含参数的一元二次不等式题(答案)

合集下载

含参数的一元二次不等式例题

含参数的一元二次不等式例题

含参数的一元二次不等式例题例题 1解不等式:x^2 2x + a > 0,其中a为参数。

解析:对于一元二次方程x^2 2x + a = 0,其判别式\Delta = 4 4a。

当\Delta 0,即4 4a 0,a > 1时,不等式的解集为R。

当\Delta = 0,即4 4a = 0,a = 1时,不等式化为(x 1)^2 > 0,解集为x ≠ 1。

当\Delta > 0,即4 4a > 0,a 1时,方程x^2 2x + a = 0的两根为x_1 = 1 \sqrt{1 a},x_2 = 1 + \sqrt{1 a},不等式的解集为x 1 \sqrt{1 a}或x > 1 + \sqrt{1 a}。

例题 2解不等式:ax^2 + 2x + 1 > 0,其中a为参数。

解析:当a = 0时,不等式化为2x + 1 > 0,解得x > \frac{1}{2}。

当a ≠ 0时,对于一元二次方程ax^2 + 2x + 1 = 0,其判别式\Delta = 4 4a。

若\Delta 0,即4 4a 0,a > 1,不等式的解集为R。

若\Delta = 0,即4 4a = 0,a = 1,不等式化为(x + 1)^2 > 0,解集为x ≠ 1。

若\Delta > 0,即4 4a > 0,a 1且a ≠ 0,方程ax^2 + 2x + 1 = 0的两根为x_1 = \frac{1 + \sqrt{1 a}}{a},x_2 =\frac{1 \sqrt{1 a}}{a}。

当0 a 1时,不等式的解集为x \frac{1 \sqrt{1 a}}{a}或x > \frac{1 + \sqrt{1 a}}{a}。

当a 0时,不等式的解集为\frac{1 + \sqrt{1 a}}{a} x\frac{1 \sqrt{1 a}}{a}。

一元二次不等式练习题含答案

一元二次不等式练习题含答案

一元二次不等式练习题含答案Last revision on 21 December 2020一元二次不等式练习一、选择题1.设集合S ={x |-5<x <5},T ={x |x 2+4x -21<0},则S ∩T =( )A .{x |-7<x <-5}B .{x |3<x <5}C .{x |-5<x <3}D .{x |-7<x <5}2.已知函数y =ax 2+2x +3的定义域为R ,则实数a 的取值范围是( )A .a >0B .a ≥13C .a ≤13D .0<a ≤133.不等式x +1x -2≥0的解集是( ) A .{x |x ≤-1或x ≥2} B .{x |x ≤-1或x >2}C .{x |-1≤x ≤2}D .{x |-1≤x <2}4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a ,b 的值分别是( ) A .a =-8,b =-10 B .a =-1,b =9C .a =-4,b =-9D .a =-1,b =25.不等式x (x -a +1)>a 的解集是{}x |x <-1或x >a ,则( )A .a ≥1B .a <-1C .a >-1D .a ∈R6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3<x <1,则函数y =f (-x )的图象为( )7.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围是( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)二、填空题8.若不等式2x 2-3x +a <0的解集为(m,1),则实数m 的值为________.9.若关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +b x -2>0的解集是________.10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________.三、解答题11.解关于x 的不等式:ax 2-2≥2x -ax (a <0)..12.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围;(2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.答案1.【解析】 ∵S ={x |-5<x <5},T ={x |-7<x <3},∴S ∩T ={x |-5<x <3}.【答案】 C2.【解析】 函数定义域满足ax 2+2x +3≥0,若其解集为R ,则应⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4-12a ≤0,∴a ≥13. 【答案】 B3.【解析】 x +1x -2≥0⎩⎪⎨⎪⎧ x +1x -2≥0,x -2≠0x >2或x ≤-1. 【答案】 B4.【解析】 依题意,方程ax 2+bx -2=0的两根为-2,-14, ∴⎩⎨⎧ -2-14=-b a ,12=-2a ,即⎩⎪⎨⎪⎧a =-4,b =-9. 【答案】 C5.【解析】 x (x -a +1)>a (x +1)(x -a )>0,∵解集为{}x |x <-1或x >a ,∴a >-1.【答案】 C .6. 【解析】 由题意可知,函数f (x )=ax 2+bx +c 为二次函数,其图象为开口向下的抛物线,与x 轴的交点是(-3,0),(1,0),又y =f (-x )的图象与f (x )的图象关于y 轴对称,故只有B 符合.7.【解析】 ∵a ⊙b =ab +2a +b ,∴x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2,原不等式化为x 2+x -2<0-2<x <1.【答案】 B8. 【解析】 ∵方程2x 2-3x +a =0的两根为m,1,∴⎩⎨⎧ m +1=32,1·m =a 2,∴m =12. 【答案】 12 9.【解析】 由于ax >b 的解集为(1,+∞),故有a >0且b a =1.又ax +b x -2>0(ax +b )(x -2)=a (x +1)(x -2)>0(x +1)(x -2)>0,即x <-1或x >2.【答案】 (-∞,-1)∪(2,+∞)10.【解析】 方程9x +(4+a )3x +4=0化为:4+a =-9x +43x =-⎝⎛⎭⎫3x +43x ≤-4, 当且仅当3x =2时取“=”,∴a ≤-8.【答案】 (-∞,-8]11.【解析】 原不等式化为ax 2+(a -2)x -2≥0(x +1)(ax -2)≥0.①若-2<a <0,2a <-1,则2a≤x ≤-1; ②若a =-2,则x =-1;③若a <-2,则-1≤x ≤2a. 综上所述,当-2<a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x |2a ≤x ≤-1; 当a =-2时,不等式解集为{x |x =-1};当a <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 12.【解析】 (1)要使mx 2-mx -1<0,x ∈R 恒成立.若m =0,-1<0,显然成立;若m ≠0,则应⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0-4<m <0. 综上得,-4<m ≤0.(2)∵x ∈[1,3],f (x )<-m +5恒成立, 即mx 2-mx -1<-m +5恒成立; 即m (x 2-x +1)<6恒成立,而x 2-x +1>0,∴m <6x 2-x +1. ∵6x 2-x +1=6⎝⎛⎭⎫x -122+34, ∴当x ∈[1,3]时,⎝ ⎛⎭⎪⎫6x 2-x +1min =67, ∴m 的取值范围是m <67.。

