人教版初中数学《函数》教案.doc
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案

在小组讨论环节,我发现学生们对于正比例函数在实际生活中的应用有着很高的热情,他们能够提出很多有趣的例子。但是,如何将这些例子抽象成数学模型,并运用正比例函数的性质来分析问题,这对他们来说是一个挑战。在这方面,我应该提供更多的引导和示范,让学生学会如何将实际问题转化为数学问题。
-正比例函数性质的掌握:明确当k>0时,函数值随x增大而增大;当k<0时,函数值随x增大而减小。
举例:通过实例说明,如一辆汽车以恒定速度行驶,行驶的距离与时间成正比,这里的比例系数k就是速度。
2.教学难点
-正比例函数图像的绘制:学生需要掌握如何根据函数表达式绘制出准确的图像,特别是对于k值的理解和应用。
人教版初中数学八年级下册19.2.1《正比例函数的图像和性质》教案
一、教学内容
人教版初中数学八年级下册第19章《函数》第二节《正比例函数的图像和性质》。本节课主要内容包括:
1.正比例函数的定义:形如y=kx(k≠0)的函数称为正比例函数。
2.正比例函数的图像:在直角坐标系中,正比例函数的图像是一条通过原点的直线。
五、教学反思
在今天的教学中,我发现学生们对正比例函数的概念和图像性质有了初步的理解,但仍然存在一些难点需要进一步突破。首先,正比例函数的定义对于部分学生来说还不够清晰,他们在理解y=kx(k≠0)这个表达式时显得有些吃力。在讲解过程中,我应该更形象地举例,比如用速度与时间的关系来说明k值的意义,让学生更直观地感受到正比例函数的实际意义。
-正比例函数性质的深入理解:学生可能会对k值的正负与图像斜率的关系感到困惑,需要通过具体实例和图形帮助学生理解。
(完整版)人教版初中数学《函数》教案

人教版八年级数学上册《函数》教案]教学目标1.知识与技能了解函数的概念,弄清自变量与函数之间的关系.2.过程与方法经历探索函数概念的过程,感受函数的模型思想.3.情感、态度与价值观培养观察、交流、分析的思想意识,体会函数的实际应用价值.重、难点与关键1.重点:认识函数的概念.2.难点:对函数中自变量取值范围的确定.3.关键:从实际出发,由具体到抽象,建立函数的模型.教学方法采用“情境──探究”的方法,让学生从具体的情境中提升函数的思想方法.教学过程一、回顾交流,聚焦问题1.变量(P94)中5个思考题.【教师提问】同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量.【学生活动】思考问题,踊跃发言.(先归纳出5个思考题的关系式,再举例)【教师活动】激发兴趣,鼓励学生联想,2.在地球某地,温度T(℃)与高度d(m)的关系可以挖地用T=10-来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量.(2)填写下表.高度d/m 0 ,200,400,600,800,1000温度T/℃(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就______.3.课本P7“观察”.【学生活动】四人小组互动交流,踊跃发言二、讨论交流,形成概念【函数定义】一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.【教师活动】归纳出函数的定义.强调在上述活动中的关系式是函数关系式.提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的函数?【学生活动】辨析理解,如:T=10-这个函数关系式中,d是自变量,T是d的函数等.弄清函数定义中的问题。
三、继续探究,感知轻重课本P8探究题.【学生活动】使用计算器进行探索活动,回答问题,理解函数概念.(1)y=2x+5,y是x的函数;(2)y=2x+1,y是x的函数.四、范例点击,提高认知【例1】一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.11L/km.(1)写出表示y与x的函数关系的式子.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?【教师活动】讲例,启发引导学生共同解决上述例1.五、随堂练习,巩固深化课本P99练习.六、课堂总结,发展潜能1.用数学式子表示函数的方法叫做表达式法(解析式法),它只是函数表示法的一种.2.求函数的自变量取值范围的方法.(1)要使函数的表达式有意义;(2)对实际问题中的函数关系,要使实际问题有意义.3.把所给自变量的值代入函数表达式中,就可以求出相应的函数值.七、布置作业,专题突破课本P106习题14.1第1,2,3,4题.板书设计14.1.2 函数1、函数的概念例:2、函数中自变量取值范围的确定。
初中数学函数备课教案

