交通灯控制系统的设计
交通灯控制系统设计

交通灯控制系统设计1. 引言交通灯控制系统是城市交通管理的重要组成部分,通过控制交通灯的信号灯来指示车辆和行人通行状态,提高道路交通的安全性和效率。
本文将介绍一个交通灯控制系统的设计方案,包括系统的硬件组成、工作流程和功能实现。
2. 系统硬件设计2.1 控制器交通灯控制系统的核心是控制器,它负责接收输入信号,控制信号灯的状态,并输出相应的控制信号。
控制器通常由微控制器或可编程逻辑控制器(PLC)构成,具备较强的处理能力和控制灵活性。
2.2 信号灯信号灯是交通灯控制系统的输出设备,用于指示车辆和行人的通行状态。
典型的信号灯由红、黄、绿三个灯组成,红色表示停止、黄色表示准备、绿色表示通行。
2.3 传感器传感器用于获取与交通流量相关的信息,为交通灯控制系统提供输入数据。
常用的传感器包括车辆检测器、行人检测器和环境光传感器。
车辆检测器可以通过感应车辆的存在来调整交通灯的信号灯时间,行人检测器用于检测行人的存在并延长绿灯时间,环境光传感器可以根据光线强度自动调整信号灯的亮度。
2.4 通信设备交通灯控制系统通常需要与其他设备进行通信,例如与中心交通管理系统进行数据交换、与红绿灯时序控制器进行通信等。
为此,通信设备如无线模块、以太网接口等是必需的。
3. 系统工作流程交通灯控制系统的工作流程可分为以下几个步骤:1.接收输入信号:通过传感器获取交通流量、车辆和行人的信息。
2.状态判断:根据输入信号判断当前的交通状况,如车辆是否排队、行人是否需要过马路等。
3.灯光控制:根据判断结果,控制信号灯的状态。
例如,如果没有车辆和行人需要通行,则可以使所有信号灯都为红灯;如果有车辆排队等待通行,则根据交通流量调整绿灯的时间。
4.数据更新:根据交通灯状态的变化,更新相关的数据,如交通流量统计、时序控制参数等。
5.状态监测:监测信号灯的运行状态,定期检查硬件设备,如传感器和控制器的正常工作。
4. 功能实现交通灯控制系统主要具备以下功能:•信号灯的时序控制:根据交通流量和行人需求,动态调整信号灯的时序,以保证交通的流畅和安全。
智能交通灯控制系统的设计与实现

智能交通灯控制系统的设计与实现随着城市化进程的加速,城市道路交通越来越拥堵,交通管理成为城市发展的一个重要组成部分。
传统的交通信号灯只具备固定时序控制交通流量的功能,但随着技术的进步和智能化应用的出现,要求交通信号灯具备实时性、自适应性和智能化,因此,智能交通信号灯控制系统应运而生。
本文将从软硬件系统方面,详细介绍智能交通灯控制系统的设计与实现。
一、硬件设计智能交通灯控制系统的硬件部分由四个部分组成:单片机系统、交通灯控制器、传感器及联网模块。
1. 单片机系统单片机是智能交通灯控制系统的核心,该系统选用了8位单片机,主要实现红绿灯状态的自适应和切换。
在设计时,需要根据具体情况选择型号和板子,选择时需要考虑其开发环境、风险和稳定性等因素。
2. 交通灯控制器交通灯控制器是智能交通灯控制系统中的另一个重要部分,主要实现交通信号的灯光控制。
在控制器的设计时,需要考虑网络连接、通信、数据传输等多方面因素,确保系统的稳定性和可靠性。
3. 传感器传感器主要负责采集道路交通信息,包括车辆数量、速度、方向和道路状态等,从而让智能交通灯控制系统更好地运作。
传感器有多种类型,包括磁感应传感器、摄像头、光电传感器等,需要根据实际需求选择。
4. 联网模块联网模块主要负责智能交通灯控制系统的联网和数据传输,包括存储和处理车流数据、上传和下载数据等。
在设计时,需要考虑网络连接的稳定性、数据安全等因素,确保智能交通灯控制系统的连续性和可靠性。
二、软件设计智能交通灯控制系统的软件部分主要由两部分组成:嵌入式系统和上位机系统。