含参数的一元二次不等式

含参数的一元二次不等式
(a)当 (b)当 (c)当
1 1 1 即 a 1时,原不等式的解集为: {x | x 1} a a 1 1即 a 1 时,原不等式的解集为: a
1 1 a

1 {x |1 x } 0 a 1 时,原不等式的解集为: a
含参数的一元二次不等式的解法
综上所述, (1)当 a 0 时,原不等式的解集为 (2)当 a 0 时,原不等式的解集为
2
又不等式即为 (x-2a)(x-3a)>0
故只需比较两根2a与3a的大小.
x 解: 原不等式可化为: 2a ( x 3a) 0
相应方程 x 2a ( x 3a) 0 的两根为 x1 2a, x2 3a ∴(1)当 2a 3a 即 a 0 时,原不等式解集为 x | x 2a或x 3a
综上所述: a 0时,原不等式解集为:x | x 2a或x 3a
a 0时,原不等式解集为: | x 3a或x 2a x
(2)当 2a 3a 即 a 0 时,原不等式解集为 x | x 3a或x 2a
两根大小的讨论
例题讲解
含参数的一元二次不等式的解法
2 ∴(a)当 k 0 时,原不等式即为 2 x 0
解集为:x x 0
解集为:x x 2
2 x 2 8x 8 0 ∴(b)当 k 8时,原不等式即为
k 2 8k 0 即 k 0 或 k 8 (3)当
时,
k k 2 8k k k 2 8k x x 4 4
例3: 解不等式
2
x ax 4 0
2
解:∵ a 16 ∴ 当a 4,4即 0时

含参数的一元二次不等式的解法(专题)

含参数的一元二次不等式的解法(专题)

含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。

解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。

解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ; 当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且;当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。

