函数与函数的零点知识点总结

合集下载

函数与函数的零点知识点总结

函数与函数的零点知识点总结

函数与函数的零点知识点总结函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数一般用f(x)或者y来表示,其中x称为自变量,y称为因变量。

函数的定义域是自变量可能取值的集合,值域是函数可能取值的集合。

零点,也称为函数的根或者零,是指函数在一些特定的自变量值下,对应的函数值为0的情况。

即f(x)=0时的x值。

零点是函数图像与x轴的交点。

知识点一:线性函数的零点线性函数的一般形式为y = kx + b,其中k和b为常数。

线性函数的零点可以通过给定y=0来求解方程kx + b = 0,解方程可得x的值,即为线性函数的零点。

知识点二:二次函数的零点二次函数的一般形式为y = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。

二次函数的零点可以通过求解方程ax^2 + bx + c = 0来得到,解方程的方法一般有因式分解、配方法和求根公式等。

知识点三:多项式函数的零点多项式函数是由一系列单项式相加或相减而得到的函数。

多项式函数的零点是使得函数值等于0的自变量值。

求多项式函数的零点可以通过因式分解,然后将每个因子设置为0,解出自变量的值。

知识点四:无理函数的零点无理函数是指具有无理指数或无理根的函数,常见的无理函数有开方函数、分式函数等。

求无理函数的零点一般通过化简为二次方程或者其他方程,然后求解方程得到。

知识点五:幂函数的零点幂函数是指以幂指数函数为自变量的函数,形如y=x^a,其中a为常数。

幂函数的零点可以通过将幂指数函数设置为0来求解。

当a为偶数时,幂函数的零点只有一个,即x=0;当a为奇数时,幂函数的零点有两个,即x=0和x=-0。

知识点六:三角函数的零点三角函数是一类基本的数学函数,包括正弦函数、余弦函数、正切函数等。

三角函数的零点是指函数值等于0的自变量的值。

求三角函数的零点一般通过观察三角函数图像的周期性,找到函数值为0的自变量区间。

综上所述,函数与函数的零点是高中数学中的重要内容。

函数零点的定义

函数零点的定义

函数零点的定义
函数零点,就是当f(x)=0时对应的自变量x的值,需要注意的是零点是一个数值,而不是一个点,是函数与X轴交点的横坐标。

一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x 叫作函数y=f(x)(x∈R)的零点(the zero of the function)。

即函数的零点就是使函数值为0的自变量的值。

函数的零点不是一个点,而是一个实数。

扩展资料:
一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线y=0)交点的横坐标,所以方程f(x)=0有实数根,推出函数y=f(x)的图像与x轴有交点,推出函数y=f(x)有零点。

更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

函数知识点(详细)

函数知识点(详细)

第二章函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值X 围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值X 围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。

