运筹学第17讲最小费用最大流

合集下载

最小费用最大流问题ppt课件

最小费用最大流问题ppt课件

v4 (5,3) vt
(3,0)
(2,1) v3
v1
Back 14
continued
(二)调整过程 (1)寻找以为终点的增广链----(反向追踪法)
若vt的第一个标号为v3 , 则弧(v3 , vt )是链上的弧。 接下来检查 v3的第一个标号, 为 v2, 则找出(v3 , v2 )是链上的弧。 同理, (v2 , v1 )和(vs , v1 )是链上的弧. 此时所求的增广链(vs , v1 , v2v3 , vt )。
(2)若在弧 (v j , vi )上 , fij 0, 则给 v j标号 (vi , l(v j )) 这 里 l(v j ) min[ l(vi ), f ji ] .此时,点 v j成为标号而未检查的点.
于是 vi 成为标号且已检查过的点.重复上述步骤,一旦 v t
被标上号,表明得到一条从 vs 到 v t 的增广链 ,转入调整过程.
3 、检查 v1
在弧 (v1 , v3 ) 上 , f13 c13 2, 不满足标号条件;
在弧 (v2 , v1 ) 上 , f 21 0, 则 v2的标号为 (v1,l(v2 )). 其中, l(v2 ) min[ l(v1), f21] min[ 4,1] 1 4 、检查 v2
若所有标号都已经检查过,而标号过程进行不下去时,则 算法结束,此时的可行流就是最大流.
10
2 、调整过程 (1)寻找以v t 为终点的增广链----(反向追踪法): 若vt的第一个标号为vk (或 vk ),则弧(vk , vt )(相应地(vt , vk ))是
链上的弧。 接下来检查vk的第一个标号, 若为vi (或 vi ), 则找 出(vi , vk )(相应地(vk , vi ))。 再检查的第一个标号, 依此下去, 直到 vs为止(2。)调此整时量被找 的l(v弧t ),就即构vt的成第了二增个广标链号。。

网络流:最小费用最大流(最简单的算法)

网络流:最小费用最大流(最简单的算法)

网络流:最小费用最大流(最简单的算法)最小费用流在OI 竞赛中应当算是比较偏门的内容,但是NOI2008 中employee 的突然出现确实让许多人包括zkw 自己措手不及。