含参一元二次不等式专项训练

含参一元二次不等式专项训练

含参一元二次不等式专项训练含参一元二次不等式专题训练解答题(共12小题)1.已知不等式(ax﹣1)(x+1)<0 (a∈R).2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.5.求x的取值范围:(x+2)(x﹣a)>0.3.解关于x的不等式ax2+2x﹣1<0(a>0).4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.7.解关于x的不等式(x﹣1)(ax﹣2)>0.8.解关于x的不等式,其中a≠0.9.解不等式:mx2+(m﹣2)x﹣2<0.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.11.解关于x的不等式ax2﹣(a+1)x+1<0.12.解关于x的不等式ax2﹣2≥2x﹣ax(a∈R).含参一元二次不等式专题训练参考答案与试题解析一.解答题(共12小题)1.(2009•如皋市模拟)已知不等式(ax﹣1)(x+1)<0 (a∈R).(1)若x=a时不等式成立,求a的取值范围;(2)当a≠0时,解这个关于x的不等式.考点:一元二次不等式的解法.专题:计算题;综合题;分类讨论;转化思想.分析:(1)若x=a时不等式成立,不等式转化为关于a的不等式,直接求a的取值范围;(2)当a≠0时,当a>0、﹣1<a<0、a<﹣1三种情况下,比较的大小关系即可解这个关于x的不等式.解答:解:(1)由x=a时不等式成立,即(a2﹣1)(a+1)<0,所以(a+1)2(a ﹣1)<0,所以a<1且a≠﹣1.所以a 的取值范围为(﹣∞,﹣1)∪(﹣1,1).(6分)(2)当a>0时,,所以不等式的解:;当﹣1<a<0时,,所以不等式(ax﹣1)(x+1)<0的解:或x<﹣1;当a<﹣1时,,所以不等式的解:x<﹣1或.当a=﹣1时,不等式的解:x<﹣1或x>﹣1综上:当a>0时,所以不等式的解:;当﹣1<a<0时,所以不等式的解:或x>﹣1;当a≤﹣1时,所以不等式的解:x<﹣1或.(15分)点评:本题考查一元二次不等式的解法,考查转化思想,分类讨论思想,是中档题.2.解关于x的不等式:x2+(a+1)x+a>0(a是实数).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:x2+(a+1)x+a>0(a是实数).可化为(x+a)(x+1)>0.对a与1的大小分类讨论即可得出.解答:解:x2+(a+1)x+a>0(a是实数)可化为(x+a)(x+1)>0.当a>1时,不等式的解集为{x|x>﹣1或x<﹣a};当a<1时,不等式的解集为{x|x>﹣a或x<﹣1};当a=1时,不等式的解集为{x|x≠﹣1}.点评:本题考查了一元二次不等式的解法、分类讨论的方法,属于基础题.3.解关于x的不等式ax2+2x﹣1<0(a>0).考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:由a>0,得△>0,求出对应方程ax2+2x﹣1=0的两根,即可写出不等式的解集.解答:解:∵a>0,∴△=4+4a>0,且方程ax2+2x﹣1=0的两根为x1=,x2=,且x1<x2;∴不等式的解集为{x|<x<}.点评:本题考查了不等式的解法与应用问题,解题时应按照解一元二次不等式的步骤进行解答即可,是基础题.4.解关于x的不等式,(a∈R):(1)ax2﹣2(a+1)x+4>0;(2)x2﹣2ax+2≤0.考点:一元二次不等式的解法.专题:计算题;不等式的解法及应用.分(1)分a=0,a>0,a<0三种情况进行讨论:a=0,a<0析:两种情况易解;a>0时,由对应方程的两根大小关系再分三种情况讨论即可;(2)按照△=4a2﹣8的符号分三种情况讨论即可解得;解答:解:(1)ax2﹣2(a+1)x+4>0可化为(ax﹣2)(x ﹣2)>0,(i)当a=0时,不等式可化为x﹣2<0,不等式的解集为{x|x<2};(ii )当a>0时,不等式可化为(x﹣)(x﹣2)>0,①若,即0<a<1时,不等式的解集为{x|x<2或x>};②若=2,即a=1时,不等式的解集为{x|x≠2};③若,即a>1时,不等式的解集为{x|x<或x>2}.(iii)当a<0时,不等式可化为(x﹣)(x﹣2)<0,不等式的解集为{x|<x<2}.