高中数学 第一章 解三角形章末检测(B)新人教A版必修5

合集下载

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx
12
跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析

高中数学 第一章 解三角形 1.1.2 余弦定理练习(含解析)新人教B版必修5-新人教B版高二必修5

高中数学 第一章 解三角形 1.1.2 余弦定理练习(含解析)新人教B版必修5-新人教B版高二必修5

1.1.2 余弦定理课时过关·能力提升1已知在△ABC 中,a ∶b ∶c=1∶1∶√3,则cos C 的值为( ) A.23 B.-23C.12D.-122在△ABC 中,若2cos B sin A=sin C ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形2cos B sin A=sin C ,得a 2+a 2-a 2aa·a=c , 所以a=b.所以△ABC 为等腰三角形.3已知在△ABC 中,AB=3,BC=√13,AC=4,则边AC 上的高是( ) A.3√22B.3√32C.32D.3√3,得cos A=aa 2+aa 2-aa 22aa ·aa =9+16-132×3×4=12.∴sin A=√32.∴S △ABC =12AB ·AC ·sin A=12×3×4×√32=3√3.设边AC 上的高为h ,则S △ABC =12AC ·h=12×4×h=3√3. ∴h=3√32.4已知在△ABC 中,∠ABC=π4,AB=√2,BC=3,则sin ∠BAC=( ) A.√1010 B.√105C.3√1010D.√55ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BC cos∠ABC=2+9-2×√2×3×√22=5,即得AC=√5.由正弦定理aasin∠aaa =aasin∠aaa,即√5√22=3sin∠aaa,所以sin∠BAC=3√1010.5已知在△ABC中,∠B=60°,b2=ac,则△ABC一定是三角形.B=60°,b2=ac,由余弦定理,得b2=a2+c2-2ac cos B,得ac=a2+c2-ac,即(a-c)2=0,所以a=c.又∠B=60°,所以△ABC是等边三角形.6已知△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且3b2+3c2-3a2=4√2bc,则sin A=.7设△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且a=1,b=2,cos C=14,则sinB=.,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,即b=c,故sin B=sin C=√1-(14)2=√154.8如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=2√23,AB=3√2,AD=3,则BD的长为.AD⊥AC,∴∠DAC=π2.∵sin ∠BAC=2√23,∴sin (∠aaa +π2)=2√23,∴cos ∠BAD=2√23.由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD=(3√2)2+32-2×3√2×3×2√23=3.∴BD=√3. √3 9在△ABC 中,已知∠B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.ADC 中,AD=10,AC=14,DC=6,由余弦定理,得cos ∠ADC=aa 2+aa 2-aa 22aa ·aa=100+36-1962×10×6=-12,∴∠ADC=120°,∴∠ADB=60°.在△ABD 中,AD=10,∠B=45°,∠ADB=60°, 由正弦定理,得aa sin∠aaa=aasin a, ∴AB=aa ·sin∠aaasin a=10sin60°sin45°=10×√32√22=5√6.10在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c=2b cos A. (1)求证:∠A=∠B ;(2)若△ABC 的面积S=152,cos C=45,求c 的值.c=2b cos A ,由正弦定理,得sin C=2sin B ·cos A ,所以sin(A+B )=2sin B ·cos A ,所以sin(A-B )=0.在△ABC 中,因为0<∠A<π,0<∠B<π, 所以-π<∠A-∠B<π,所以∠A=∠B.(1)知a=b.因为cos C=45,又0<∠C<π,所以sin C=35.又因为△ABC 的面积S=152, 所以S=12ab sin C=152,可得a=b=5. 由余弦定理,得c 2=a 2+b 2-2ab cos C=10. 所以c=√10. ★11设△ABC 是锐角三角形,a ,b ,c 分别是内角∠A ,∠B ,∠C 所对的边,并且sin 2A=sin (π3+a )sin (π3-a )+sin 2B.(1)求∠A 的值;(2)若aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,a=2√7,求b ,c (其中b<c ).因为sin 2A=(√32cos a +12sin a )·(√32cos a -12sin a )+sin 2B=34cos 2B-14sin 2B+sin 2B=34,所以sin A=√32.又∠A 为锐角, 所以∠A=π3.(2)由aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,可得bc cos A=12.① 由(1)知∠A=π3, 所以bc=24.②由余弦定理知a 2=c 2+b 2-2bc cos A , 将a=2√7及①代入上式,得c 2+b 2=52,③ 由③+②×2,得(b+c )2=100,所以b+c=10. 因此b ,c 是一元二次方程t 2-10t+24=0的两个根. 解此方程并由c>b 知c=6,b=4.。