1. 嵌入式系统嵌入式系统是智能交通灯控制系统的主体,主要设计车流量检测、信号灯状态切换等程序。
为了保证系统的自适应性和实时性,需要采用实时操作系统,如FreeRTOS等。
在软件设计阶段,需要注意设计合理的算法和模型,确保系统的准确性和稳定性。
2. 上位机系统上位机系统主要实现智能交通灯控制系统的监控和管理,包括车流量监控、灯光状态监控、信号灯切换和日志记录等。
信号交通灯控制系统设计

信号交通灯控制系统设计1.系统简介信号交通灯控制系统设计旨在通过自动调节交通灯的控制策略,使得交通流量能够得到优化和平衡,并提高道路的通行效率。
该系统采用了一种基于传感器和通信技术的智能控制方法,能够根据实时交通状况自动调整信号灯的时序,使得交通能够更加顺畅。
2.系统原理该系统通过部署在道路上的传感器来获取实时的交通流量、车辆速度和车辆密度等信息。
这些传感器可以采用多种技术,比如地磁感应器、红外线传感器或摄像头等。
传感器采集到的数据将通过通信技术传输到信号控制中心,信号控制中心将根据收集到的数据来决定信号灯的显示时序。
3.系统功能3.1实时监测与数据采集:传感器能够实时监测道路上的交通状况,比如车辆流量、速度和密度等。
这些数据将被采集并传输到信号控制中心,作为交通灯时序调整的依据。
3.2智能信号灯控制:信号控制中心通过运算分析传感器采集到的数据,确定各个路口的交通情况,并相应地调整信号灯的时序。
比如,在高峰时段,信号控制中心可以将绿灯的时长适当延长,以增加道路的通行能力。
3.3优化交通流量:通过智能信号灯控制,系统能够根据实时交通状况进行灵活调整,优化交通流量的分配。
当其中一路口的交通流量过大时,系统可以将绿灯的时长相应延长,以避免交通拥堵。
3.4提高交通安全:该系统能够根据实时交通情况,自动识别道路上的交通事故或危险情况,并及时作出相应调整。
比如,当系统检测到其中一路段有车辆发生碰撞时,它可以及时调整信号灯的时序,保证其他车辆的安全通行。
4.系统优势4.1提高道路通行效率:通过智能信号灯控制,系统能够根据实时交通状况进行灵活调整,提高道路的通行能力和效率。
4.2降低交通拥堵和排放:该系统能够根据实时交通情况进行灵活调整,避免交通拥堵,减少排放量,降低环境污染。
4.3提升交通安全性:系统能够实时监测交通状况,并及时作出相应调整,减少交通事故的发生。
4.4节约能源消耗:系统通过灵活调整信号灯的时序,减少车辆的停等时间,降低燃油消耗和能源浪费。
交通灯控制系统毕业设计论文

交通灯控制系统毕业设计论文一、引言随着城市交通流量的日益增加,交通拥堵问题日益突出。
传统的交通灯控制方式已经不能有效地满足实际需求。
因此,设计一个智能化的交通灯控制系统成为了刻不容缓的任务。
二、设计目标本课题的目标是设计一个基于智能算法的交通灯控制系统,通过实时监测道路交通情况,合理分配交通信号时间,从而提高道路通行效率和交通安全性。
三、系统架构本交通灯控制系统包含以下几个模块:交通流量检测模块、信号控制模块、数据处理模块、用户界面模块等。
其中,交通流量检测模块通过摄像头、雷达等设备实时监测道路上的车辆情况;信号控制模块根据交通流量检测模块提供的数据,采用智能算法进行信号灯调度;数据处理模块负责对采集到的交通数据进行分析和处理;用户界面模块为用户提供交互操作界面,方便用户对系统进行配置和监控。
四、智能算法本设计采用基于遗传算法的交通灯控制方法。
遗传算法是一种模拟自然界的优化演化过程的计算方法,通过染色体编码和进化运算,能够在空间中找到最优解。
本设计将交通灯的时间分配看作一个优化问题,通过遗传算法进行优化求解,找到最优的信号灯控制方案。
五、设计流程1.数据采集:使用摄像头等设备实时采集道路上的交通数据。
2.数据预处理:对采集到的数据进行噪声去除、数据归一化等处理,以便进行后续的算法运算。