初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。
2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。
过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。
2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。
2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。
二、教学重难点重点:认识函数的概念,了解常量与变量的含义。
难点:对函数中自变量取值范围的确定。
三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。
学具:每人一份函数实例材料、练习题。
四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。
2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。
3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。
4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。
5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。
6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。
7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。
2. 学生能通过实际问题建立函数模型,解决简单的生活问题。
3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
4. 学生培养对数学的兴趣和积极参与数学活动的热情。
函数概念教案

函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
初中《函数》教案设计

初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
认识函数数学教案

认识函数数学教案
标题:认识函数数学教案
一、教学目标
1. 学生能够理解函数的基本概念。
2. 学生能够掌握函数的表示方法。
3. 学生能够解决与函数有关的问题。
二、教学重点和难点
1. 教学重点:函数的概念和表示方法。
2. 教学难点:理解和应用函数的概念。
三、教学过程
1. 导入新课:
通过实际生活中的例子引入函数的概念,如身高与年龄的关系,距离与时间的关系等。
2. 讲授新课:
(1)定义函数:讲解什么是函数,函数的输入和输出,以及函数的基本性质。
(2)函数的表示方法:介绍如何用图像、表格和解析式表示函数。
(3)函数的应用:通过实例让学生了解函数在现实生活中的应用。
3. 练习与实践:
设计一些练习题,让学生自己动手解题,以此检验他们对函数的理解程度。
4. 小结:
总结本节课的主要内容,强调关键知识点。
5. 布置作业:
设计一些相关的作业,让学生在课后继续巩固所学知识。
四、教学反思
对本节课的教学效果进行反思,分析学生的学习情况,为下一次教学提供参考。
《函数的概念及其表示》教案完美版

《函数的概念及其表⽰》教案完美版《函数的概念及其表⽰》教案第⼀课时: 1.2.1 函数的概念(⼀)教学要求:通过丰富实例,进⼀步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的要素;能够正确使⽤“区间”的符号表⽰某些集合。
教学重点、难点:理解函数的模型化思想,⽤集合与对应的语⾔来刻画函数。
教学过程:⼀、复习准备:1. 讨论:放学后骑⾃⾏车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在⼀个变化过程中,有两个变量x 和y ,对于x 的每⼀个确定的值,y 都有唯⼀的值与之对应,此时y 是x 的函数,x 是⾃变量,y 是因变量. 表⽰⽅法有:解析法、列表法、图象法.⼆、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .⼀枚炮弹发射,经26秒后落地击中⽬标,射⾼为845⽶,且炮弹距地⾯⾼度h (⽶)与时间t (秒)的变化规律是21305h t t =-.B .近⼏⼗年,⼤⽓层中臭氧迅速减少,因⽽出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞⾯积的变化情况.(见书P16页图)C .国际上常⽤恩格尔系数(⾷物⽀出⾦额÷总⽀出⾦额)反映⼀个国家⼈民⽣活质量的⾼低。
“⼋五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每⼀个x ,按照某种对应关系f ,在数集B 中都与唯⼀确定的y 和它对应,记作::f A B →③定义:设A 、B 是⾮空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意⼀个数x ,在集合B 中都有唯⼀确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的⼀个函数(function ),记作:(),y f x x A =∈.其中,x 叫⾃变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?⼀次函数(0)y ax b a =+≠、⼆次函数2(0)y ax bx c a =++≠的定义域与值域?⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
初中数学函数教案范文