综上,a=0时,不等式的解集为{x|x<2};0<a<1时,不等式的解集为{x|x<2或x >};a=1时,不等式的解集为{x|x≠2};a>1时,不等式的解集为{x|x<或x>2};a<0时,不等式的解集为{x|<x<2}.(2)x 2﹣2ax+2≤0,△=4a2﹣8,①当△<0,即﹣a时,不等式的解集为∅;②当△=0,即a=时,不等式的解集为{x|x=a};③当△>0,即a<﹣或a>时,不等式的解集为[x|a﹣≤x≤a}.综上,﹣a时,不等式的解集为∅;a=时,不等式的解集为{x|x=a};a <﹣或a >时,不等式的解集为[x|a﹣≤x≤a}.点评:该题考查含参数的一元二次不等式的解法,考查分类讨论思想,若二次系数为参数,要按照二次系数的符号讨论;若△符号不确定,要按△符号讨论;若△>0,要按照两根大小讨论.属中档题.5.求x的取值范围:(x+2)(x﹣a)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:①当a=﹣2时,不等式(x+2)(x﹣a)>0化为(x+2)2>0,解得x≠﹣2,其解集为{x|x∈R,且x≠1}.②当a>﹣2时,由不等式(x+2)(x﹣a)>0,解得x<﹣2或x>a,其解集为{x|x<﹣2或x>a}.③当a<﹣2时,由不等式(x+2)(x﹣a)>0,解得x<a或x>﹣2,其解集为{x|x<a或x>﹣2}.综上可得:①当a=﹣2时,原不等式的解集为{x|x∈R,且x≠1}.②当a>﹣2时,原不等式的解集为{x|x<﹣2或x>a}.③当a<﹣2时,原不等式的解集为{x|x<a或x>﹣2}.点评:本题考查了一元二次不等式的解法和分类讨论的方法,属于基础题.6.当a>﹣1时,解不等式x2﹣(a+1)x﹣2a2﹣a≥0.考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:把不等式x2﹣(a+1)x﹣2a2﹣a≥0化为(x+a)[x﹣(2a+1)]≥0,讨论a的取值,写出对应不等式的解集.解答:解:不等式x2﹣(a+1)x﹣2a2﹣a≥0可化为(x+a)[x﹣(2a+1)]≥0,∵a>﹣1,∴﹣a<1,2a+1>﹣1;当﹣a=2a+1,即a=﹣时,不等式的解集是R;当﹣a>2a+1,即﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};当﹣a<2a+1,即a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.∴a=﹣时,不等式的解集是R;﹣1<a<﹣时,不等式的解集是{x|x≤2a+1,或x≥﹣a};a>﹣时,不等式的解集是{x|x≤﹣a,或x≥2a+1}.点评:本题考查了含有字母系数的不等式的解法问题,解题时应在适当地时候,对字母系数进行讨论,是基础题.7.解关于x的不等式(x﹣1)(ax﹣2)>0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:通过对a分类讨论,利用一元二次不等式的解法即可得出解集.解答:解:①当a=0时,不等式(x﹣1)(ax ﹣2)>0化为﹣2(x﹣1)>0,即x﹣1<0,解得x<1,因此解集为{x|x<1}.②当a >0时,原不等式化为.当a>2时,则,∴不等式(x﹣1)(x﹣)>0的解集是{x|x>1或x}.当a=2时,=1,∴不等式化为(x﹣1)2>0的解集是{x|x≠1}.当0<a<2时,则,∴不等式(x﹣1)(x ﹣)>0的解集是{x|x<1或x}.③当a<0时,原不等式化为,则,∴不等式(x﹣1)(x﹣)<0的解集是{x|x<1}.综上可知::①当a=0时,不等式的解集为{x|x<1}.②当a>0时,不等式的解集是{x|x>1或x}.当a=2时,不等式的解集是{x|x≠1}.当0<a<2时,不等式的解集是{x|x<1或x }.③当a<0时,不等式的解集是{x|x<1}.点评:本题考查了分类讨论方法、一元二次不等式的解法,属于中档题.8.解关于x的不等式,其中a≠0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:方程,其中a≠0两根为1,,对两根大小分类讨论求解.解答:解:当a<0时,,不等式的解集为…(3分)当0<a<1时,,不等式的解集为…(6分)当a=1时,,不等式的解集为ϕ…(9分)当a>1时,,不等式的解集为…(11分)综上所述:当a<0时,或a>1,原不等式的解集为当0<a<1时,原不等式的解集为当a=1时,原不等式的解集为ϕ…(12分)点评:本题主要考查了一元二次不等式的解法,其中主要考查了分类讨论的思想在解题中的应用.9.