3.遗传算法初始化:根据系统要求和交通流量情况,初始化遗传算法的染色体编码、种群数量、交叉概率、变异概率等参数。
4.适应度评估:根据交通数据和设定的交通灯控制方案,评估每个个体的适应度,即信号灯控制方案的效果好坏。
5.选择、交叉和变异:根据适应度评估结果,选择适应度高的个体作为父代,通过交叉和变异操作生成新的个体。
6.迭代优化:重复进行适应度评估、选择、交叉和变异的操作,直到达到预设的停止条件。
7.生成最优解:经过多次迭代优化后,得到最优的交通灯控制方案。
六、结论通过本设计,成功地实现了一个基于智能算法的交通灯控制系统。
智能交通灯控制系统的设计与实现

智能交通灯控制系统的设计与实现一、引言随着城市交通的不断拥堵,智能交通灯控制系统的设计与实现成为改善交通流量、减少交通事故的关键。
本文将对智能交通灯控制系统的设计原理和实际应用进行深入探讨。
二、智能交通灯控制系统的设计原理智能交通灯控制系统的设计原理主要包括实时数据收集、交通流量分析和信号灯控制决策三个方面。
2.1 实时数据收集智能交通灯控制系统通过传感器、摄像头等设备实时采集车辆和行人的信息,包括车辆数量、车速、行人密度等。
这些数据可以通过无线通信技术传输到中央服务器进行处理。
2.2 交通流量分析在中央服务器上,通过对实时数据进行分析处理,可以得到不同道路的交通流量情况。
交通流量分析可以包括车辆流量、行人流量、车速和拥堵程度等指标,为后续的信号灯控制提供依据。
2.3 信号灯控制决策基于交通流量分析结果,智能交通灯控制系统可以根据交通状况智能地决定信号灯的开启和关闭时间。
优化的信号灯控制策略可以使车辆和行人的通行效率达到最大化。
三、智能交通灯控制系统的实现智能交通灯控制系统的实现需要使用计算机技术、通信技术和物联网技术等多种技术手段。
3.1 计算机技术的应用智能交通灯控制系统中的中央服务器需要配置高性能的计算机系统,以支持实时数据的处理和交通流量分析。
同时,通过计算机系统可以实现信号灯控制策略的优化算法。
3.2 通信技术的应用智能交通灯控制系统需要使用通信技术实现各个交通灯和中央服务器之间的数据传输。
传统的有线通信和无线通信技术都可以应用于智能交通灯控制系统中,以实现数据的实时传输。
3.3 物联网技术的应用智能交通灯控制系统可以通过物联网技术实现与交通工具和行人之间的连接。
车辆和行人可以通过智能终端设备向交通灯发送信号,交通灯可以实时地根据这些信号做出相应的决策。
四、智能交通灯控制系统的实际应用智能交通灯控制系统已经在一些城市得到了广泛的应用。
4.1 交通拥堵减少智能交通灯控制系统根据实时的交通流量情况,可以合理地分配交通信号灯的开启和关闭时间,从而避免了交通拥堵现象的发生,提高了道路的通行效率。
交通灯PLC控制系统设计

交通灯PLC控制系统设计交通灯是城市交通管理的重要组成部分,交通灯控制系统的设计对于保障交通安全和优化交通流量起着关键作用。
PLC(可编程逻辑控制器)技术在交通灯控制系统中得到了广泛应用,本文将从系统设计的整体框架、PLC程序设计、硬件选型以及系统特点等方面来详细介绍。
交通灯PLC控制系统设计的整体框架主要包括信号采集模块、信号处理模块、控制模块和执行模块四部分。
信号采集模块主要负责将交通流量、行人流量等信息转化为电信号输入给PLC控制器;信号处理模块对采集到的信号进行处理,如检测交通流量的高低以及行人通过的情况;控制模块根据信号处理结果,生成控制信号输出给执行模块;执行模块实现交通灯的控制,通过电路和执行器实现交通灯的开关。
PLC程序设计是交通灯PLC控制系统设计的核心部分,主要包括输入端口设置、控制逻辑设计、输出端口设置和通信设置等。
在输入端口设置中,确定采集到的数据类型和数据源,如交通流量和行人流量分别通过传感器采集。
