《光电子器件》笔记
《光电子器件》笔记

.光电子器件第一章1、光电探测器输出信号电压或电流与单位入射光功率之比,即单位入射光功率作用下探测器输出信号电压或电流称为响应率 .光谱响应率( Rλ):光电器件在单色 (在波长λ附近一个很小的波长范围里 ) 辐射功率作用下产生的信号电压或信号电流。
du s di s R R u R i R( )dP dP R m——其中 Rm 为光谱响应率的最大值——光谱电压响应率和光谱电流响应率合并称为光谱响应率Rλ(单位: A/W )R R(λ )R m 1.0R i1.24光谱响应率及量子效率仅由器件的响应特性所决定,而与光源无关。
2. 器件的光谱响应与光源辐射功率谱密度紧密相关,它们之间的匹配系统α—称为器件与光源的光谱匹配系数,它反映了器件响应的波长范围同光源光谱的吻合程度。
在光源固定的情况下,面积 A1 是不变的 ,如果与曲线重合得愈多,面积 A2 愈大 , α愈大,也就是光谱匹配愈好;反之 ,如果两曲线没有重合之处,α =0,即二者完全失配 ,则该光电器件对光源辐射没有探测能力。
光谱匹配是选择光电子器件,如像管、光电倍增管、红外成像器件的材料的重要依据。
R( )P( )11A2R()P ( )A1A1A23.光电探测器输出的电流或电压在其平均值上下无规则的、随机的起伏,称为噪声。
噪声是物理过程所固有的,人为不可能消除。
它的计算是在足够长时间内求其平方平均或均方根。
.光电探测器的 噪声来源主要 有热噪声、散粒噪声、温度噪声、放大器噪声、频率噪声、复合噪声等。
Pu nPminu s u nR u当输出信号电压等于输出噪声电压均方根值时的探测器的入射辐射功率叫做最小可探测辐射功率,也叫做噪声等效功率 NEP 。
Pmin 越小,器件的探测能力越强。
对 Pmin 取倒数可作为衡量探测器探测能力的参数,称为探测率 。
研究指出 :探测率与器件的面积和工作带宽成反比。
4.光吸收厚度 :设入射光的强度为I0,入射到样品厚度为 x 处的光强度为 I ,则:I Iexα为线吸收系数,单位为( 1/cm )α大时,光吸收主要发生在材料的表层;α小时,光入射得深。
电子技术基础教程第9章光电子器件及其应用优选全文

光敏电阻将光的强弱变化转变为电阻值的差异,从而
可以由流过电流表的不同电流直接显示亮度。其中R1、 R2用于调节表面刻度,RW用于控制表头的灵敏度。
2024/10/9
19
(2)红外测温仪的前置放大电路
调制光入射光敏电阻后转化为电信号,然后送放大
器进行放大。输出uO的大小即可反映温度的高低。
2024/10/9
光电耦合器件:光电器件与电光器件的组合。
2024/10/9
2
9.1 发光二极管(LED)
9.1.1 发光二极管的工作原理 1.发光二极管的外形、电路符号和伏安特性
外形图:
2024/10/9
3
电路符号和伏安特性
•LED的正向工作电压UF一般为1.5~3V; •反向击穿电压一般大于5V;
•正向工作电流IF为几毫安到几十毫安,且亮度随IF的增加而
10
9.2.1 光电器件及其应用
箭头与
LED符号
1.光电二极管外形、电路符号及工作原理 的区别
外形
2024/10/9
光导模式
电路符号
光伏模式
11
2.光电二极管的应用
(1)光电二极管的简单应用电路
光照射,2CU导 通,有电压输出
光照射2CU, VT导通, KA吸合。
简单光控电路
2024/10/9
光控继电器电路
增大;
•发光二极管正向工作电压的大小取决于制作材料;
•不同的半导体材料及工艺使发光二极管的颜色、波长、亮度、
光功率均不相同。
2024/10/9
4
2EF系列发光二极管的主要参数
型号
工作 电流
IF/mA
正向 发光 电压 强度
光电子器件笔记