可怜的zkw 当时想出了最小费用流模型,可是他从来没有实现过,所以不敢写,此题0 分。

zkw 现在对费用流的心得是:虽然理论上难,但是写一个能AC 题的费用流还算简单。

先贴一个我写的employee 程序:只有不到70 行,费用流比最大流还好写~程序代码:C++#include <cstdio>#include <cstring>using namespace std;const int maxint=~0U>>1;int n,m,pi[550]={0},cost=0;bool v[550]={0};struct etype{int t,c,u;etype *next,*pair;etype(){}etype(int t_,int c_,int u_,etype* next_):t(t_),c(c_),u(u_),next(next_){}void* operator new(unsigned,void* p){return p;}} *e[550],*eb[550];int aug(int no,int m){if(no==n)return cost+=pi[1]*m,m;v[no]=true;for(etype *&i=e[no];i;i=i->next)if(i->u && !v[i->t] && pi[i->t]+i->c==pi[no])if(int d=aug(i->t,m<i->u?m:i->u))return i->u-=d,i->pair->u+=d,d;return 0;}bool modlabel(){int d=maxint,c;for(int i=1;i<=n;++i)if(v[i])for(etype *j=eb[i];j;j=j->next)if(j->u && !v[j->t])if((c=j->c-pi[i]+pi[j->t])<d)d=c;if(d==maxint)return false;for(int i=1;i<=n;++i)if(v[i])pi[i]+=d,e[i]=eb[i];return true;}int main(){freopen("costflow.in","r",stdin);freopen("costflow.out","w",stdout);scanf("%d %d",&n,&m);etype *Pe=new etype[m+m];while(m--){int s,t,c,u;scanf("%d%d%d%d",&s,&t,&u,&c);e[s]=new(Pe++)etype(t, c,u,e[s]);e[t]=new(Pe++)etype(s,-c,0,e[t]);e[s]->pair=e[t];e[t]->pair=e[s];}memmove(eb,e,sizeof(e));do do memset(v,0,sizeof(v));while(aug(1,maxint));while(modlabel());printf("%d\n",cost);return 0;}程序代码:CB大牛翻译的PASCALvarn,m,i,l,s,t,c,cost,u:longint;v:array[0..600]of boolean;dis:array[0..600]of longint;e_n,e_t,e_c,e_u,e_p,e_x:array[0..250000]of longint;function min(a,b:longint):longint;beginif a>b then exit(b);exit(a);end;procedure addedge(s,t,c,u,k:longint);begininc(l);e_n[l]:=e_n[s];e_n[s]:=l;//下一条边e_t[l]:=t;//边的另一端e_c[l]:=c;//边的费用e_u[l]:=u;//边的容量e_p[l]:=l+k;//对应的边end;procedure build(s,t,c,u:longint);beginaddedge(s,t,c,u,1);addedge(t,s,-c,0,-1);end;function aug(no,m:longint):longint;vari,d:longint;beginif no=n then begininc(cost,m*dis[1]);exit(m);end;v[no]:=true;i:=e_x[no];while i<>0 do beginif (e_u[i]>0)and(not v[e_t[i]])and(dis[e_t[i]]+e_c[i]=dis[no]) then begind:=aug(e_t[i],min(m,e_u[i]));if d>0 then begindec(e_u[i],d);inc(e_u[e_p[i]],d);e_x[no]:=i;exit(d);end;end;i:=e_n[i];end;e_x[no]:=i;exit(0);end;function modlabel:boolean;vard,i,j:longint;begind:=maxlongint;for i:=1 to n do if v[i] then beginj:=e_n[i];while j<>0 do beginif (e_u[j]>0)and(not v[e_t[j]])and(e_c[j]-dis[i]+dis[e_t[j]]<d) then d:=e_c[j]-dis[i]+dis[e_t[j]];j:=e_n[j];end;end;if d=maxlongint then exit(true);for i:=1 to n do if v[i] then beginv[i]:=false;inc(dis[i],d);end;exit(false);end;beginassign(input,'coflow.in');reset(input);assign(output,'coflow.out');rewrite(output);readln(n,m);l:=n;for m:=m downto 1 do beginreadln(s,t,u,c);build(s,t,c,u);end;repeatfor i:=1 to n do e_x[i]:=e_n[i];while aug(1,maxlongint)>0 do fillchar(v,sizeof(v),0);until modlabel;writeln(cost);close(output);end.这里使用的是连续最短路算法。

最小费用最大流

最小费用最大流

0.000000 0.000000 0.000000 0.000000 0.000000 5.000000 3.000000 0.000000 0.000000
结果说明,最小费用为12,此时,流值为3。
例6.8.6 用MATLAB软件求解例6.5.1。 解: MATLAB编程如下: f=zeros(7,1);f(1)=1;f(2)=1; g=-f; aeq=[1,0,-1,-1,0,0,0 0,1,0,1,-1,0,-1 0,0,1,0,1,-1,0]; beq=zeros(3,1);lb=zeros(7,1); ub=[2 1 6 3 2 4 3]';
( vi , v j )A

cij xij
(6.5.3)
n n X ij X ji 0 s.t. j 1 j 1 0 x w , (v , v ) A ij ij i j
§6.5.2 最小费用最大流问题的算法
寻求最大流的方法 最小 费用 最小费用最大流
运行结果如下:
z= 2.0000 1.0000 0.0000 2.0000 0.0000 0.0000 3.0000 favl1 = 12.0000
结果说明最大流值为3,最小费用为12。 可以看出,最小费用最大流问题其实就是在最 大流问题基础上,再进行一次线性规划问题的计算 得出。
例:求图中从vs vt的最小费用最大流。
解: 取 X (0) 0, 见图6.4.7(a), 构造 D( X (0) ).
v2
(1, 2, 0)