控制逻辑设计是根据交通灯的状态和信号控制规则确定交通灯的控制方式,比如根据交通流量高低切换交通灯的状态。
输出端口设置是将确定好的控制信号输出到对应的执行模块,如输出信号控制交通灯的红绿灯状态。
通信设置是实现与其他相关系统的联动,如与监控系统的数据交互。
硬件选型是交通灯PLC控制系统设计的重要环节,主要包括PLC控制器、传感器、执行器和电源等。
PLC控制器应该具有高性能、稳定可靠的特点,能够满足交通灯控制系统的需求。
传感器的选型应基于交通流量和行人流量的检测需求,常用的有光电传感器、气压感应器等。
执行器的选型应根据交通灯的类型确定,如LED灯管、数码管等。
电源的选型应满足交通灯控制系统的供电需求,选用稳定可靠的电源。
交通灯PLC控制系统设计具有以下特点:灵活性高、可靠性强、实时性好。
PLC控制器的可编程性使得交通灯的控制逻辑可以根据实际需求进行灵活调整,满足不同时间段的交通流量要求。
PLC的智能交通灯控制系统设计..

PLC的智能交通灯控制系统设计--智能交通灯控制系统设计文档1-引言1-1 目的和范围本文档旨在设计一套基于PLC的智能交通灯控制系统,用于实现交通流畅和安全管理。
1-2 定义●PLC:可编程逻辑控制器(Programmable Logic Controller),是一种可编程数字运算控制器。
●智能交通灯:根据实时交通信息和需求,自动调整交通灯的信号显示。
●交通流畅:指通过合理的交通信号控制,减少交通拥堵和延误,提高交通效率。
●安全管理:通过合理的交通信号控制,确保道路交通的安全性和可靠性。
2-系统架构设计2-1 系统组成部分●PLC控制器●交通灯信号灯●交通检测传感器●人行横道信号灯●数据通信模块2-2 系统工作原理智能交通灯控制系统通过交通检测传感器获取实时交通信息,根据预设的控制算法,向信号灯发送指令来调整信号显示。
同时,通过数据通信模块与其他交通管理设备进行通信,实现跨路口协调控制。
3-系统硬件设计3-1 PLC控制器选型选择适宜的PLC控制器,满足系统的输入输出要求和性能需求。
3-2 交通灯信号灯设计根据道路交通需求和交通管理规范,设计合适的交通灯信号灯,包括信号显示颜色和亮度。
3-3 交通检测传感器选型选择适宜的交通检测传感器,可根据车辆和行人的实时情况,提供准确的交通流量数据。
3-4 人行横道信号灯设计根据行人需求和交通管理规范,设计合适的人行横道信号灯,保证行人安全过马路。
3-5 数据通信模块选型选择适宜的数据通信模块,实现系统与其他交通管理设备的数据交互和远程控制。
4-系统软件设计4-1 PLC编程使用PLC编程软件进行控制算法的编写,实现交通灯信号的动态调整。
4-2 信号灯控制算法设计设计合理的控制算法,根据实时交通信息和需求,动态调整交通灯信号显示。
4-3 数据通信协议设计设计系统与其他交通管理设备之间的数据通信协议,实现数据交互和远程控制。
5-系统测试与验证5-1 硬件测试对系统硬件进行功能测试,确保各部件正常工作。
基于plc的交通灯控制系统设计毕业论文

基于plc的交通灯控制系统设计毕业论文目录一、内容概括 (2)1.1 研究背景和意义 (2)1.1.1 交通灯控制系统的重要性 (3)1.1.2 PLC在交通灯控制系统中的应用 (4)1.2 研究目的和任务 (6)1.2.1 论文研究目的 (7)1.2.2 论文研究任务 (8)二、交通灯控制系统概述 (8)2.1 交通灯控制系统的定义 (10)2.2 交通灯控制系统的组成 (10)2.2.1 硬件设备 (11)2.2.2 软件系统 (12)2.3 交通灯控制系统的分类 (13)2.3.1 传统交通灯控制系统 (15)2.3.2 基于PLC的交通灯控制系统 (16)三、PLC技术基础 (17)四、基于PLC的交通灯控制系统设计 (19)4.1 设计原则和设计要求 (20)4.1.1 设计原则 (21)4.1.2 设计要求 (22)4.2 系统架构设计 (23)4.2.1 总体架构设计 (26)4.2.2 控制器设计 (27)4.2.3 传感器设计 (28)4.3 系统功能实现 (29)4.3.1 交通灯控制功能实现 (30)4.3.2 系统监控功能实现 (32)4.3.3 故障诊断与报警功能实现 (33)五、系统测试与性能分析 (35)一、内容概括本文主要针对基于PLC的交通灯控制系统进行了深入研究和设计。
对交通灯控制系统的基本原理和功能进行了详细阐述,包括红绿灯的切换、行人过街按钮的响应以及故障检测与报警等功能。
对PLC 在交通灯控制系统中的应用进行了分析,重点介绍了PLC的硬件组成、编程语言以及编程方法等方面的内容。
在此基础上,设计了一套完整的基于PLC的交通灯控制系统,并通过实际应用验证了其可行性和稳定性。
对整个系统进行了总结和展望,为今后类似项目的开展提供了有益的参考。
1.1 研究背景和意义随着城市化进程的加快,智能交通系统在现代城市建设中扮演着越来越重要的角色。
交通灯作为道路交通管理的重要组成部分,其控制系统的先进性和稳定性直接关系到道路通行效率和交通安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STC89C51芯片引脚
晶振电路
首先介绍一下单片机的晶振电路,即时钟电路。单 片机的工作流程,就是在系统时钟的作用下,一条 一条地执行存储器中的程序。单片机的时钟电路由 外接的一只晶振和两只起振电容,以及单片机内部 的时钟电路组成,晶振的频率越高,单片机处理数 据的速度越快,系统功耗也会相应增加,稳定性也 会下降。单片机 系统常用的晶振频率有 6MHz、 11.0592MHz、12MHz、本系统采用 12MHz 振,电容选 30pF。
交通灯控制系统的设计
交通灯控制系统的设计
1.1 设计概述 1.2 设计要求 1.3 系统设计 1.4硬件设计 1.5 软件设计 1.6 系统仿真及调试
1.1 设计概述
随着微控技术的口益完善和发展,单片机的应用不断走向深 入。它的应用必定导致传统的控制技术从根本上发生变革。 它在工业控制、数据采集、智能仪表、机电一体化、家用电 器等领域得到广泛的应用,极大地提高了这些领域的技术水 平和自动化控制。同时,伴随着我国经济的高速发展,私家 车、公交车的增加,无疑会给我国的道路交通系统带来沉重 的压力,很多大城市都不同程度地受到交通堵塞问题的困扰。 下面以AT89 C51单片机为核心,设计出以人性化、智能化为 目的的交通灯控制系统。 本项目主要从单片机应用上来实现十字路口交通灯智能化的 管理,用来控制过往车辆的正常化运作。
1.3 系统设计
通行状况
1.3 系统设计
通过具体的路口交通灯状态的演示分析我们可以把这四个状 态归纳如下: (1)南北方向红灯灭,同时绿灯亮,东西方向黄灯灭,同 时红灯亮,倒计时60秒。此状态下,东西向禁止通行,南北 向允许通行。 (2)南北方向绿灯灭,同时黄灯亮,东西方向红灯亮,倒 计时 5秒。此状下,除了已经正在通行中的其他所以车辆都 需等待状态转换。 (3)东西方向红灯灭,同时绿灯亮,南北方向黄灯灭,同 时红灯亮,倒计时60秒。此状态下,东西向允许通行,南北 向禁止通行。 (4)东西方向绿灯灭,同时黄灯亮,南北方向红灯亮,倒 计时 5秒。此状态下,除了已经正在通行中的其他所以车辆 都需等待状态转换。
1.3 系统设计
交通灯控制系统主要控制A, B两车道 的交通,以AT89C51单片机为核心芯 片,通过控制三色LED灯的亮灭来控 制各车道的通行;另外通过4个按键来 模拟各车道有无车辆的情况和有紧急 车辆的情况。