解不等式:mx2+(m﹣2)x ﹣2<0.考点:一元二次不等式的解法.专题:分类讨论;不等式的解法及应用.分析:把不等式等价变形为(x+1)(mx﹣2)<0,讨论m 的取值,从而求出不等式的解集.解答:解:原不等式可化为(x+1)(mx﹣2)<0,当m=0时,不等式为﹣2(x+1)<0,此时解得x>﹣1.当m≠0,则不等式等价为m(x+1)(x﹣)<0.若m>0,则不等式等价为(x+1)(x ﹣)<0,对应方程的两个根为﹣1,,此时不等式的解为﹣1<x<.若m<0.则不等式等价为(x+1)(x﹣)>0,对应方程的两个根为﹣1,.若﹣1=,解得m=﹣2,此时不等式为(x+1)2>0,此时x≠﹣1.若﹣2<m<0时,<﹣1,此时不等式的解为x>﹣1或x<.若m<﹣2时,>﹣1,此时不等式的解为x<﹣1或x>.综上:m>0时,不等式的解集为{x|﹣1<x<},m=0时,不等式的解集为{x|x>﹣1};m=﹣2,不等式的解集为{x|x≠﹣1};﹣2<m<0,不等式的解集为{x|x>﹣1或x<};m<﹣2,不等式的解集为{m|x<﹣1或x>}.点评:本题考查了含有参数的一元二次不等式的解法问题,解题时应对参数进行分类讨论,是易错题.10.解下列不等式:(1)ax2+2ax+4≤0;(2)(a﹣2)x2﹣(4a﹣3)x+(4a+2)≥0.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:(1)通过对a和△分类讨论,利用一元二次不等式的解法即可解出;(2)通过对a分类讨论,利用一元二次不等式的解法即可得出.解答:解:(1)①当a=0时,原不等式可化为4≤0,不成立,应舍去.②当a≠0时,△=4a2﹣16a.当a=4时,△=0,原不等式可化为(x+1)2≤0,解得x=﹣1,此时原不等式的解集为{﹣1};当△<0时,解得0<a<4.此时原不等式的解集为∅.当△>0时,解得a>4或a<0.由ax2+2ax+4=0,解得=,当a>4时,原不等式的解集为{x|};当a<0时,原不等式的解集为{x|x ≥或}.综上可得:当a=4时,不等式的解集为{﹣1};当△<0时,不等式的解集为∅.当△>0时,当a>4时,不等式的解集为{x|};当a<0时,不等式的解集为{x|x ≥或}.(2)①当a=2时,原不等式化为﹣5x+10≥0,解得x≤2,此时不等式的解集为{x|x≤2};②当a≠2时,△=25.此时不等式化为[(a﹣2)x﹣(2a+1)](x﹣2)≥0,当a >2时,化为,此时,因此不等式的解集为{x|x≥或x≤2};当a <2时,,此时不等式化为,不等式的解集为{x|}.综上可得:①当a=2时,不等式的解集为{x|x≤2};②当a>2时,不等式的解集为{x|x≥或x≤2};当a<2时,不等式的解集为{x|}.点评:本题考查了分类讨论、一元二次不等式的解法,考查了计算能力,属于难题.11.解关于x的不等式ax2﹣(a+1)x+1<0.考点:一元二次不等式的解法.专题:计算题;分类讨论.分析:当a=0时,得到一个一元一次不等式,求出不等式的解集即为原不等式的解集;当a≠0时,把原不等式的左边分解因式,然后分4种情况考虑:a小于0,a大于0小于1,a 大于1和a等于1时,分别利用求不等式解集的方法求出原不等式的解集即可.解答:解:当a=0时,不等式的解为x>1;当a≠0时,分解因式a (x﹣)(x﹣1)<0当a<0时,原不等式等价于(x﹣)(x﹣1)>0,不等式的解为x>1或x<;当0<a<1时,1<,不等式的解为1<x<;当a>1时,<1,不等式的解为<x<1;当a=1时,不等式的解为∅.点评:此题考查了一元二次不等式的解法,考查了分类讨论的数学思想,是一道综合题.12.解关于x的不等式ax2﹣2≥2x ﹣ax(a∈R).考点:一元二次不等式的解法.专题:计算题;分类讨论.分析:对a分类:a=0,a>0,﹣2<a<0,a=﹣2,a<﹣2,分别解不等式,求解取交集即可.解答:解:原不等式变形为ax2+(a﹣2)x ﹣2≥0.①a=0时,x≤﹣1;②a≠0时,不等式即为(ax﹣2)(x+1)≥0,当a>0时,x≥或x≤﹣1;由于﹣(﹣1)=,于是当﹣2<a<0时,≤x≤﹣1;当a=﹣2时,x=﹣1;当a<﹣2时,﹣1≤x≤.综上,当a=0时,x≤﹣1;当a>0时,x≥或x≤﹣1;当﹣2<a<0时,≤x≤﹣1;当a=﹣2时,x=﹣1;当a<﹣2时,﹣1≤x≤.点评:本题考查不等式的解法,考查分类讨论思想,是中档题.。

