是直角61 矩形性质定理2:矩形的对角线相等62 矩形判定定理1:有三个角是直角的四边形是矩形63 矩形判定定理2:对角线相等的平行四边形是矩形64 菱形性质定理1:菱形的四条边都相等65 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1:四边都相等的四边形是菱形68 菱形判定定理2:对角线互相垂直的平行四边形是菱形69 正方形性质定理1:正方形的四个角都是直角,四条边都相等70 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1:关于中心对称的两个图形是全等的72 定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理:等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理:不在同一直线上的三个点确定一条直线110 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2:圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理:一条弧所对的圆周角等于它所对的圆心角的一半117 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 ①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r122 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理:圆的切线垂直于经过切点的半径124 推论1:经过圆心且垂直于切线的直线必经过切点125 推论2:经过切点且垂直于切线的直线必经过圆心。
中考数学高频定理公式

中考数学高频定理公式中考数学中,有一些定理公式是非常重要且高频出现的,同学们在备考过程中要熟练运用这些定理公式。
一、几何常识与定理1.重心定理:三角形的三条中线交于一点,该点称为重心。
2.中线定理:三角形的中线上的那个点,将中线分为两段,其中一段的长度是另一段长度的2倍。
3.垂心定理:三角形的三条高交于一点,该点称为垂心。
4.相似三角形的性质:对应角相等,对应边成比例。
5.三角形的面积公式:三角形的面积等于底乘以高的一半。
6.直角三角形的勾股定理:直角三角形的斜边的平方等于两边的平方和。
7.常见勾股数:(3,4,5)、(5,12,13)、(8,15,17)。
二、代数运算1.分配律:a*(b+c)=a*b+a*c。
2.因式分解公式:差的平方可以分解为两个数的乘积,例如:a²-b²=(a+b)(a-b)。
3. 完全平方公式:两个含有平方的项相加可以化简为一个完全平方,例如:a²+2ab+b² = (a+b)²。
4. 二次方程两根之和与两根之积:对于二次方程ax²+bx+c=0,两根之和为-b/a,两根之积为c/a。
5.平方差公式:两个含有平方的项相减可以化简为一个平方差,例如:a²-b²=(a+b)(a-b)。
6. 二次函数顶点坐标:对于二次函数y=ax²+bx+c,顶点坐标为(-b/2a, f(-b/2a))。
三、概率与统计1.事件概率:事件A发生的概率P(A)等于事件A的可能性总数除以总的样本空间的可能性总数。
2.相反事件的概率:事件A的对立事件A'发生的概率为1减去事件A发生的概率,即P(A')=1-P(A)。
3.和事件的概率:P(AUB)=P(A)+P(B)-P(AB)。
4.互斥事件的概率:互斥事件A和B之间没有共同的样本点,即P(AB)=0,P(AUB)=P(A)+P(B)。
5.条件概率:事件A在事件B已经发生的条件下发生的概率定义为P(A,B)=P(AB)/P(B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学中考数学公式定理知识点考点总结————————————————————————————————作者:————————————————————————————————日期:初中数学知识点总结1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a ≥0丨a 丨=a ;a ≤0丨a 丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10ˉ5.5、乘法公式(反过来就是因式分解的公式): ①(a +b )(a -b )=a 2-b 2.扩展:()()111111-=--±-=-±n n n n n n n n n n μμμ②(a ±b )2=a 2±2ab +b 2.扩展:211222±+=⎪⎭⎫ ⎝⎛±a a a a 或 211222μ⎪⎭⎫ ⎝⎛±=+a a a a 同理:211222±+=⎪⎭⎫ ⎝⎛±x x x x 或211222μ⎪⎭⎫ ⎝⎛±=+x x x x ③(a +b )(a 2-ab +b 2)=a 3+b 3.④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab .公式拓展:⑥3333222222()3333336x y z x y z x y xy y z yz x z xz xyz ++=+++++++++⑦3332223()()x y z xyz x y z x y z xy yz xz ++-=++++---⑧42242222()()x x y y x xy y x xy y ++=++-+⑨(1)123(1)2n n n n ++++⋅⋅⋅+-+=⑩2135(23)(21)n n n +++⋅⋅⋅+-+-= ⑾246(22)2(1)n n n n +++⋅⋅⋅+-+=+6、幂的运算性质:①a m ×a n =a m +n .如:a 3×a 2=a 5 ; ②a m ÷a n =a m -n .如: a 6÷a 2=a 4; ③(a m )n =a mn .如:(a 3)2=a 6,(3a 3)3=27a 9, ④(ab )n =a n b n .⑤()n =a ˉn b n⑥a ˉn =1n a,特别:()ˉn =()n .如:(-3)ˉ1=-,5ˉ2==,()ˉ2=()2=;⑦a 0=1(a ≠0).如:(-3.14) 0=1,(-)0=1.7、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=(a >0,b ≥0).如:①(3)2=45.②=6.③a <0时,=-a .④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)注:①如果一个数的平方是a ,那么,这个数就在于叫a 的平方根(或叫二次方根)。
a 叫被开方数。
开平方中被开方数a 必须大于等于零。
②正数的平方根有两个,它们的绝对值相等,符号相反(它们是互为相反的数)。
这两个根中的正数根,叫做算术平方根。
零的算术平方根是零。
负数没有平方根。
③如果一个数的立方等于a ,那么这个数就叫a 的立方根。
3开立方的根指数。
正数、负数和零都能开立方,正数的立方根是正数;负数的立方根是负数;零的立方根是零。
8、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x =242b b aca -±-,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2). ③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距).当k >0时,y 随x 的增大而增大(直线从左向右上升);当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点. 补充:斜率:1212tan x x y y k --==α b 为直线在y 轴上的截距①直线的斜截式方程,简称斜截式: y =kx +b (k ≠0) ②由直线上两点确定的直线的两点式方程,简称两点式: 111212)()(tan y x x x x x y y b x b kx y +---=+=+=α ③由直线在x 轴和y 轴上的截距确定的直线的截距式方程,简称截距式:1=+bya x④设两条直线分别为,1l :11y k x b =+ 2l :22y k x b =+ 若12//l l ,则有1212//l l k k ⇔=且12b b ≠。
若12121l l k k ⊥⇔⋅=-⑤点P (x 0,y 0)到直线y=kx+b(即:kx-y+b=0) 的距离: 1)1(2002200++-=-++-=k by kx k b y kx d10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,从左P(x 0 b xy y=kx+bA(x 1, B(x 2, α 0 d a向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则])()()[(1222212x x x x x x ns n -++-+-=Λ标准差:方差的算术平方根.数据1x 、2x ……, n x 的标准差s ,则])()()[(122221x x x x x x ns n -++-+-=Λ 一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;13、锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A=,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .③特殊角的三角函数值:sin0º=cos90º=tan90º=0,sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,sin90º=cos0º=1, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b ). (2)坐标平移:若直角坐标系内一点P (a ,b )向左平移h 个单位,坐标变为P (a -h ,b ),向右平hlα移h 个单位,坐标变为P (a +h ,b );向上平移h 个单位,坐标变为P (a ,b +h ),向下平移h 个单位,坐标变为P (a ,b -h ).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A (7,1).15、二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同. ②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .几种特殊的二次函数的图像特征如下: 函数解析式开口方向 对称轴 顶点坐标 2ax y =当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=20=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2abx 2-= (ab ac a b 4422--,) 4.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。