光电子器件第一章1、 光电探测器输出信号电压或电流与单位入射光功率之比,即单位入射光功率作用下探测器输出信号电压或电流称为响应率.光谱响应率(R λ):光电器件在单色 (在波长λ附近一个很小的波长范围里) 辐射功率作用下产生的信号电压或信号电流。
——其中Rm 为光谱响应率的最大值R λ(单位:A/W )光谱响应率及量子效率仅由器件的响应特性所决定,而与光源无关。
2. 器件的光谱响应与光源辐射功率谱密度紧密相关,它们之间的匹配系统 α—称为器件与光源的光谱匹配系数,它反映了器件响应的波长范围同光源光谱的吻合程度。
在光源固定的情况下,面积A1是不变的,如果与曲线重合得愈多,面积A2愈大, α愈大,也就是光谱匹配愈好;反之,如果两曲线没有重合之处,α=0,即二者完全失配,则该光电器件对光源辐射没有探测能力。
光谱匹配是选择光电子器件,如像管、光电倍增管、红外成像器件的材料的重要依据。
3.光电探测器输出的电流或电压在其平均值上下无规则的、随机的起伏,称为噪声。
噪声是物理过程所固有的,人为不可能消除。
它的计算是在足够长时间内求其平方平均或均方根。
dP du R s u λλ=dP di R s i λλ=mR R R λλ=)( λR m R 1.24λλη)(λ R λ 12A A =α光电探测器的噪声来源主要有热噪声、散粒噪声、温度噪声、放大器噪声、频率噪声、复合噪声等。
当输出信号电压等于输出噪声电压均方根值时的探测器的入射辐射功率叫做最小可探测辐射功率,也叫做噪声等效功率NEP 。
Pmin 越小,器件的探测能力越强。
对Pmin 取倒数可作为衡量探测器探测能力的参数,称为探测率。
研究指出:探测率与器件的面积和工作带宽成反比。
4.光吸收厚度:设入射光的强度为 I0,入射到样品厚度为x 处的光强度为 I ,则:α为线吸收系数,单位为(1/cm )α大时,光吸收主要发生在材料的表层;α小时,光入射得深。
当厚度d=1/α时,称为吸收厚度,有64%的光被吸收。
微电子与光电子要点整理

第一章目前的微电子制造技术可以分为四个方面:双极型制造工艺、MOS制造工艺、Bi-CMOS制造工艺和SOI制造工艺。
双极型工艺的优缺点:(1)缺点:双极型工艺过程复杂、成本高、集成度低,在现在的超大规模集成电路中已经很少单独使用。
(2)优点:双极型工艺速度快、较大的电流驱动能力等特点是CMOS 工艺所达不到的。
在某些情况下,作为CMOS工艺的补充,双极型工艺仍然被少量地使用。
双极型三极管:是双极型工艺的典型器件,由两种载流子参与导电,由两个pn结组成,是一种电流控制电流源器件,分为PNP和NPN两种。
PN结隔离分为三种结构:(1)标准下埋集电极三极管(SBC)(2)集电极扩散隔离三极管(CDI)(3)三重扩散三极管(3D)典型的PN结隔离的双极型工艺流程复杂,总的工序一般有40多道(9次光刻,5次隔离)。
MOS场效应晶体管是金属—氧化物—半导体场效应晶体管的简称,它通过改变外加电压产生的电场强度来控制其导电能力。
MOS晶体管是电压控制元件,参与导电的只有一种载流子,因此称其为单极型器件。
MOS晶体管可以分为增强型晶体管与耗尽型晶体管两种。
根据沟道掺杂不同,又可分为N沟道增强型晶体管、P沟道增强型晶体管、N沟道耗尽型晶体管、P沟道耗尽型晶体管。
MOS场效应晶体管利用栅极电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。
P沟道MOS晶体管与N沟道MOS晶体管同时运用到一个集成电路中就构成了CMOS集成电路。
双阱工艺CMOS器件的结构示意图Bi-CMOS技术是一种将CMOS器件和双极型器件集成在同一芯片上的技术。
Bi-CMOS的制作工艺主要分为两大类:(1)低端Bi-CMOS工艺:以CMOS工艺为基础(2)高端Bi-CMOS工艺:以双极型工艺为基础,可进一步分为P阱Bi-CMOS工艺和双阱Bi-CMOS 工艺。
