基本不等式题型总结(经典,非常好,学生评价高)
基本不等式题型及常用方法总结

基本不等式题型及常用方法总结1. 引言不等式是数学中重要的概念之一,它在数学建模、优化理论、概率论等领域中有着广泛的应用。
基本不等式是解决不等式问题的基础,掌握常用的解题方法对于学习和应用不等式理论至关重要。
本文将系统总结基本不等式题型及常用方法,以帮助读者更好地理解和应用这一领域的知识。
2. 一元一次不等式2.1 一元一次线性不等式2.1.1 基本性质:线性函数图像特点、函数值与符号关系在解决一元一次线性函数时,我们首先需要了解线性函数图像的特点。
对于形如ax+b>0或ax+b<0的线性函数,我们可以通过求解对应方程ax+b=0得到临界点x=-b/a,并以此为界将数轴分为两个区间。
在每个区间内,我们可以通过选取任意一个测试点来判断该区间内函数值与符号之间的关系。
2.1.2 解法:图像法、代数法对于一元一次线性不等式,我们可以通过图像法和代数法来解决问题。
图像法是通过绘制线性函数的图像,通过观察函数在不同区间的变化来确定不等式的解集。
代数法则是通过代数运算,将不等式转化为等价的形式,从而得到解集。
例如,对于ax+b>0形式的线性不等式,我们可以将其转化为ax>-b,并根据a的正负性讨论出解集。
2.2 一元一次绝对值不等式绝对值函数是一个常见的非线性函数,在解决绝对值不等式时我们需要特别注意其特点和解题方法。
对于形如|ax+b|>c或|ax+b|<c的绝对值不等式,我们可以将其转化为一个或多个线性不等式,并根据这些线性不等式得到最终的解集。
2.3 一元二次根号型不等式二次根号型函数在数学中也有着重要地位,在解决二次根号型函数时我们需要掌握特定方法。
例如,在求解形如√(ax^2+bx+c)>0或√(ax^2+bx+c)<0 的二次根号型函数时,可以通过求出二次方程ax^2+bx+c=0 的两个实数根,并根据根的位置和函数的凹凸性来确定函数值与符号之间的关系。
基本不等式知识点和基本题型

基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。
2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。
3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当$a=b$时取“=”。
4、求最值的条件:“一正,二定,三相等”。
5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。
若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。
若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。
若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。
6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。
题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。
2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。
3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。
完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。
(完整版)高中数学基本不等式题型总结

专题 基本不等式【一】基础知识基本不等式:)0,0a b a b +≥>>(1)基本不等式成立的条件: ;(2)等号成立的条件:当且仅当 时取等号.2.几个重要的不等式(1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>;【二】例题分析【模块1】“1”的巧妙替换【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 .【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 .【变式2】(2013年天津)设2,0a b b +=>, 则1||2||a a b +的最小值为 .【例2】(2012河西)已知正实数,a b 满足211a b +=,则2a b +的最小值为 .【变式】已知正实数,a b 满足211a b+=,则2a b ab ++的最小值为 .【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 .【例4】已知正数,x y 满足21x y +=,则8x y xy +的最小值为 .【例5】已知0,0a b >>,若不等式212m a b a b+≥+总能成立,则实数m 的最大值为 .【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则2212a b +的最小值为 .【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则11a b+的最小值为 .【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=,则22214e e +的最小值为【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则 )A .6B .5 C【例10】已知函数()4141x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .【模块二】“和”与“积”混合型【例1】(2012年天津)设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为 .【例2】设,x y R ∈,1,1a b >>,若2x y a b ==,28a b +=,则11x y+的最大值为_______.【例3】若实数,x y 满足221x y xy ++=,则x y +的最大值为 .【例4】(2013年南开一模)已知正实数,a b 满足21a b ab ++=,则a b +的最小值为 .【例5】设,m n R ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则m n +的取值范围是( )(A )1⎡⎣ (B )(),11⎡-∞⋃+∞⎣(C )2⎡-+⎣ (D )(),22⎡-∞-⋃++∞⎣【例6】已知1,1x y >>,且11ln ,,ln 44x y 成等比数列,则xy 的最小值为 .【例7】(2015天津)已知0,0,8,a b ab >>= 则当a 的值为 时()22log log 2a b ⋅取得最大值.【例8】(2011年天津)已知22log log 1a b +≥,则39a b +的最小值为 .【例9】下列说法正确的是( )ABCD【例10】设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A .10 B。
经典不等式例题汇总