人教新课标版数学高二-数学必修5第一章《解三角形》知识整合

人教新课标版数学高二-数学必修5第一章《解三角形》知识整合

数学·必修5(人教A版)一、本章的中心内容是如何解三角形.正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.“在任意三角形中有大边对大角,小边对小角”的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形”.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的是应用数学.能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.已知两边及其中一边所对的角用余弦定理时可能有两个解,注意用三边特点取舍.解决实际测量问题一般要充分理解题意,正确作出图形,从中抽象出一个或几个三角形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,然后解三角形,得到实际问题的解.8.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.9.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.10.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.11.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.12.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.13.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.14.许多试题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.15.本章问题的高考要求不高,学习时要立足基本问题,熟练掌握测量的一般技巧,正确使用定理列方程求解,无须过多延伸与拓广.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:解法一:由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin(120°-C )+sin C ,展开整理,得32sin C +12cos C =1,∴sin(C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.解法二:由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c )2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a ≥b 时或B 为90°(b 为斜边)时,有一解,此时b ≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM ∥AC 交BE 于N ,交CF 于M ,高中数学-打印版精校版DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130, EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF =1302+1502-102×2982×130×150=1665.。

高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学 第一章 解三角形全套教案 新人教A版必修5

高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

人教版数学高三第一章解三角形单元测试精选(含答案)1

人教版数学高三第一章解三角形单元测试精选(含答案)1
5
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6