SOI(Silicon-On-Insulator,绝缘层上覆硅)器件与体硅器件相比,除了具备良好的抗辐射性能还具有以下各项优点:(1)功耗低(2)工作速度快(3)静电电容小,寄生电容小(4)可进一步提高集成电路芯片的集成度、功能和可靠性,能在微功耗、低电压、高温、高压等方面发挥它的优势(5)耐高温环境SOI晶圆结构示意图SOI材料是在绝缘层上生长一层具有一定厚度的单晶硅薄膜的材料。
光电子技术复习提纲(含标准答案)要点

光电⼦技术复习提纲(含标准答案)要点第1章绪论1.半导体光电器件是利⽤什么效应制作的器件?答:利⽤半导体光电效应制成的器件。
2.半导体光电器件是哪两种粒⼦相互作⽤的器件?答:是⼀种利⽤光⼦与电⼦相互作⽤所具有的特性来实现某种功能的半导体器件。
3.半导体发光器件主要包括哪两种?答:(1)发光⼆极管;(2)半导体激光器。
4.光电器件主要有利⽤哪些效应制作的器件?答:光电器件主要有利⽤半导体光敏特性⼯作的光电导器件,利⽤半导体光伏打效应⼯作的光电池和半导体发光器件等。
5.什么是半导体发光器件?答:利⽤半导体PN结正向通过电时载流⼦注⼊复合发光的器件称为半导体发光器件。
6.光电探测器件是如何转换信号的器件?答:通过电⼦过程探测光信号的器件,即将射到它表⾯上的光信号转换为电信号。
7.光电检测器⼯作在反向偏置状态。
8.光电池是利⽤什么效应制作的?答:光伏打效应。
9. 光纤通信的两个重要窗⼝是哪些?答:1.55um和1.3um。
第2章1. 光信号的频率在哪个频段?需要⽤什么器件检测?答:光信号的频率在1014 Hz以上,常⽤的电⼦器件⽆法对这⼀频率段产⽣良好的响应,必须使⽤光电⼦器件。
2. 常⽤的光电检测器:PIN、APD3. 光电检测器的⼯作过程?答:光电检测器件的⼯作过程:(1)光吸收——(2)电⼦-空⽳对产⽣——(3)载流⼦扩散和漂移——(4)检测4. 光信号(光束)⼊射到半导体材料后,如何产⽣电⼦空⽳对?答:光信号(光束)⼊射到半导体材料后,⾸先发⽣的过程就是半导体材料对光⼦的吸收,吸收光⼦以后才能产⽣价带电⼦的跃迁,从⽽产⽣电⼦空⽳对。
5. 半导体材料中的吸收过程可以分为哪两⼤类?答:本征吸收和⾮本征吸收6. 本征吸收⼜包括哪些?答:(1)直接吸收;(2)间接吸收7. ⾮本征吸收包括哪些?答:(1)激⼦吸收;(2)带内吸收;(3)杂质吸收8.本征吸收的必要条件?9.直接吸收中参与的粒⼦是什么?遵守哪两种守恒?答:只有电⼦和光⼦的参与,没有第3种粒⼦的参与。
第六章光电子材料与器件

主要由受激的喇曼散射和布里渊散射引起,且只在强入射光功 率激励下才表现出来
6.2 光纤
传输光纤 光纤色散特性
光纤的色散是由于光纤所传信号的不同频率成分或不同模式 成分的群速度不同而引起传输信号畸变的一种物理现象。
由于脉冲展宽,在光通讯中,为了不造成误码,必须降低脉 冲速率,这就将降低光纤通讯的信息容量和品质。而在光纤 传感方面,在需要考虑信号传输的失真度问题时,光纤的色 散也成为一个重要参数。
1 固体激光器的工作原理
固体激光器是研究最早的一类激光器,它以固体作为工作物 质,包括绝缘晶体和玻璃两大类。工作物质是在基质材料中 掺入激活离子(金属离子或稀土离子)而制成。
固体激光器的工作方 式主要分为脉冲和连 续(CW)两大类。
固体激光器的构成通 常包括工作物质、谐 振腔、泵浦光源这三 个基本组成部分
传输光纤
传输光纤主要用于光通信,对光纤性能有两个方面的要求:传 输损耗要低,光纤色散要小。
传输损耗特性
6.2 光纤
传输损耗特性
图6.7 光纤的总损耗谱
6.2 光纤
传输损耗特性 瑞利散射损耗
由于光纤材料—石英玻璃的密度不均匀和折射率不均匀引起
波导效应散射损耗
由于波导结构不规则,从而导致高阶模的辐射形成损耗
6.4 液晶显示材料与器件