□▲○○○《不等式》考点及题型总结第一节 不等式一、知识要点:(一)不等式的定义:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
(二)不等式的解:使不等式成立的未知数的值,叫做不等式的解。
(三)不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
(四)不等式的性质:1、不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变2、不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
,3、不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
二、题型分析:题型一: 不等式的概念和表达例1: x 的21与5的差不小于3,用不等式可表示为__________. 答案:1532x -≥例2:设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“△”这样的物体,按质量从大到小的顺序排列为( )…A 、○□△B 、○△□C 、□○△D 、△□○ 答案:A题型二:不等式性质的考察]A 、1个B 、2个C 、3个D 、4个分析:由a﹤b﹤0得,a、b同为负数并且︱a︱﹥︱b︱。
可取特殊值代入,如取a=-2,b=-1代入式子中。
答案:C例2:若a﹥b,则下列式子一定成立的是()。
A、a+3﹥b+5,B、a-9﹥b-9,C、-10a﹥-10b,D、a2c﹥b2c分析:由于不等式的两边乘除同一个数时存在变号的问题,因此需要对a,b的符号进行分类讨论。
或者此题也可以取特殊值代入验证,通过排除法来求解。
A、C取0,-1即可排除,D将常数取0也可排除。
答案:B例3:下列结论:①若a﹤b,则a2c﹤b2c;②若a c﹥b c,则a﹥b;③若a﹥b且若c=d,则a c﹥b d;④若a2c﹤b2c,则a﹤b。
正确的有()。
'A、4个B、3个C、2个D、1个分析:①2c=0,即可排除;②若a、b、c都为负数即可否定;③任用前两种方法都可以排除;只有④正确。
《基本不等式》知识点及题型总结

基本不等式 一、考点、热点回顾 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 知识拓展不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D ); 若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ).(2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D ); 若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ).(3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ;不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .二、典型例题例1、设0a b ,则下列不等式中正确的是( )A .a <b << B. a <<<bC .a <<b < D .<a <<b变式训练1、已知等比数列的各项均为正数,公比0<q <1,设392a a P +=,Q =,则a 3,a 9,P 与Q 的大小关系是( )A .a 3>P >Q >a 9 B. a 3>Q >P >a 9C .a 9>P >a 3>QD .P >Q >a 3>a 9考点二、利用基本不等式求最值例2、(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________. (3)设a >0,b >0,且21a b +=,则11a b+的最小值为 。
基本不等式常见题型归纳汇总

基本不等式常见题型归纳汇总与求值相关的数学问题和与不等式相关的数学问题是高中数学中大的两个考察方向,而基本不等式作为不等式问题的重要组成部分,贯穿高中数学中圆锥曲线、数列、函数、三角函数等多个知识点,所有掌握基本不等式的基本题型,对解决与基本不等式相关的问题显得尤为重要。
现笔者对基本不等式常出现的题型予以总结,以供师生参考。
主要知识题型一基于简单变换的基本不等式问题此类题型以求和的取值范围转化为积为定值求解,求积的取值范围问题转化为和为定值求解为突破口,借助构造思想,构造为可以使用基本不等式的形式;常见的构造变换方法有凑项变换、拆项变换、系数变换、平方变换、常量代换、三角代换等。
题目思路点拨以上8题借助常见的转换形式,往和为定值或者积为定值的方向转化即可。
解析变式提升思路点拨借助常见的转换形式,往常见基本不等式相关形式转化即可。
注意基本不等式“一正二定三相等”条件的限制。
题目思路点拨解析变式提升思路点拨分离参量,然后分子分母同除,再借助分离变换即可。
题型二基于ax+by+cxy=d类型的构造此类题型常常以和以及积的等式形式出现,然后求和或者积的取值范围,题型切入口为将等式转化为不等式,常见的解题思路有构造法、判别式法、化法,变量代换、整体代换等。
题目思路点拨将等式转化为不等式,找出可以利用的不等量关系即可。
解析题目思路点拨将等式转化为不等式,找出可以利用的不等量关系即可。
解析变式提升思路点拨借助构造与变形转化为不等式或者单变量函数关系式,然后利用构造法、判别式法、化法,变量代换、整体代换等方法求解即可。
题目思路点拨把题目中等式进行变形,变量代换后整体代入运用基本不等式求解。
解析题型三基于复杂变换类型的构造此类题型常常题设复杂,需要向基本不等式方向变换多次或者多次运用基本不等式,考察的角度为学生综合处理问题能力以及对不等式的熟练程度。
能够掌握这类题型需要建立在掌握题型一、题型二的基础上,解题的中心思路还是往和为定值或者积为定值的方向转化。
基本不等式-题型总结(经典-非常好-学生评价高)复习课程