含参数的一元二次不等式的解法专题训练

含参数的一元二次不等式的解法专题训练

含参数的一元二次不等式的解法专题训练本文讲解含参数的一元二次不等式的解法。

解这类不等式通常需要分类讨论,常用的分类方法有三种:一、按$x$ 项的系数$a$ 的符号分类,即$a>0$,$a=0$,$a<0$。

举例来说,对于不等式 $ax+(a+2)x+1>2$,我们可以先分析二次项系数含有参数的情况,即 $\Delta=(a+2)-4a=a+4>0$,因此只需要对二次项系数进行分类讨论。

当 $a>0$ 时,解集为 $x>x_1$ 或 $x<x_2$,其中 $x_1$ 和$x_2$ 是方程 $ax+(a+2)x+1=0$ 的两根。

当 $a=0$ 时,不等式为 $2x+1>0$,解集为 $x>-1/2$。

当 $a<0$ 时,解集为 $x_2<x<x_1$。

二、按判别式 $\Delta$ 的符号分类,即 $\Delta>0$,$\Delta=0$,$\Delta<0$。

举例来说,对于不等式 $x+ax+4>0$,因为 $x$ 的系数大于 $0$,所以只需考虑 $\Delta$ 与根的情况。

当 $\Delta<0$ 时,解集为 $x\in\mathbb{R}$;当 $\Delta=0$ 时,解集为 $x\in\mathbb{R}$ 且 $x\neq a/2$;当 $\Delta>0$ 时,解集为 $x>a_1$ 或 $x<a_2$,其中$a_1$ 和 $a_2$ 是方程 $x+ax+4=0$ 的两根。

三、按不等式左侧的表达式分类,即 $ax^2+bx+c$。

举例来说,对于不等式 $m+1x-4x+1\geq 0$,因为$m+1>0$,所以只需考虑 $\Delta$ 的情况。

当 $\Delta=0$,即 $m=-3$ 或 $m=3$ 时,解集为 $x=1/2$;当 $\Delta>0$,即 $-3(2+m)/(m+2)$ 或 $x<(2-m)/(m+2)$;当 $\Delta3$ 时,解集为 $x\in\mathbb{R}$。

一元二次不等式(含答案)

一元二次不等式(含答案)