1.3 系统设计
框图设计
基于AT89C51单片机的交通信号控制系统由电源电路、单片 机主控电路、按键控制电路、时钟电路、复位电路和数码管
电路仿真图
实物图
正常工作模式
南北方向紧急通行模式
东西方向紧急通行模式
夜间模式
南北禁止,东西禁止
1.2 设计要求
设计一个模拟交通灯控制系统:
(1)红灯和绿灯停留的时间为一分钟即60秒钟,黄 灯停留的时间是5秒钟;
(2)系统包括人行道,左转,右转,以及基本的交 通灯的功能;
(3)系统除基本的交通灯功能外,还具有倒计时, 时间设置,紧急情况处理,分时段调整信号灯的点 亮时间以及根据具体情况手动控制等功能。
显示电路几部分组成,框图所示。
系统原理
单片机设计交通灯控制系统,可用单片机直接控制 信号灯的状态变化,指挥交通的具体通行。当然, 接入 LED数码管就可以显示倒计时,以提醒行使 者,更具人性化。 据此,本设计系统以单片机为控制核心,连接成最 小系统,由按键设置模块等产生输入,信号灯状态 模块、LED倒计时模块接受输出。系统的总体框图 如上图所示。系统进入正常工作状态,执行交通灯 状态显示控制,同时将倒计时数据输入到 LED数 码管上实时显示。在此过程中还要实时检测按键信 号,以达到对异常状态进行实时控制的目的。
பைடு நூலகம்
晶振电路
复位电路
系统刚上电时,单片机内部的程序还没有开始执行,需要一 段准备时间,也就是复位时间。一个稳定的单片机系统必须设 计复位电路。当程序跑飞或死机时,也需要进行系统复位。复 位电路有很多种,有上电复位,手动复位等。
按键电路
本设计设置了有 4个 键: (1)、S1 键设置按键。 (2)、S2键为增加时间按 键。 (3)、 S3 键为减少时间按 键。 (4)、S4键为模式切换按键。
图1.2 基于AT89C51单片机的交通 信号模拟控制系统电路图
电路工作原理
(1)开关键输入交通灯初始时间,通过89C51单 片机P1输入到系统 (2) 由89C51单片机的定时器每秒钟通过P0口向 数据口送信息,由单片机的P0口显示红、绿、黄灯 的燃亮情况;由P2口显示每个灯的燃亮时间。 (3)89C51通过设置各个信号等的燃亮时间,绿、 红时间为60秒、黄灯为5秒循环由 P0口向数码管 输出。 (4) 通过单片机的P3.0位来控制系统是工作或设 置初值,当为0就对系统进行初始化,为1系统就 开始工作。
元件清单
软件设计
总体流程图
1.6 系统仿真及调试
基于AT89 C51单片机的交通信号灯控制系统仿真过程参考附 录C。交通信号与控制状态仿真结果。 单片机系统的硬件调试和软件调试是不能分开的,许多硬件 错误是在软件调试过程中被发现和纠正的。但通常是先排除 明显的硬件故障以后,再和软件结合起来调试以进一步排除 故障。可见硬件的调试是基础,如果硬件调试不通过,软件 设计则无从谈起。
系统原理
(1)单片机控制模块:单片机将计算机的基本部件 微型化并集成到一块芯片上,具有优异的性能价格 比,控制功能强,这将使各模块功能的实现变得简 单方便。本系统中,51单片机的P2口控制数码管 的段选,P1.4;P1.5;P1.6;P1.7控制位选, P0.0;P0.1;P0.2;P0.3;P0.4;P0.5口控制信号灯 的点亮;P1.0P1.1;P1.2;P1.3口接键盘开关,可 设置适应当前状况的通行时间和暂缓通行时间。 (2)信号灯显示模块:利用发光二极管代替交通信 号灯,通过单片机控制使其按要求点亮。 (3)倒计时显示模块:此模块有两种方案。第一种 是采用数码管显示。该方案实现简单,但只能显示 有限的符号和数码字符。第二种是采用点阵式LED 显示。该方案实现复杂,须完成大量的软件工作,
LED灯电路
数码管显示电路