(5,6,0)
v 4
(3, 4,0)
(2,3,0) (3,1, 0)
(1, 2, 0)
v1
v3 (1,3, 0)

最小费用最大流问题例题讲解

最小费用最大流问题例题讲解

最小费用最大流问题例题讲解
最小费用最大流问题(Minimum Cost Maximum Flow Problem)是一种在特定的多媒体网络中传送给定体积的流量,使总花费最小化的一种算法。

它能满足一些实际生活中的求解,比如电力系统的供求、工厂的物料的分配和两地之间的物品的运输问题,以及更加复杂的产品开发和行业分工中的分布问题等等。

最小费用最大流问题的目标是在满足给定的最大流量要求的前提下,找出具有最小成本的流量方案。

这种问题的解决步骤如下:
1. 在图形中定义网络:用图形表示整个网络,每条边的容量是边上的流量上限。

2. 尝试找出最大流量:在不超过容量限制的前提下,找出输出流量最大的允许方案,也就是最小费用最大流量。

3. 计算最小成本:对所有边的成本进行总结,计算出最小成本。

下面以一个最小费用最大流问题的例题来说明:
假设有一个三角形的网络,它由一个源点S、一个汇点T、一个中间点O以及三条边组成,边的名字分别是SO、OT、OS,它们的容量分别是10、15和5,费用分别是5、3和2。

要求我们在此条件下求解最小费用最大流问题。

解:首先,我们可以求出最大流量:在边SO的容量为10时,我们可以将费用最小的边OT累加,得到最大流量值为10+3=13。

接下来,计算最小费用:根据上述算法,所有边的费用应该都大于等于0,才能累加而得到最大流量。

也就是说,最小费用为
5+3+2=10。

最后,最小费用最大流问题的解为:最大流量13,最小成本10。

最小费用最大流问题.

最小费用最大流问题.
(
vs
(
5,2)
(
(
2,6)
8,1)
V2 10,3)ቤተ መጻሕፍቲ ባይዱV3
4,2)
第一轮:f 0为初始可行流,作相应的费用有向图网络L(f 0),如 图(a)。 在L(f 0)上用DijksTra标号法求出由vs到vt的最短路(最小费用链) 0 m i n 8,5, 5 7 μ0=(vs,v2,v1, ( vt)v ,并对 μ 按 进行流量的调整, 0 , v ) ,( v , v ) ,( v , v ) s 2 0 2 1 0 1 t 0 由于, (1) (1) 所以有 fs2 f12 f1t(1) 5,其余不变,得新的可行流f1的流量 有向图(b)。
vs
vt
2.下表给出某运输问题的产销平衡表与单位运价 表。将此问题转化为最小费用最大流问题,画出网 络图并求数值解。 2 3 产量 1 产地 销地
A B 销量 20 30 4 24 22 5 5 20 6 8 7
最小总费用为240
(20,8) A (0,8) s (30,7) (0,7) (5,8) (24,8)
4
vt
vs
1
6
2
2
v1
(7,5)
(2,0)
(10,0)
vt
(4,0)
v2
V(f
1)
(a) = 5
3
v3 vs
(8,5)
w(f0)
(5,5)
v2
(10,0)
v3
(b) f 1
v1 vs
(8,5)
(7,5)
(2,0)
(10,0)
vt
(4,0) 4
v1
vs