高中数学第一章解三角形1.2应用举例第3课时三角形中的几何计算练习新人教A版必修5

高中数学第一章解三角形1.2应用举例第3课时三角形中的几何计算练习新人教A版必修5

第3课时 三角形中的几何计算A 级 基础巩固一、选择题1.在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,a =5,b =4,cos C =45,则△ABC的面积是( )A .8B .6C .4D .2解析:因为cos C =45,C ∈(0,π),所以sin C =35,所以S △ABC =12ab sin C =12×5×4×35=6.答案:B2.在△ABC 中,A =60°,b =1,其面积为3,则asin A 等于( )A.2393B.2293C.2633D .3 3解析:面积S =3=12bc sin A =12×1×c ×32,所以c =4,因为a 2=b 2+c 2-2bc cos A =12+42-2×1×4×12=13,所以a sin A=1332=2393.答案:A3.在平行四边形ABCD 中,对角线AC =65,BD =17,周长为18,则这个平行四边形的面积是( )A .8B .16C .18D .32解析:在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC ·cos B =65, 即AB 2+AD 2-2AB ·AD ·cos B =65,①在△ABD 中,BD 2=AB 2+AD 2-2AB ·AD ·cos A =17,②又cos A +cos B =0. ①+②得AB 2+AD 2=41. 因为平行四边形的周长为18, 所以AB +AD =9,又AB 2+AD 2=41, 所以AB =4,AD =5或AB =5,AD =4.所以cos A =AB 2+AD 2-BD 22·AB ·AD =35,所以sin A =45,故平行四边形的面积为12×AB ×AD ×sin A ×2=16.答案:B4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =1,B =π3,当△ABC 的面积等于3时,tan C 等于( )A. 3B .- 3C .-2 3D .-2解析:S △ABC =12ac sin B =12·1·c ·32=3,所以c =4,由余弦定理得b 2=a 2+c 2-2ac cos B =13, 所以b =13,所以cos C =a 2+b 2-c 22ab =-113,所以sin C =1213, 所以tan C =sin Ccos C =-12=-2 3.答案:C5.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152B.15C .2D .3解析:因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0, 所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4,因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.答案:A 二、填空题6.(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为________. 答案:637.在△ABC 中,已知a -b =4,a +c =2b ,且最大角为120°,则该三角形的周长为________.解析:因为a -b =4,所以a >b , 又因为a +c =2b ,所以b +4+c =2b , 所以b =4+c ,所以a >b >c . 所以最大角为A ,所以A =120°,所以cos A =b 2+c 2-a 22bc =-12,所以b 2+c 2-a 2=-bc ,所以b 2+(b -4)2-(b +4)2=-b (b -4), 即b 2+b 2+16-8b -b 2-16-8b =-b 2+4b , 所以b =10,所以a =14,c =6. 故周长为30. 答案:308.在△ABC 中,A =π6,BC =25,D 是AB 边上的一点,CD =2,△BCD 的面积为4,则AC 的长是________.解析:设∠BCD =θ,因为S △BCD =4=12·CD ·CB ·sin θ,所以sin θ=255,θ∈(0,π),所以cos θ=±55.在△BCD 中,由余弦定理得BD 2=CD 2+CB 2-2CD ·CB ·cos θ,从而BD =42或BD =4.当BD =42时,由BD sin θ=CDsin B得sin B =CD ·sin θBD =1010,又由AC sin B =BCsin A得AC =BC sin Bsin A=22,当BD =4时,同理可得AC =4. 综上,AC =4或AC =2 2. 答案:4或2 2 三、解答题9.在△ABC 中,∠B =π4,AB =42,点D 在BC 上,且CD =3,cos ∠ADC =55.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解:(1)因为∠ADC +∠ADB =π, 且cos ∠ADC =55, 所以cos ∠ADB =-55, 所以sin ∠ADB =1-cos 2∠ADB =255, 由∠B +∠ADB +∠BAD =π得, sin ∠BAD =sin(∠B +∠ADB )=sin ∠B cos ∠ADB +cos ∠B sin ∠ADB =22×⎝ ⎛⎭⎪⎫-55+22×255=1010. (2)在△ABD 中,由正弦定理得,BD sin ∠BAD =ABsin ∠ADB,所以BD =AB ·sin∠BADsin ∠ADB =42×1010255=2,由正弦定理得AD sin ∠B =ABsin ∠ADB,所以AD =42×22255=25,在△ADC 中,由余弦定理得AC 2=AD 2+DC 2-2AD ·DC ·cos∠ADC =20+9-2×25×3×55=17, 所以AC =17.10.在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且满足b sin A +b cos A =c . (1)求B ;(2)若角A 的平分线与BC 相交于D 点,AD =AC ,BD =2,求△ABC 的面积. 解:(1)由题意,利用正弦定理可得sin B sin A +sin B cos A =sin C =sin(A +B ), 整理可得sin B =cos B ,所以B =π4.(2)由AD =AC ,可知∠ACD =∠ADC . 设∠BAD =∠DAC =α,∠ACD =∠ADC =β,则⎩⎪⎨⎪⎧45°+2α+β=180°,α+2β=180°, 所以α=30°,β=75°,△ABD 中,由正弦定理可得AB sin 105°=AD sin 45°=2sin 30°,所以AB =6+2,AD =22,所以AC =22, 所以S △ABC =12AB ·AC ·sin 2α=3+ 3.B 级 能力提升1.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为( )A .40 3B .20 3C .40 2D .20 2解析:设另两边长为8x ,5x , 则cos 60°=64x 2+25x 2-14280x 2=12, 解得x =2.所以两边长是16与10,所以三角形的面积是12×16×10×sin 60°=40 3.答案:A2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,c =22,1+tan Atan B =2cb,则角C 的值为________.解析:由正弦定理得1+sin A cos A ·cos B sin B =2sin Csin B ,即sin (A +B )sin B cos A =2sin Csin B,所以cos A =12,A ∈(0,π),A =π3,sin A =32,由asin A =c sin C 得sin C =22,又c <a ,C <A ,所以C =π4. 答案:π43.已知x 、y 均为正实数,且x 2+y 2-3=xy ,求x +y 的最大值.解:构造△ABC ,角A ,B ,C 的对边分别为x ,y ,3,C =60°,由余弦定理知x 2+y 2-3=xy ,即x 、y 满足已知条件.因为x sin A =y sin B =3sin 60°=2,所以x =2sin A ,y =2sin B , 所以x +y =2(sin A +sin B ) =2[sin A +sin(120°-A )] =2⎝ ⎛⎭⎪⎫sin A +32cos A +12sin A =23⎝⎛⎭⎪⎫32sin A +12cos A=23sin(A +30°) 因为0°<A <120°,所以当A =60°时,x +y 有最大值2 3.。