本系统使用数码管完成倒计时显示功能。以 南北方向为例,数码管显示的数值从绿灯的 设置时间最大值开始往下减,每秒钟减1, 最后减到0.然后又从红灯的设置时间最大值 往下减,一直见到0,接着显示黄灯的设置 时间,一直减到0,然后一直循环下去。系 统共有8个数码管,每2个分别放置在模拟 交通灯上方,道路口剩余通行时间采用红色 七段共阴数码管显示。本系统中,51单片 机的P1.4;P1.5;P1.6;P1.7控制位选,本 系统中,P2口控制数码管的段选。
LED灯电路
根据本设计的特点,红绿黄灯的显示不可 少,红绿黄灯的显示采用普通的发光二极 管。每个方向上设置红绿黄灯,总共 4组 。如果东西红灯亮,那南北方向就是绿灯 亮,反之亦然,所以在硬件上连接图上也 是对称分布的,在本设计中,实际控制的 灯有12个,即:东西红灯,东西绿灯,东 西黄灯,南北红灯,南北绿灯,南北黄灯, 均是高电平有效,如图所示。
按键电路
南北每次通行时间设为60秒、东西每次通行间为 60秒,时间按S1可设置修改。按S1一次进入调东 西通行时间,再按一次S1进入调南北通行时间。 再按一次S1退出设定;通行时间模式,进入设定通 行时间模式后按S2加1,按S3减1。再正常模式下 按S4进入南北优先通行模式,再按一下S4进入东 西南北禁止通行模式,再按一下S4进入夜间模式 。再按一下S4进入东西优先通行模式。在正常模 式下按下复位按键,恢复为正常状态。
1.4 硬件设计
(1)STC89C51芯片
(2)晶振电路
(3)复位电路
(4)按键电路
(5)LED灯电路 (6)数码管显示电路
STC89C51芯片
STC89C51是宏晶科技的STC89系列单片 机。STC89系列单片机也是MCS-51系列 单片机的派生产品,近几年受到市场的追捧 。DIP—40封装系列与标准80C51完全兼 容。STC89系列的ISP功能可通过232接口 和PC的串口连接,在线下载程序。它的开 发手段简单,无需仿真器。这一特性避开了 以往学习单片机时对仿真器的依赖,极大的 简化了学习和开发手段。故本设计采用 STC89C51单片机。
但功能强大,可方便的显示各种英文字符、汉字和图 形。由于本控制系统只需显示倒计时时间,利用数码 管即可完成此功能,因此本控制系统中利用2位一体 的共阴数码管显示道路两个方向的通行时间和暂缓通 行时间,通过单片机控制进行倒计时显示。 (4)键盘设置模块:在交通道路突发情况时,可通过 按键手动设置通行时间和暂缓通行时间,通过单片机 控制进行时间设置。此模块有两种方案:第一种是采 用扩展I/O口及键盘、信号灯显示等。该方案使用灵 活,可提供较多I/O口,但操作复杂。另一种是直接 在I/O口线上接上按键开关。该方案设计精简,但提 供的I/O口数量有限。由于本控制系统对于交通灯及 数码管的控制只用单片机本身的I/O口就可实现,故 选择第二种方案。
硬件的调试主要是把电路各种参数调整到符合设计要求。先 排除硬件电路故障,包括设计性错误和公益性故障。一般原 则是先静态后动态。
1.6 系统仿真及调试
利用万用表或逻辑测试仪器,检查电路中的各器件以及引脚 是否连接正确,是否有短路故障。
先要将单片机AT89 S51芯片取下,对电路板进行通电检查, 通过观察看是否有异常,然后用万用表测试各电源电压,这 些都没有问题后,接上仿真机进行联机调试观察各接口线路 是否正常。 单片机AT89 S51是系统的核心,利用万用表检测单片机电源 Vcc是否为(40脚)+5 V、晶振是否正常工作(可用示波器测试, 也可以用万用表检测,两引脚电压一般为1.8~2.3V)、复位引 脚RST(复位时为高电平,单片机工作时为低电平)、EA是否 为+5V(高电平),这样一来单片机就能工作了,再结合电路图, 检测故障就很容易了。