一元二次不等式1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:函数与不等式Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a无实根ax2+bx+c>0(a>0)的解集①②Rax2+bx+c<(a>0)的解集{x|x1<x<x2}∅③3.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f(x)g(x)的形式.(2)将分式不等式转化为整式不等式求解,如:f(x)g(x)>0⇔f(x)g(x)>0;f(x)g(x)<0⇔f(x)g(x)<0;f(x)g(x)≥0⇔x)g(x)≥0,(x)≠0;f(x)g(x)≤0⇔x)g(x)≤0,(x)≠0.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)解:∵A={x|x≥3或x≤-1},B={x|-2≤x<2},∴A∩B={x|-2≤x≤-1}=[-2,-1].故选A.设f(x)=x2+bx+1且f(-1)=f(3),则f(x)>0的解集为()A.{x|x∈R}B.{x|x≠1,x∈R}C.{x|x≥1}D.{x|x≤1}解:f(-1)=1-b+1=2-b,f(3)=9+3b+1=10+3b,由f(-1)=f(3),得2-b=10+3b,解出b=-2,代入原函数,f(x)>0即x2-2x+1>0,x的取值范围是x≠1.故选B.已知-12<1x<2,则x的取值范围是()A.-2<x <0或0<x <12B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式1-2xx +1>0的解集是.解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0x +1)<0,所以-1<x <12.|-1<x <12,x ∈若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈∅;若k <0,则只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a ∞a +b >0,且3b -2a a +b=-13,从而a =2b ,则a +b =3b >0,即b >0,将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3).点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b =-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合(2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0;(2)-x 2-2x +3≥0;(3)x 2-2x +1<0;(4)x 2-2x +2>0.解:(1){x |x <3或x >4}.(2){x |-3≤x ≤1}.(3)∅.(4)因为Δ<0,可得原不等式的解集为R .已知函数f (x )x +1,x <0,-1,x ≥0,则不等式x +(x +1)f (x +1)≤1的解集是()A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1}解:由题意得不等式x +(x +1)f (x +1)≤1等价于①+1<0,+(x +1)[-(x +1)+1]≤1+1≥0,+(x +1)[(x +1)-1]≤1,解不等式组①得x<-1;解不等式组②得-1≤x≤2-1.故原不等式的解集是{x|x≤2-1}.故选C.类型三二次不等式、二次函数及二次方程的关系已知关于x的不等式x2-bx+c≤0的解集是{x|-5≤x≤1},求实数b,c的值.解:∵不等式x2-bx+c≤0的解集是{x|-5≤x≤1},∴x1=-5,x2=1是x2-bx+c=0的两个实数根,5+1=b,5×1=c,=-4,=-5.已知不等式ax2+bx+c>0的解集为{x|2<x<3},求不等式cx2-bx+a>0的解集.解:∵不等式ax2+bx+c>0的解集为{x|2<x<3},∴a<0,且2和3是方程ax2+bx+c=0的两根,由根与系数的关系得-ba=2+3,2×3,.=-5a,=6a,<0.代入不等式cx2-bx+a>0,得6ax2+5ax+a>0(a<0).即6x2+5x+1<|-12<x类型四含有参数的一元二次不等式解关于x的不等式:mx2-(m+1)x+1<0.解:(1)m=0时,不等式为-(x-1)<0,得x-1>0,不等式的解集为{x|x>1};(2)当m≠0时,不等式为x-1)<0.①当m<0x-1)>0,∵1m<1|x<1m或x>②当m>0x-1)<0.(Ⅰ)若1m<1即m>1|1m<x<(Ⅱ)若1m>1即0<m<1|1<x(Ⅲ)若1m=1即m=1时,不等式的解集为∅.点拨:当x2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m≠0与m=0进行讨论,这是第一层次;第二层次:x2的系数正负(不等号方向)的不确定性,对m<0与m>0进行讨论;第三层次:1m与1大小的不确定性,对m<1、m>1与m=1进行讨论.解关于x的不等式ax2-2≥2x-ax(a∈R).解:不等式整理为ax2+(a-2)x-2≥0,当a=0时,解集为(-∞,-1].当a≠0时,ax2+(a-2)x-2=0的两根为-1,2a,所以当a>0时,解集为(-∞,-1]∪2a,+当-2<a<0时,解集为2a,-1;当a=-2时,解集为{x|x=-1};当a<-2时,解集为-1,2a.类型五分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1⇔x -12x +1-1≤0⇔-x -22x +1≤0⇔x +22x +1≥0.x +22x +1≥0⇔x +2)(2x +1)≥0,x +1≠0.得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是.解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2},故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根,“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B |x -2x≤A ∩B =()A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B (x -2)≤0,≠0的解集,求出B ={x |0<x ≤2},所以A ∩B={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为()-12,1 B.-12,1[1,+∞)-∞,-12∪[1,+∞)解:x -12x +1≤0x -1)(2x +1)≤0,x +1≠0得-12<x ≤1.故选A.类型六和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ,12成立,则a 的最小值为()A.0B.-2C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ,12,∴a ≥∵f (x )=x +1x ,12上是减函数,x max=-52.∴a ≥-52.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是()A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1](1)>0,(-1)>02-3x +2>0,2-5x +6>0⇒x <1或x >3,故选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:2)>0,2)>02-4x +3>0,2-1>0>3或x <1,>1或x <-1.∴x <-1或x >3.类型七二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是()A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.。