1 液晶材料的物理性质
液晶的发现可追溯到19世纪末,1888年奥地利的植物学家 F·Reinitzer在作加热胆甾醇的苯甲酸脂实验时发现,当加热 使温度升高到一定程度后,结晶的固体开始溶解。但溶化后 不是透明的液体,而是一种呈混浊态的粘稠液体,并发出多 彩而美丽的珍珠光泽。当再进一步升温后,才变成透明的液 体。他把这种粘稠而混浊的液体放到偏光显微镜下观察,发 现这种液体具有双折射性。
光电子器件概念总结

1.光的基本属性:光的波粒二象性。
2.激光的特性:方向性好、单色性好、亮度高、相干性好。
3.玻尔假说:定态假设和跃迁假设。
定态假设:原子存在某些定态,在这些定态中不发出也不吸收电磁辐射能。
原子定态的能量只能采取某些分立的值,而不能采取其它值。
跃迁假设:只有当原子从较高能量的定态跃迁到较低能量的定态时,才能发射一个能量为h 的光子。
4.光与物质的共振相互作用的三种过程:自发辐射、受激吸收和受激辐射。
5.自发辐射跃迁几率的意义:在单位时间内,E2能级上N2个粒子数中自发跃迁的粒子数与N2的比值;也可以理解为每一个处于E2能级的粒子在单位时间内发生自发跃迁的几率。
6.自发辐射跃迁寿命:粒子在E2 能级上停留的平均时间称为粒子在该能级上的平均寿命,简称寿命。
τ=1/A217.亚稳态:寿命特别长的激发态称为亚稳态。
8.受激辐射的光子性质:放出光子的频率、振动方向、相位都与外来光子一致。
9.受激吸收和受激辐射这两个过程的关系及其宏观表现:在外来光束照射下,两能级间受激吸收和受激辐射这两个过程总是同时存在,相互竞争。
当吸收过程比受激辐射过程强时,宏观看来光强逐渐减弱;反之,当吸收过程比受激辐射过程弱时,宏观看来光强逐渐加强。
10.受激辐射与自发辐射的区别:最重要的区别在于光辐射的相干性,由自发辐射所发射的光子的频率、相位、振动方向都有一定的任意性,而受激辐射所发出的光子在频率、相位、振动方向上与激发的光子高度一致,即有高度的简并性。
11.光谱线加宽现象:实际上光强分布总在一个有限宽度的频率范围内,每一条谱线都有一定的宽度, v = v0只是谱线的中心频率.这种现象称为光谱线加宽。
12.谱线加宽的原因:由于能级有一定的宽度。
13.谱线加宽的物理机制分为哪两大类?它们的区别?可以根据谱线加宽的物理机制,将谱线加宽分为均匀加宽和非均匀加宽。
均匀加宽:引起加宽的物理因素对每个原子都是等同的。
发光粒子的光谱因物理因素加宽后中心频率不变,由它们迭加成的光源光谱形状与发光粒子相同。
光电子知识点总结

光电子知识点总结一、光电效应光电效应是指当光照射到金属表面时,金属表面会产生电子的现象。
光电效应是光电子学的基础,也是研究光与电子相互作用的重要实验现象。
1.1 光电效应的原理光电效应的原理是光子与金属表面的电子相互作用。
当光子能量大于金属表面的功函数时,光子可以激发出金属表面的电子,使得电子逃离金属表面,形成自由电子。
这就是光电效应的基本原理。
1.2 光电效应的实验现象光电效应的实验现象包括光电流的产生和光电子动能的大小与光频率和光强度的关系。
通过实验可以验证光电效应的相关理论。
1.3 光电效应的应用光电效应的应用包括光电二极管、光电倍增管、光电导致等光电子器件。
这些器件在光学测量、光通信、光电探测、光电存储等方面有重要应用。
二、半导体光电子器件半导体光电子器件是指利用半导体材料制成的光电子器件,包括光电二极管、光电导致、激光二极管、光电晶体管等。
2.1 光电二极管光电二极管是一种能够将光信号转换成电信号的器件。
它的工作原理是当光照射到PN结上时,光子的能量被用来克服PN结的势垒,从而在PN结上产生电子和空穴对,并产生电流。
2.2 光电导致光电导致是一种利用半导体材料制成的光电子器件,它具有高速、高灵敏度的特点。
光电导致可用于光信息处理、光通信、光探测等方面。