最小费用最大流问题

最小费用最大流问题

近似算法和启发式算法
要点一
近似算法
近似算法是一种用于求解NP-hard问题的有效方法,它可 以在多项式时间内找到一个近似最优解。最小费用最大流 问题的近似算法包括Ford-Fulkerson算法、EdmondsKarp算法等。
要点二
启发式算法
启发式算法是一种基于经验或直观的算法,它可以在合理 的时间内找到一个近似最优解。最小费用最大流问题的启 发式算法包括基于增广路径的算法、基于贪婪的算法等。
研究如何将最小费用最大流问题 应用于计算机科学领域,例如计 算机网络、云计算等。
物理学
研究如何借鉴物理学中的理论和 思想,解决最小费用最大流问题, 例如利用流体动力学中的思想来 研究网络中的流。
谢谢观看
Hale Waihona Puke 06未来研究方向和展望算法优化和改进
动态规划算法
研究如何优化动态规划算法,减少时间复杂度 和空间复杂度,提高求解效率。
近似算法
研究近似算法,在保证求解质量的前提下,提 高求解速度。
并行计算和分布式计算
研究如何利用并行计算和分布式计算技术,加速最小费用最大流问题的求解。
新的问题定义和模型
考虑更复杂的情况
和技术。
有界容量和无界容量
总结词
有界容量和无界容量是指在网络中节点之间 的容量是否有限制。
详细描述
在最小费用最大流问题中,如果节点之间的 容量有限制,即为有界容量问题;如果节点 之间的容量没有限制,即为无界容量问题。 有界容量问题可以通过增广路径算法、预流 推进算法等求解,而无界容量问题则需要采
用其他算法和技术进行求解。
算法概述
最小费用最大流问题是一种网络流问 题,旨在在给定有向图中寻找一条路 径,使得从源节点到汇点之间的总流 量最大,同时满足每个节点的流入量 等于流出量,以及每条边的容量限制。

最小费用最大流

最小费用最大流1.最大流问题1.1案例假设现在因为种种原因,我们只能通过地面线路来运输口罩物资,并且每一条线路是有流量限制的。

假设不考虑运输速度,并且源点S (杭州)的口罩物资产量是足够多的,我们需要求解汇点T(武汉)在不计速度的情况下能收到多少物资?对于这个流网络,我们可以轻松的获得汇点T的最大流量。

因为在这个图中,只有两条路径,分别是S → A → B → T和S → C → D → T两条路径来输送流量,前者最大流量是12 ,后者是4,所以最大流量总和是16。

1.2建模图1是连接产品产地Vs和销售地Vt的交通网,每一条弧代表两点间的运输线,弧旁的数字表示这条运输线的最大通过能力。

现在要求制定一个运输方案,使得从Vs运输到Vt的产品数量最多。

图1模型():(,):(,)max .,,,,s ,0,s.t 0,,V V st f c Vf f t f Vμυμυμυυμυυυμμυλμυμυλμλμμμυ∈∈≤∀∈⎧=⎪-=-=⎨⎪≠⎩≥∀∈∑∑其中λ表示总共运输量f μυ表示弧(),μυ中的实际流量(),c μυ表示弧(),μυ中的容量限制S,t 表示物质运输的起点和终点最大流问题的推广现实问题中的网络,不但边有容量,而且点也有容量。

例如运 输网络中表示中转站的点v, 点容量 c(v) 可表示该中转站能容纳的货物的数列。

对点有容量的网络 N ,流函数若满足对一点 v,流入v 的流量之和等于流出v 的流量之和,并且小于等于c(v),2.最小费用最大流问题上面我们介绍了一个网络上最短路以及最大流的算法,但是还没有考虑到网络上流的费用问题,在许多实际问题中,费用的因素很重要。

例如,在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案。

这就是下面要介绍的最小费用流问题。

在运输网络N = (s,t,V, A,U)中,设(),c μυ是定义在A上的非负函数,它表示通过弧(),μυ单位流的费用。

最小费用最大流问题


i):f(j,i))=0; ); @sum(edge(i,j)|i#eq#@index(s):f(i,j)) =vf; @sum(edge(j,i)|i#eq#@index(t):f(j,i)) =vf; @for(edge(i,j):@bnd(0,f(i,j),u(i,j))) ; end