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

不等式32x--x1≥1 的解集是(
)
A.{x|34≤x≤2}
B.{x|x≤34或 x>2}
C.{x|34≤x<2}
D.{x|x<2}
[答案] C
[解析] 不等式32x--x1≥1,化为:42x--x3≥0, ∴34≤x<2.
命题方向 简单高次不等式解法
*[例 2] 不等式xxx-+32<0 的解集为(
)
A.{x|x<-2,或 0<x<3}
B.{x|-2<x<2,或 x>3}
C.{x|x<-2,或 x>0}
D.{x|x<0,或 x<3}
[答案] A
[分析] 原不等式左端是分式,右端为 0,属于AB<0 型,可
等价转化为 AB<0,即 x(x+2)(x-3)<0,依次令 x=0,x+2=0,
x-3=0 得,x1=0,x2=-2,x3=3,将数轴按此三数对应点
(4)由条件知,a=-2,∴不等式 ax2+5x+7>0, 即-2x2+5x+7>0,∴2x2-5x-7<0, ∴-1<x<72.
1.一元分式不等式一般要转化为整式不等式求解. gfxx>0⇔f(x)·g(x)>0; gfxx≥0⇔fgxx·≠gx0≥0 ⇔f(x)·g(x)>0 或 fx=0 gx≠0 .
解法二:化为xx2≥+0x-2>0 (Ⅰ) 或x2-x-2>0 (Ⅱ)
x<0 由(Ⅰ)得,x>1;由(Ⅱ)得,x<-1. ∴原不等式的解集为{x|x<-1 或 x>1}.
(3)将不等式变形为 x-1≥ x+1,① 显然xx-+11≥≥00 ,∴x≥1, 在此条件下,将不等式①两边平方得 x2-2x+1≥x+1,∴ x2-3x≥0,∴x≤0 或 x≥3, 又 x≥1,∴x≥3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次不等式 参考例题(2)
1.(1)解不等式
121≤-x
x (}0,1|{>-≤x x x 或)
(2)不等式11<-x ax 的解集为}21|{><x x x ,或,求a 的值. (21=a )
2.解下列关于x 的不等式:
(1)01)1(2<++-x a
a x (2))23(0)3)(2(-≠≠<-+-a a x x a x ,且 }1|{01,1)3(1)2(}1|{10,1)1(a x a
x a a a a
x a x a a <<<<->Φ±=<<<<-<时,或当时,当时,或当 }3,2|{3)3(}3,2|{32)2(}32,|{2)1(a x x x a x a x x a x a x x a <<-<><<-<<<-<<-<-<或时,当或时,当或时,当
(3)01)1(2<++-x a ax (4)0)2)(2(>--ax x
}11|{1)5(1)4(}11|{10)3(}
1|{0)2(}1,1|{0)1(<<>Φ
=<<<<>=><<x a x a a a
x x a x x a x a
x x a 时,当时,当时,当时,当或时,当 }2,2|{,1)5(}2|{,1)4(}2,2|{,10)3(}2|{,0)2(}22|{,0)1(><>≠=><<<<=<<<x a
x x a x x a a x x x a x x a x a x a 或时当时当或时当时当时当 (5)012<++x ax (6)
)(11R a a x x ∈-<-
Φ≥-+-<<---<<-<=--->-+-<<时,当时,当时,当或时,当41)4(}24112411|{410)3(}1|{0)2(}2411,2411|{0)1(a a a x a a x a x x a a
a x a a x x a }1,1|{0)3(}1|{0)2(}11|
{0)1(a a x x x a x x a x a
a x a -><<<=<<->或时,当时,
当时,当
3.(1)若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,求实数a 的取值范围.(22≤<-a )
(2)若不等式
13642222<++++x x m mx x 的解集为R ,求实数m 的取值范围.(31<<m )
4.(1)已知}0)1(|{},023|{22≤++-=≤+-=a x a x x B x x x A ,
①若A B ,求实数a 的取值范围.;(2>a )
②若A B ⊆,求实数a 的取值范围.;(21≤≤a )
③若B A I 为仅含有一个元素的集合,求a 的值.(1≤a )
(2)已知}03
1|{≤--=x x x A ,B B A a x a x x B =≤++-=I 且},0)1(|{2,求实数a 的取值范围. (31<≤a )
(3) 关于x 的不等式2
)1(|2)1(|2
2-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 与B , 若B A ⊆,求实数a 的取值范围. (31,1≤≤-=a a 或)
(4)设全集R U =,集合}3|12||{},01
|{<+=≥+-=x x B x a x x A ,若R B A =Y , 求实数a 的取值范围. (12≤≤-a )
(5)已知全集R U =,}034|{},082|{},06|{2222<+-=>-+=<--=a ax x x C x x x B x x x A ,
若C B A ⊆)(I ,求实数a 的取值范围.( 21≤≤a )。

相关文档
最新文档