基本不等式-题型总结(经典-非常好-学生评价高)基本不等式一. 基本不等式①公式:(0,0)2a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++⎛⎫≥≥ ⎪⎝⎭,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版二.考试题型【题型1】 基本不等式求最值求最值使用原则:一正 二定 三相等一正: 指的是注意,a b 范围为正数。
二定: 指的是ab 是定值为常数三相等:指的是取到最值时a b =典型例题:例1 .求1(0)2y x x x=+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q12x x ∴-+≥=-12x x∴+≤得到(,y ∈-∞例2 .求12(3)3y x x x =+>-的值域 解:123y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63x x =+-+-330x x >∴->Q 12(3)3x x ∴+-≥-6y ∴≥, 即)6,y ⎡∈+∞⎣例3.求2sin (0)sin y x x xπ=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 的值是不在范围内解:令sin (0,1)t x t =∈,2y t t=+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t +>,(注:3是将1t =代入得到) (3,)y ∴∈+∞注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内,如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。
例4.求221(2)2x x y x x ++=>-+的值域 分析:先换元,令2,0t x t =+>,其中2x t =- 解:22(2)2(2)16116t t t t y t t t t-+-+++===++ 110268t t t t t>∴+≥∴++≥Q [8,)y ∴∈+∞ 总之:形如2(0,0)cx dx f y a c ax b++=≠≠+的函数,一般可通过换元法等价变形化为p y t t=+()p 为常数型函数,要注意t 的取值范围; 【失误与防范】1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.【题型2】 条件是a b +或ab 为定值,求最值(值域)(简)例5.若0,0x y >>且18x y +=,则xy 的最大值是________.解析:由于0,0x y >>,则x y +≥18≤,则xy 的最大值为81 例6.已知,x y 为正实数,且满足4312x y +=,则xy 的最大值为________.解析:43x y +≥Q12≤,3xy ∴≤当且仅当434312x y x y =⎧⎨+=⎩即322x y ⎧=⎪⎨⎪=⎩时,xy 取得最大值3.例7.已知0,0m n >>,且81mn =,则m n +的最小值为________.解析:Q 0,0m n >>,18m n ∴+≥=,当且仅当9m n ==时,等号成立.总结:此种题型:和定积最大,积定和最小【题型3】 条件是a b +或11a b+为定值,求最值(范围)(难) 方法:将1整体代入例8.已知0,0x y >>且1x y +=,则11x y+的最小值是________________ 解析:1x y +=Q1111()()224y x x y x y x y x y ∴+=++=++≥+= 所以最小值是4例9. 已知0,0a b >>,2a b +=,则14y a b=+的最小值是________. 解析:212a b a b ++=∴=Q则141412()()2222a b b a a b a b a b++=+=+++52592222b a a b =++≥+= 所以最小值是92例10.已知0,0x y >>,且121,x y+=求2x y +的最小值是____________ 解析:Q 121,x y+=则12222()(2)14y x x y x y x y x y +=++=+++59=+= 从而最小值为9【题型4】 已知a b +与ab 关系式,求取值范围例11. 若正数,a b 满足3ab a b =++,求ab 及a b +的取值范围.解析:把ab 与a b +看成两个未知数,先要用基本不等式消元解:⑴求ab 的范围 (需要消去a b +:①孤立条件的a b +②a b +≥③将a b +替换)①3ab a b =++Q 3a b ab ∴+=-,②a b +≥③3ab ⇒-≥a b +结束,下面把ab 看成整体,换元,求ab 范围)令(0)t t =>,则3ab -≥232t t -≥解得3t ≥或1t ≤-(舍去),从而9ab ≥⑵求a b +的范围 (需要消去ab :①孤立条件的ab ②2()2a b ab +≤ ③将ab 替换)3ab a b =++Q 2,2a b ab +⎛⎫≤ ⎪⎝⎭, ∴232a b a b +⎛⎫++≤ ⎪⎝⎭(消ab 结束,下面把a b +看成整体,换元,求a b +范围) 令(0)t a b t =+> 则有232t t ⎛⎫+≤ ⎪⎝⎭,2412t t +≤,24120t t --≥,得到6t ≥或2t ≤-(舍去) 得到6a b +≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式