min
( i , j )E

cij fij ;
s.t.
jV ( i , j )E

fij
jV ( j ,i )E

v f , i s , f ji v f , i t , 0, i s, t.
0 fij uij ,(i, j ) E.
LINGO 程序求解 model: sets: points/s,v1,v2,v3,v4,t/; edge(points,points) /s,v1 s,v2 v1,v2 v1,v3 v2,v4 v3,v2 v3,t v4,v3 v4,t/:c,u,f; endsets data: c=2 8 5 2 3 1 6 4 7; u=8 7 5 9 9 2 5 6 10; vf=14; enddata min=@sum(edge(i,j):c(i,j)*f(i,j)); @for(points(i)|i#ne#@index(s) #and# i#ne#@index(t): @sum(edge(i,j):f(i,j))-@sum(edge(j,
最小费用最大流问题
例 本例是最大流问题的延伸,由于输油管道的长短不 一,或地质等原因,使每条管道上运输费用也不相 同,因此,除考虑输油管道的最大流外,还需要考 虑输油管道输送最大流的最小费用,下图所示是带 有运输费的网络,其中第 1 个数字是网络的容量, 第 2 个数字是网络的单位运费.

最小费用最大流简介


6
最大流=f1+f2+f3=4+2+2=8
最小费用=48+26+30=104
算法设计:贪心策略
设p是图的一条增广路径,定义路径p的长度为:

w[i, j ]

w[i, j ]
i , j P
i ,。
如果p是一条最短(单位费用最小)的可增广路径, 称p是一条最小费用可增广路。
(4,6)
实例:
(容量,单位费用)
(2,5)
2
(5,7)
3
(4,3)
1
(6,2)
6 5
(8,5)
4
(7,6)
①、最小费用可增广路(最短路径) 1436 长度(单位流量总费用) =2+7+3=12 f 1=4 cost1=4*12=48
(4,6) (2,5)
2
4
(5,7) 4
3
4
(4,3)
1
(6,2)
6 5
(8,5)
4
(7,6)
(4,6)
(2,5)
2
4 (5,7) 4
3
4
(4,3)
1
②、最小费用可增广路 1456 长度(单位流量总费用) =2+6+5=13 f2 =2 cost2=2*13=26
6 5
(8,5)
(6,2)
4
(7,6)
(4,6)
(2,5)
2
(5,7) 2 4 2 (7,6)
// short[i]:i到源点1的最短距离(最小费用);
b:array[1..maxn] of integer; // b[i]:最小费用可增广路 径上结点i的前驱