初中数学函数教案范文教学目标:1. 知识与技能:学生能够理解函数的概念,明确自变量与函数之间的关系。
2. 过程与方法:学生通过探索函数概念的过程,能够体验函数的模型思想。
3. 情感、态度与价值观:学生能够培养观察、交流、分析的思想意识,理解函数在实际应用中的价值。
教学重、难点与关键:1. 重点:使学生认识函数的概念。
2. 难点:对函数中自变量取值范围的确定。
3. 关键:从实际出发,由具体到抽象,建立函数的模型。
教学方法:采用情境探究的方法,让学生从具体的情境中提升函数的思想方法。
教学过程:一、回顾交流,聚焦问题1. 教师提问:同学们通过学习变量这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量。
2. 学生活动:思考问题,踊跃发言(先归纳出5个思考题的关系式,再举例)。
3. 教师活动:激发兴趣,鼓励学生联想。
二、探究新知,建构概念1. 教师活动:在地球某地,温度T与高度d的关系可以用T=10-d/2来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量。
(2)填写下表(高度d/m 0,200,400,600,800,1000)。
(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就随之确定。
2. 学生活动:根据关系式回答问题。
三、巩固新知,内化概念1. 教师活动:出示一些具体实例,让学生判断其中的变量关系是否可以看作函数。
2. 学生活动:对实例进行判断。
四、练习与提高1. 教师活动:出示练习题,让学生独立完成。
2. 学生活动:完成练习题,小组内交流讨论。
五、总结与反思1. 教师提问:通过本节课的学习,同学们对函数有了哪些认识?2. 学生活动:总结函数的概念,明确函数的模型思想。
教学评价:通过学生在课堂上的发言、练习题的完成情况以及小组讨论的表现,评价学生对函数概念的理解和运用情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册《函数》教案
]
教学目标
1.知识与技能
了解函数的概念,弄清自变量与函数之间的关系.
2.过程与方法
经历探索函数概念的过程,感受函数的模型思想.
3.情感、态度与价值观
培养观察、交流、分析的思想意识,体会函数的实际应用价值.
重、难点与关键
1.重点:认识函数的概念.
2.难点:对函数中自变量取值范围的确定.
3.关键:从实际出发,由具体到抽象,建立函数的模型.
教学方法
采用“情境──探究”的方法,让学生从具体的情境中提升函数的思想方法.
教学过程
一、回顾交流,聚焦问题
1.变量(P94)中5个思考题.
【教师提问】
同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量.
【学生活动】思考问题,踊跃发言.(先归纳出5个思考题的关系式,再举例)
【教师活动】激发兴趣,鼓励学生联想,
2.在地球某地,温度T(℃)与高度d(m)的关系可以挖地用T=10-来表示(如图),请你根据这个关系式回答下列问题:
(1)指出这个关系式中的变量和常量.
(2)填写下表.
高度d/m 0 ,200,400,600,800,1000
温度T/℃
(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就______.
3.课本P7“观察”.
【学生活动】四人小组互动交流,踊跃发言
二、讨论交流,形成概念
【函数定义】
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
【教师活动】归纳出函数的定义.强调在上述活动中的关系式是函数关系式.提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的函数?
【学生活动】辨析理解,如:T=10-这个函数关系式中,d是自变量,T是d的函数等.弄清函数定义中的问题。
三、继续探究,感知轻重
课本P8探究题.
【学生活动】使用计算器进行探索活动,回答问题,理解函数概念.(1)y=2x+5,y是x的函数;(2)y=2x+1,y是x的函数.
四、范例点击,提高认知
【例1】一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.11L/km.
(1)写出表示y与x的函数关系的式子.
(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
【教师活动】讲例,启发引导学生共同解决上述例1.
五、随堂练习,巩固深化
课本P99练习.
六、课堂总结,发展潜能
1.用数学式子表示函数的方法叫做表达式法(解析式法),它只是函数表示法的一种.
2.求函数的自变量取值范围的方法.
(1)要使函数的表达式有意义;(2)对实际问题中的函数关系,要使实际问题有意义.
3.把所给自变量的值代入函数表达式中,就可以求出相应的函数值.
七、布置作业,专题突破
课本P106习题14.1第1,2,3,4题.
板书设计
14.1.2 函数 1、函数的概念例: 2、函数中自变量取值范围的确定。