高一上册数学函数知识点归纳总结

高一上册数学函数知识点归纳总结

高一上册数学函数知识点归纳总结1. 函数的定义和性质函数是一种具有特定关系的映射关系,包括定义域、值域、对应关系等。

函数可以表示为数学表达式、图像或者数据集合。

函数的性质包括单调性、奇偶性、周期性等。

2. 基本初等函数常见的基本初等函数包括线性函数、幂函数、指数函数、对数函数、三角函数等。

它们各自具有不同的特性和性质,在数学中有广泛的应用。

3. 函数的图像与性质函数的图像是通过绘制函数的各个点而形成的曲线。

通过观察函数的图像,可以了解函数的特点、性质和变化趋势。

常见的图像包括直线、抛物线、指数增长曲线等。

4. 函数的运算与复合函数函数之间可以进行加减乘除等运算,得到新的函数。

函数的复合指的是将一个函数的输出作为另一个函数的输入,从而得到一个新的函数。

函数的运算和复合可以通过代数运算和函数图像来进行研究。

5. 函数的零点和极限函数的零点是函数取值为零的点,也就是方程 f(x)=0 的解。

函数的极限是指当自变量趋向于某个值时,函数取值的趋势和趋向。

寻找函数的零点和研究函数的极限是解决各种数学问题的基础。

6. 反函数与反比例函数如果函数 f(x) 和函数 g(x) 互为反函数,那么对于 f(g(x))=x 和g(f(x))=x 成立。

反比例函数指的是函数的值和自变量成反比例的关系,可以表示为 y=k/x,其中 k 是常数。

7. 函数的导数与微分导数是函数在某一点的变化率,表示为 f'(x),可以用来解决函数的最值、曲线的切线和函数的变化趋势等问题。

微分是刻画函数局部变化的工具,通过求取函数在某一点的微分来研究函数的性质。

8. 函数的应用函数在实际问题中有广泛的应用,如模拟、建模、最优化、曲线拟合等。

通过函数的定义和性质,可以将实际问题转化为数学模型,并用函数来解决相关的数学和实际问题。

通过以上对高一上册数学函数知识点的归纳总结,我们可以更好地理解函数的基本概念、性质和运用,进而提升数学解题能力和问题解决能力。

函数的零点

函数的零点

函数的零点零点这一块内容知识点比较少,但我相信本文引用的例题对于高一新生来说有较大的参考价值。

【零点】设有一函数f(x),我们把能够使f(x)=0的实数x_0称为函数f(x)的一个“零点”。

显然,函数的零点和它的图像与x轴交点横坐标对应(零点并非几何意义上的点,而是数字,但在不关心数值,只关心零点个数的时候,我们不必强调“横坐标”这件事,因为这并不影响“对应”一词的正确性)。

零点可以通过解方程f(x)=0得到,但零点个数不一定与对应方程的实根个数相同。

例如f(x)=(x-1)^2(x-2)(x^2+1),我们说对应方程有三个实根:x_1=x_2=1,x_3=2,但说函数的零点只有1,2两个。

不难理解,对于函数F(x)=f(x)-g(x),它的零点对应函数f(x)与g(x)图像的交点。

特别地,如果g(x)=c,从而是一个常数函数,那么F(x)的零点就对应函数f(x)的图像与直线y=c的交点。

【例】【2020-2021学年嘉兴市高一上期末统考】(多选)若定义在\bold{R} 上的函数 f(x) 满足 f(-x)+f(x)=0 ,当 x<0 时,f(x)=x^2+2ax+\dfrac 32a ( a \in \bold{R} ),则下列说法正确的是:A. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 a<0 或4<a<8 ;B. 若方程 f(x)=ax+\dfrac a2 有两个不同的实数根,则 4<a<8 ;C. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>8 ;D. 若方程 f(x)=ax+\dfrac a2 有4个不同的实数根,则 a>4 。

解:首先,由题意, f(x) 是奇函数,这样就可以根据已知的 x<0时的解析式写出函数在 \bold{R} 上的解析式:f(x)=\begin{cases} -x^2+2ax-\dfrac 32a& (x>0)\\ 0& (x=0)\\x^2+2ax+\dfrac 32a& (x<0) \end{cases}根据选项,设 g(x)=ax+\dfrac a2 。

高一数学函数的零点存在定理及其应用分析总结

高一数学函数的零点存在定理及其应用分析总结
在判断函数单调性中的应用
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则f(x)在区间(a, b)内有零点。
单调性判断:根据零点存在定理,如果函数f(x)在区间[a, b]上有零点,则f(x)在区间(a, b)上至少有一个单调区间。
应用实例:例如,判断函数f(x)=x^3-x在区间[-1, 1]上的单调性,可以通过零点存在定理来判断。
结合实际应用:结合实际例子,理解定理的应用方法和技巧
注意定理的局限性:了解定理的局限性和适用条件
掌握定理的应用范围:了解定理的应用条件和适用范围
感谢您的观看
注意事项:在使用零点存在定理判断函数单调性时,需要注意函数的连续性和零点的存在性。
在研究函数图像中的应用
求解函数方程:通过零点存在定理,可以求解函数方程,得到函数的解析式
确定函数图像的零点:通过零点存在定理,可以确定函数图像的零点位置
判断函数图像的性质:通过零点存在定理,可以判断函数图像的连续性、单调性等性质
研究函数图像的极限:通过零点存在定理,可以研究函数图像的极限,得到函数的极限值
在解决实际问题中的应用
零点存在定理在解决实际问题中的应用广泛,如求解方程、优化问题等
零点存在定理在解决实际问题时,需要注意定理的适用条件和范围,避免错误应用
零点存在定理在解决实际问题时,需要结合实际问题的具体情况,灵活运用
零点存在定理的数学表达
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则函数f(x)在区间(a, b)内至少有一个零点。
零点:函数f(x)的零点是指使得f(x)=0的x值。
பைடு நூலகம்
连续函数:如果函数f(x)在区间[a, b]上每一点x都有定义,且对于任意的ε>0,存在δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则称f(x)在区间[a, b]上是连续的。