高中数学第一章解三角形教学设计新人教A版必修5

高中数学第一章解三角形教学设计新人教A版必修5

(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【步步高】2014-2015学年高中数学 第一章 解三角形章末检测(B )新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q = (b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →²AC →等于( ) A .-2 B .2 C .±4 D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( ) A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 57.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.63 8.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32 D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C 为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a=cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________. 15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A 的仰角分别为α,β,CD =a ,测角仪器的高是h ,用a ,h ,α,β表示建筑物高度AB .18.(12分)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A . (1)求B 的大小.(2)若a =33,c =5,求b .19.(12分)如图所示,已知⊙O 的半径是1,点C 在直径AB 的延长线上,BC =1,点P 是⊙O 上半圆上的一个动点,以PC 为边作等边三角形PCD ,且点D 与圆心分别在PC 的两侧.(1)若∠POB =θ,试将四边形OPDC 的面积y 表示为关于θ的函数; (2)求四边形OPDC 面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+32-122³2³3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||²|AC →|²sin A =12³4³1³sin A = 3. ∴sin A =32.又∵0°<A <180°, ∴A =60°或120°.AB ²AC →=|AB →|²|AC →|cos A =4³1³cos A =±2.] 4.D [由正弦定理得b sin B =csin C,∴sin C =c ²sin B b =2sin 120°6=12, ∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ²AC ²cos A ,即72=52+AC 2-10AC ²cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B .∴sin B =10²sin 60°15=33.∵a >b ,A =60°,∴B <60°.∴cos B =1-sin 2B =1-332=63.] 8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ²BC cos B ,∴12=(3)2+BC 2-2³3³BC ³32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ²BC sin B =12³3³1³12=34.当BC =2时,S △ABC =12AB ²BC sin B =12³3³2³12=32.]10.C [由S △ABC =12BC ²BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.]12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =a 2+b 2-c 22ab2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.] 13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos Bb.∴sin B =cos B .∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ²AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12³5³8³sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64³32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )²b 2+c 2-a 22bc =a ²a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33. 17.解 在△ACD 中,∠DAC =α-β, 由正弦定理,得ACsin β=DCsiα-β,∴AC =a sin βα-β∴AB =AE +EB =AC sin α+h =a sin βsin αα-β+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ²sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°. 由余弦定理b 2=a 2+c 2-2ac cos B=(33)2+52-2³33³5³cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理,得PC 2=OP 2+OC 2-2OP ²OC ²cos θ =5-4cos θ, 所以y =S △OPC +S △PCD =12³1³2sin θ+34³(5-4cos θ) =2sin ⎝⎛⎭⎪⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2α1+α2;第二步:计算AN .由正弦定理AN =d sin β2sβ2-β1;第三步:计算MN ,由余弦定理 MN =AM 2+AN 2-2AM ³AN α1-β1. 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ. 又OC-θ=2sin 120°,∴OC =43sin(60°-θ). 因此△POC 的面积为S (θ)=12CP ²OC sin 120°=12²43sin θ²43sin(60°-θ)³32 =43sin θsin(60°-θ)=43sin θ⎝ ⎛⎭⎪⎫32cos θ-12sin θ=2sin θ²cos θ-23sin 2θ=sin 2θ+33cos 2θ-33 =233sin ⎝ ⎛⎭⎪⎫2θ+π6-33 ∴θ=π6时,S (θ)取得最大值为33.。

相关文档
最新文档