.基本不等式
①公式: -_b
ab (a 0,b 0),常用 a b 2. ab
2
2 ■ 2
2
②升级版: a b a b
ab a,b R
2 2
选择顺序:考试中,优先选择原公式,其次是升级版
二•考试题型
【题型1】 基本不等式求最值
求最值使用原则:一正 二定三相等
一正: 指的是注意a,b 范围为正数。
二定: 指的是ab 是定值为常数 三相等:指的是取到最值时 a b 典型例题:
1
例1•求
y
x £;(x
0)的值域
分
x 范围为负,提负号(或使用对钩函数图像处
1
解:y (x ) Q x 0
2x
2x
1 x
2x
得到y ( , &]
1
分析:sinx 的范围是(0,1),不能用基本不等式,当 y 取到最小值时,sinx 的值是.2,但「2不 在范围内
解:令 t sinx , t (0,1)
是对钩函数,禾U 用图像可知:
2
在(0,1)上是单减函数,所以t 3,(注:3是将t 1代入得到)
y (3,)
注意:使用基本不等式时,注意
y 取到最值,x 有没有在范围内,
如果不在,就不能用基本不等式 ,要借助对钩函数图像来求 值域。
例2 •求y
2x (x 3)的值域
解:y 2x
(“添项”,可通过减3再加3,利用基本不等式后可出现定值 )
2(x 3)
22
即 y 2.2 6,
例3•求 y sin x
2 sin x
(0 x )的值域
y t f (p 为常数)型函数,要注意t 的取值范围;
【失误与防范】
1.使用基本不等式求最值,其失误的真正原因 是对其前提“一正、二定、三相等”的忽视.
要利
用基本不等式求最值,这三个条件缺一不可. 2 •在运用重要不等式时,
要特别注意“拆” “拼” “凑” “正” “定” “等”的条件.
3.连续使用公式时取 等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.
【题型2】条件是a b 或ab 为定值,求最值(值域)(简)
x 2 2x 1
例 4.求
y (x
2)的值域
分析:先换元,令t x 2 ,t 0,其中x
解:y
(t 2)2 2(t 2) 1
t 2 6t 1 t
Qt 0
[8,
总之:形如y
2
CX ax b
dx f (a 0,c 0)的函数,一般可通过换元法等价变形化为
等技巧,使其满足重要不等式中
例5.
0, y 0且x y 18,则xy 的最大值是
解析: 由于 x 0,y
0,则x y 2 xy ,所以2 xy 18,则xy 的最大值为81
例6. 已知 x,y 为正实数,且满足 4x 3y 12,则xy 的最大值为
1
解析: Q 4x 3y 2 4x 3y ••• 4、跖12,xy 3 当且仅当4x 3y
即
4x 3y 12
3
2 时,xy
2
取得最大值3.
例7.已知m 0,n 0,且mn 81,则m n的最小值为
解析:Q m 0,n 0,m n 2、. mn 18,当且仅当m n 9时,等号成立.
总结:此种题型:和定积最大,积定和最小
1 1
【题型3】条件是a b或--为定值,求最值(范围)(难)
a b
方法:将1整体代入
例8.已知x 0,y -的最小值是 ___________________
y
解析:Q x y 1
1111
——(x y)(--)
x y x y
例9.已知a0,b0, a b2,则y14的最
小
值是
a b
解析:
Q a b2
a b
1
2
则丄4(14)(a b)1 b 2a25b2a5 2 b2a9
a b a b
2
)22a b22a b2■ 2a b2
例10.已知x 0,y 0,且1
- 1,求x 2y的最小值是________________ x y
解析:Q 1-1,
x y
则x 2y (丄
x -
)(x 2y) 1
y
2y 2x
x y
所以最小值是4
9
所以最小值是9
2
5 2 9
从而最小值为9
【题型4】 已知a b 与ab 关系式,求取值范围
例11.若正数a,b 满足ab a b 3,求ab 及a b 的取值范围.
解析:把ab 与a b 看成两个未知数,先要用基本不等式消元
解:⑴求ab 的范围 (需要消去a b :①孤立条件的a b ②a b 2 ab ③将a b 替换)
①
Q ab a b 3 a b ab 3, ②
a b 2 ab
令 t a b (t 0)
2
则有 t 3 -
, 4t 12 t 2, t 2 4t 12 0,得到 t 6 或 t 2 (舍去)
2
得到a b 6
ab 3 厶 Ob (消 a
b 结束,下面把ab 看成整体,换元,求
ab 范围)
令 t 、、ab (t
0),则 ab 3 2 ab 变成 t 2
3 2t 解得t 3或t 1 (舍去),从而ab 9
⑵求a b 的范围
a b
(需要消去
ab
:①孤立条件的
ab ②
ab
(〒)2
③将ab 替换)
Q ab a b 3 ,ab
(消 ab 结束,
F 面把a b 看成整体,换元,求
a b 范围)。