函数零点的题型总结

函数零点的题型总结

函数零点的题型总结考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是()(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是() (A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】(1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为() (A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是()(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x 2-2x-3)=0,又x∈[-1,4],所以x 2-2x-3=(x-1)2-4∈[-4,5],当cos(x 2-2x-3)=0时,x 2-2x-3=kπ+π2,k∈Z,在相应的范围内,k 只有-1,0,1三个值可取,所以总共有4个零点,故选B. 解析:(2)令2xx+x-2x=0,化简得2|x|=2-x 2,画出y=2|x|,y=2-x 2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( )(A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)=3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x≤-2时,-1-3a>0,a<-13,且121-+-1-3a≤0,a≥-23,使得第一段有一个零点,故a∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e .综上所述,a∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C )(A)(0,4) (B)(0,+∞) (C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a∈(3,4),故选C.2.已知偶函数f(x)=4log ,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2018]的零点个数为( A ) (A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8.令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x xx x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞)(B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2, 由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b≤2,所以1<12log x 3≤2⇒x 3∈[14,12), 所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14),所以1t+t∈(174,25716],故选B.解析:(2)因为满足f(12+x)=f(32-x),所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2)(B)[3-2ln 2,2](C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1,则满足0<n≤e-1,-2<m≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n≤e-1,则h′(n)=1-21n+=11nn-+,当h′(n)>0,解得1<n≤e-1,当h′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为(A)(A)(1,+∞)(B)(0,+∞)(C)(12,+∞)(D)(12,1)解析:方程12e x +x-a=0的根,即y=12e x 与y=a-x 图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x 与y=a-x 图象交点的横坐标, 而y=12e x 与y=ln 2x 的图象关于直线y=x 对称,如图所示.所以x 1+x 2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)=42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24)(D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( ) (A)e (B)e 2 (C)e 3 (D)e 4(2)(2018·四川联测促改)已知f(x)=9x -t·3x ,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β, 所以ln β-ln e 2=4e β,所以ln2e β=4e β=22e e β.所以α,2e β分别是方程e x =2e x ,ln x=2e x 的根,因为点(α,2e α)与点(2eβ,4e β)关于直线y=x 对称,所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x---+=1212xx -+=-2121x x-+=-g(x), 所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t·3a +9-a -t·3-a =0有解, 即t=9933a aa a--++有解.令m=3a +3-a (m≥2),则9933a a a a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞)(B)(-∞,18](C)[18,14) (D)(0,18]解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x,即f(x)=log m (m x +2t)=2x,即m x +2t=12x m 在R 上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x +2t=12x m 可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18]. 故选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及函数的零点有关概念函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。

1.1求函数的定义域时从以下几个方面入手:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。

(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2x k k Z ππ≠+∈.(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法:复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。

(1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域;(3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。

2).求函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法1、图像法;2、层层递进法;3、分离常数法;4、换元法;5、单调性法;6、判别式法;7、有界性;8、奇偶性法;9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域(二)分段函数问题1:已知定义域求值域问题(代入法) 2:已知定义域求值域问题(代入法) 3.分段函数解析式的求法 要点2.函数的性质(一)函数的单调性(局部性质): 1).函数单调性的判定(A) 定义法:定义1:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间。

等价定义:设[]2121,,x x b a x x ≠∈⋅那么:[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.定义2.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.(B)图象法(从图象上看升降) 2.函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. (D) 导数法 2)函数的单调区间3)利用函数单调性解不等式,比较大小,求参数的值或取值范围及最值问题 1. (比较大小) 2.(最值)3.(参数范围问题)4.(解不等式) 4)抽象函数的单调性 5).函数单调性的常用结论:1、若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数2、若()f x 为增(减)函数,则()f x -为减(增)函数3、若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

(二)函数的奇偶性(整体性质):紧扣函数奇偶性的定义和函数的定义域区间关于坐标原点对称、函数图象的对称性等对问题进行分析转化,特别注意“奇函数若在x =0处有定义,则一定有f(0)=0,偶函数一定有f(|x|)=f(x)”在解题中的应用. 1)函数奇偶性的判断 1.1一般函数奇偶性的判断1.定义:偶函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.奇函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数.2.性质:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.3.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 1.2分段函数奇偶性的判断 方法:图像法、定义法(注意带人) 2)利用奇偶性求函数的解析式(注意带入)3)抽象函数奇偶性的证明 4)函数奇偶性的常用结论:1、如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.6、若函数()f x 的定义域关于原点对称,则()f x 可以表示为11()[()()][()()]22f x f x f x f x f x =+-+--,该式的特点是:右端为一个奇函数和一个偶函数的和。

(三)函数的周期性几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠, 或[]21()()(),(()0,1)2f x f x f x a f x -=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 要点3.函数的图象1.解决该类问题要熟练掌握基本初等函数的图象和性质,善于利用函数的性质来作图,要合理利用图象的三种变换.2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究. (一)图像变换问题(1) 画法 A 、描点法:B 、图象变换法常用变换方法有三种:1)平移变换;2)伸缩变换;3)对称变换; (二)图像识别问题 要点4.二次函数(一)闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a bx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.(二)二次函数的移轴问题 1)定区间动轴 2)定轴动区间 3)轴动区间动(三)一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .(四).定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≤ (t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.(五)二次函数的奇偶性 要点5.基本初等函数 一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆负数没有偶次方根;0的任何次方根都是0,记作00=n 。

相关文档
最新文档