2.3 激光二极管激光二极管是一种利用激光效应制成的光电子器件。
它具有结构简单、体积小、功耗低等优点,是激光器件中的一种重要形式。
2.4 光电晶体管光电晶体管是一种基于光电效应制成的光电子器件,广泛应用于光通信、光探测、光信息处理等领域。
三、激光技术激光技术是一种利用激光器件制造激光束,进行激光照射、激光加工、激光测量和激光信息处理等技术的总称。
3.1 激光的原理激光是一种具有相干性和高亮度的光束,它是一种特殊的光波。
激光的产生是通过将能量较高的光子能级转移到能量较低的光子能级上,使得光子能够集中到一个狭窄的空间内。
3.2 激光器件激光器件是制造激光束的主要设备,包括激光二极管、激光放大器、激光共振腔等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电子器件第一章1、 光电探测器输出信号电压或电流与单位入射光功率之比,即单位入射光功率作用下探测器输出信号电压或电流称为响应率.光谱响应率(R λ):光电器件在单色 (在波长λ附近一个很小的波长范围里) 辐射功率作用下产生的信号电压或信号电流。
R λ(单位:A/W )光谱响应率及量子效率仅由器件的响应特性所决定,而与光源无关。
2. 器件的光谱响应与光源辐射功率谱密度紧密相关,它们之间的匹配系统 α—称为器件与 ,面积A2愈大, α愈大,即二者完全失配,则该光电器件如像管、光电倍增管、红外成像器dP du R s u λλ=dP di R s i λλ=mR R R λλ=)( λR m R 1.24λλη)(λ R λ 12A A =α3.光电探测器输出的电流或电压在其平均值上下无规则的、随机的起伏,称为噪声。
噪声是物理过程所固有的,人为不可能消除。
它的计算是在足够长时间内求其平方平均或均方根。
光电探测器的噪声来源主要有热噪声、散粒噪声、温度噪声、放大器噪声、频率噪声、复合噪声等。
当输出信号电压等于输出噪声电压均方根值时的探测器的入射辐射功率叫做最小可探测辐射功率,也叫做噪声等效功率NEP 。
Pmin 越小,器件的探测能力越强。
对Pmin 取倒数可作为衡量探测器探测能力的参数,称为探测率。
研究指出:探测率与器件的面积和工作带宽成反比。
4.光吸收厚度:设入射光的强度为 I0,入射到样品厚度为x 处的光强度为 I ,则:α为线吸收系数,单位为(1/cm )α大时,光吸收主要发生在材料的表层;α小时,光入射得深。
当厚度d=1/α时,称为吸收厚度,有64%的光被吸收。
5.本征吸收:价带中的电子吸收了能量足够大的光子后,受到激发,越过禁带,跃入导带,并在价带中留下一个空穴,形成了电子空穴对,这种跃迁过程所形成的光吸收称为本征吸收。
本征吸收条件:光子的能量必须大于或等于禁带的宽度Eg 。
6. 内光电效应: 材料在吸收光子能量后,出现光生电子-空穴,由此引起电导率变化或电压、电流的现象,称之为内光电效应。
光电导效应:当半导体材料受光照时,吸收光子引起载流子浓度增大,产生附加电导率使电导率增加,这个现象称为光电导效应。
在外电场作用下就能得到电流的变化。
光电导效应分为本征型和非本征型。
7.设本征半导体在没有光照时,电导率为 (称为暗电导率)当有光注入时,半导体电导率:电导率的增量称为光电导率:8. 增加载流子寿命:好处:增益提高,灵敏度提高,响应率提高。
u n n s R u u u P P ==min x e I I α-=00σP n e p e n μμσ000+=P n p p e n n e μμσ)()(00∆++∆+=0()n P e n p σσσμμ∆=-=∆+∆缺点:惰性增加,频率响应特性变差。
所以增益和惰性不可兼得。
9.影响光谱响应的两个主要因素:光电导材料对各波长辐射的吸收系数和截流子表面复合率。
光电导光谱响应特点:都有一峰值,峰值一般靠近长波限(长波限约为峰值一半处所对应的波长)。
10. 光敏电阻是利用光电导效应制成的最典型的光电导器件。
光敏电阻器均制作在陶瓷基体上,光敏面均做成蛇形,目的是要保证有较大的受光表面。
上面带有光窗的金属管帽或直接进行塑封,其目的是尽可能减少外界(主要是湿气等有害气体)对光敏面及电极所造成的不良影响,使光敏电阻器性能保持稳定,工作可靠。
光敏电阻光谱响应特性主要由所用的半导体材料所决定,主要是由材料禁带宽度所决定,禁带宽度越窄,则对长波越敏感。
但禁带很窄时,半导体中热激发也会使自由载流子浓度增加,使复合运动加快,灵敏度降低,因此采用冷却光敏面的办法来提高灵敏度是很有效的。
光敏电阻一般用于与人眼有关的仪器,在使用时,必须加滤光片修正光谱。
第一章作业1、什么是光谱响应率根据器件与光源的光谱曲线说明光谱匹配系数α的意义。
2、某光电二极管,受波长为的6x1012 个光子的照射,其间输出端产生 2x1012个光子。
试计算该光电子器件的量子效率和响应度。
3、什么是器件的最小可探测辐射功率和探测率探测率表达式的意义如何4、半导体发生本征光吸收的条件是什么第二章1. 光生伏特效应:两种半导体材料或金属/半导体相接触形成势垒,当外界光照射时,激发光生载流子,注入到势垒附近形成光生电压的现象。
结型光电探测器与光电导探测器的区别:(1)产生光电变换的部位不同。
(2)光电导型探测器没有极性,且工作时必须有外加电压,而结型探测器有确定的正负极,不需外加电压也可把光信号变为电信号。
(3)光电导探测器为均质型探测器,载流子驰豫时间长,频率响应特性差。
而结型探测器频率特性好,灵敏度高。
雪崩式光电二极管、光电三极管还有内增益作用,可以通过较大的电流。
2. 外接电路开路(断路)时,光生载流子积累在PN结两侧,光生电压最大,此时的光生电动势Uoc称为开路电压。
外接电路短路时,流过电路的电流Isc称为短路电流,就是光生电流。
3. 光电池在受光表面上涂保护膜,如镀SiO2、MgF2。
目的是减小反射损失,增加对入射光的吸收,同时又可以防潮防腐蚀。
上电极一般多做成栅指状,其目的是便于透光和减小串联电阻。
通常在用单片光电池组装成电池组时,可以采用增加串联片数的方法来提高输出电压,用增加并联片数的方法来增大输出电流。
4. 光电二极管与光电池的主要区别:(1)结面积大小不同,光电二极管的要小很多。
结电容很小,频率特性好;(2)PN结工作状态不同,光电池PN结工作在零偏置状态下。
而光电二极管工作于反偏工作状态下,光电流小。
光电二极管分类:按工作基础分:有耗尽型及雪崩型。
按特性分:有PN结、PIN结、异质结、肖特基势垒及点结触型等。
按对光的响应分:紫外、可见光、红外型;按制造工艺:平面型、生长型、合金型、台面型。
5. PN结型光电二极管:根据衬底材料不同分为2DU和2CU型两种。
2DU型易形成表面漏电流流到前极,它是暗电流(噪声)的大部分,应禁止它流过负载。
温度特性:光电二极管受温度影响最大的是暗电流。
频率特性:有两决定因素:1)光生载流子在耗尽层的渡越时间;2)结电容Cj和负载电阻RL所构成的时间常数RLCj光电二极管等结型光电器件的噪声主要是电流散粒噪声和电阻的热噪声。
6.PIN型光电二极管特点:(1)光生电流较大,灵敏度高。
因为I层比PN结宽得多,光生载流子要多得多,光生载流子在内建电场和反向电场作用下的漂移移动会形成较大的光电流输出,灵敏度得以提高。
(2)响度速度快,频率特性好。
一般说,扩散运动的速度比漂移运动的速度低得多,PIN管由于扩散运动被抑制,所以响应速度提高了。
时间响应特性主要取决于结电容和载流子渡越耗尽层所需要的时间。
由于PIN耗尽层变宽,因此结电容变小了;同时由于I区电阻高,可承电压高,电场强,载流子渡越耗尽层时间缩短了,所以时间特性变好了(频率带宽可达10GHz)。
(3)响应波段宽由硅材料制成的PIN管,长波段能响应到,可以探测到μm的激光。
7.雪崩型光电二极管(APD)1、雪崩光电二极管原理PN结加上相当大的反向偏压(略低于反向击穿电压)—高电场—光生载流子加速—晶格原子-新载流子—晶格原子-新载流子—雪崩式载流子倍增。
频率特点:载流子运动速度快,渡越时间短(10-10s量级),所以时间特性非常好,响应频率可达105MHz,是目前响应速度最快的一种光电二极管。
8.光电三极管不仅能实现光-电转换,还能放大光电流。
第二章作业1、结型光电探测器与光电导探测器的主要区别有哪些2、用波长为μm、强度为3mW的光照射在硅光电池,无反射,其量子效率为,并设全部光生载流子能到达电极。
求:(1)光生电流。
(2)T=300K 、反向饱和电流为10-8A 时,求光电池的开路电压。
3、已知2CR 太阳能电池的参数为UOC=,ISC=50mA ,若用它进行串并联组合对,6V 的蓄电池充电,需要多少个这样的电池4、光电二极管与光电池的主要区别是什么5、某光电二极管的结电容为5pF ,要求带宽为10MHz ,求允许的最大负载电阻是多少6、PIN 管的时间响应特性为什么比普通光电二极管好7、说明雪崩型光电二极管的工作原理和频率特点。
第三章1. 真空光电器件的突出特点:1) 易于在管内实现快速、高增益、低噪声的电子倍增。
用于探测极微弱的光辐射和变化极快的光辐射。
如光子计数器。
2) 易于制取大面积均匀的光敏面,像元密度大,可得到很高的分辨率。
用于较高要求的精密测量,如光谱分析仪,扫描电镜等。
2.将半导体光电发射的物理过程归纳为三步:(1)半导体中的电子吸收入射光子的能量而被激发到高能态(导带)上;(2)这些被激发的电子在向表面运动的过程中因散射而损失掉一部分能量;(3)到达表面的电子克服表面电子亲和势EA 而逸出。
3. 把电子从体内导带底逸出真空能级所需的最低能量称为有效电子亲和势EAeff ,以区别于表面电子亲和势EA 。
4. 如果给半导体的表面作特殊处理,使表面区域能带弯曲,真空能级降低到导带之下,从而使有效的电子亲和势为负值,经过这种特殊处理的阴极称作负电子亲和势光电阴极(NEA)。
NEA 电子传输特性:1)参与发射的电子是导带的未热化的冷电子;2)NEA 阴极中导带的电子逸入真空几乎不需作功。
5. 真空光电管光电管是根据外光电效应原理工作的光电探测器,它把光能转变为电能,属于非成像型的光电器件。
光电倍增管目前普遍采用而且最有效的探测微弱光辐射的器件是光电倍增管,它是光电阴极和二次电子倍增器的结合。
光电倍增管结构主要由四部分组成:光电阴极、电子光学输入系统(光电阴极至第一倍增极的区域),倍增系统(或称打拿极系统)、阳极(或称收集极)。
光电倍增管工作原理: 光子透过入射窗口入射在光电阴极上,电子受光子激发发射到真空中,光电子通过电场加速和电子光学系统聚焦入射到第一倍增级上,倍增级将发射出比入射电子数目更多的二次电子,入射电子经N 级倍增极倍增后,光电子就放大N 次,最后由阳极收集形成光电流。
光电阴极在结构形式上分为反射型侧窗式和透射型端窗式。
12I I =δ二次电子发射系数:二次发射系数不仅与倍增极的二次发射材料有关,且与它极间电压VD有关。
电子倍增系统结构分类:根据工作原理可分为两类:聚焦型、非聚焦型。
6.光电倍增管的主要特性和参数光电倍增管的频率响应主要受到电子渡越时间散差限制。
渡越时间散差是造成脉冲展宽的主要因素。
7.暗电流定义:当光电倍增管完全与光照隔绝,在加上工作电压后,阳极仍有电流输出,输出电流的直流部分称为该管的暗电流,即由非光照因素引起的一切电流称为暗电流。
引起暗电流有下列几方面的因素:1) 热发射2) 极间漏电3) 光反馈4) 离子反馈5) 场致发射6) 其他原因作业:1、简述半导体光电发射的过程。