最小费用最大流


vs
4
v2
4
vt
(10 )f ( 5)
v1 1
v3
4 -4
-1
3 2
2 -6
vs
-1
v2
6
vt
(11) L( f ( 5))
运筹学
的增广链u,以1调整f,得到新的可行流
f′时,b(f′)比b(f)增加多少?
b
u i j
显然有
b(f')﹣b(f)=[ b
b b (f′ij﹣fij )]u
ij
bu(_ f′i j ij﹣fij )﹣
b b
= [ ﹣ u i j
u_ i j
]
我们把[ u
﹣ i j
u_
ij
] 称为这条增广链u的
费用。
v2 (6 ,7)
vt vs
1
v2
6
vt
v1
3
v3 1=3
W(f(1))=3
(1) L(f (0))
v1 1
v3
0
3
-1
-2
3
0
4 -2
2 3
vs
3
v2
0
(2) f ( 1)
-1
vt
vs
1
v2
6
vt
(3) L(f (1))
v1 (1 ,6) v3
(4 ,8) (2 ,3)
(2 ,5) (3 ,2)
1
v3
v1
4
v3
4=3 W(f(4))=8
4
-1
-2 3
-2 -3
4 0
5 1
vs
-1
v2
6
(7) L(f (3))
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V1V7最短路:V1V2V3V5V7;
此路上的最大流量为1,此路上流1。
v2 21
v5 10
10 32
10
v6 1
v7
v3
10
v1 至此V1V7已无通路,总流量6+6-2
=5+4+2-1=10。
v4
费用:123+22×1=145
最最大小流费问用题
教材中的做法存在问题:如
1 v11
(P.226)。
最小费用最大流问题
作为LP问题用Excel的规划求解; 网络图论算法:分费用、流量两张图。
v2 3 62
4 v5 45
52 2
3v6 4
4 7 v7
6 v16
2 v3
3
8
1 v34 3 2
最小费用最大流问题
费用看6 作v2 边长的图4 中找V91v5 V7的最短路。
费用:56+16×1=72
最小费用最大流问题
删边V1V4V3,路程图中找V1V7最短路。
v2
4
v5
6
6
5
10
4
7
6
0
v3 11
v6 4
v7
17
v1
6
v4 V1V7最短路:费V用1:56V+216×V15=7V27
最小费用最大流问题
V1V7最短路:V1V2V5V7;
此路上的最大流量为3,此路上流3。
之间都有门可穿过。
(出入口如图示)。
4X4的呢?
安排问题一:文件存储
4段乐曲存在一条磁带上,查到并听完每首乐曲 的时间:设依次存的乐曲的长度为:a,b,c,d。
找到并听完第一首需时间a; 找到并听完第二首需时间a+b; 找到并听完第三首需时间a+b+c; 找到并听完第四首需时间a+b+c+d; 四共需时间:4a+3b+2c+d,平均找到并听完一首
运筹学 绍兴文理学院 工学院计算机系
第十章图与网络模型
Graph and Network Optimal
图与网络基本概念 最小生成树问题 最大流问题 最小费用最大流问题
最大流问题
作为LP问题用Excel的规划求解;
网络图论算法
0
v2 3 2
0 0
256810
0 v5 5 2 00
0
6
1 3
v16 4 3
1
02 20
0 v3
0
1
3
10
0v6 4 3 0 0v7
01
0125680
v4
2 0 最大流为:10,解为…
最最大小流费问用题
问题的提法:(P.225); 问题的LP解法:(P.225); 问题的网络图论解法:费用 当路长找最短路,路中找最大 流,删边,…,反复寻找。
最小费用最大流问题
V1V7最短路:V1V4V3V6V7;
此路上的最大流量为2,此路上流2。
v2 3
v5
2
5
5 6 v13 1
2 20
v6 3 1
v7
v3
5
v4 3 1
费用:32+12×2=56
最小费用最大流问题
删边V3V6,路程图中找V1V7最短路。
6 v2
4
9 v5
6 5
11
1
1
v2 1
V1V4最短路:V1V2V3V4 此路上流1。删去
1
三条边后,V1V4
2.1 再无通路了。
1 v4 显然最大流可以
1
是2,而不只是1。
1
请看图。
2.1 v31 此问题有Ford-Fulkerson算法。
排序与统筹 优先策略
(Greedy method 贪心算法)
安排问题(收衣服):
0
v1
3
5
4
5 v3 2
7
v6 4
v7
16
5
Vv14 3V7最短路:V1V费4用:3V23+12V×52=V576
最小费用最大流问题
V1V7最短路:V1V4V3V5V7;
此路上的最大流量为1,此路上流1。
v2 3
v5
2
54
6 6 v11 0
21
v6 1
v7
v3
6
v4 1 0
安排问题一:文件存储
一般地说:n段乐曲存在一条磁带上, 要使平均找到并听完一首乐曲所需的 时间最短,就应该尽量先存短的乐曲。 但这没考虑听这些乐曲的概率,最短 的存在最前面,但若人们听这首乐曲的 概率很小,那按乐曲长短安排存放次序 就不一定可取了。
等长的n段乐曲存在一条磁带上,要使 平均找到并听完一首乐曲所需的时间 最短,要尽量先存收听概率高的乐曲。
最小费用最大流问题
删边V4V6,路程图中找V1V7最短路。
v2
6
4
9 v5
6
1
0
v1
3
5
4
7
5 v3 3
v6 4
8
v7
11
1
2 8
v4 3
费用:10×1=10
V1V7最短路:V1V4V7
最小费用最大流问题
V1V7最短路:V1V4V7;
此路上的最大流量为2,此路上流2。
v2 3
v5
2
5
3
6 v15 3
2 2
v6 3
v7
v3
3
v4 3 2 0
费用:10+11×2=32
最小费用最大流问题
删边6Vv42 V7,路程4 图中找9 vV51V7最短5
4
7
5 v3 3
v6 4
8
v7
12
3
2
v4 3
费用:10+11×2=32
V1V7最短路:V1V4V3V6V7
6
0
v1 3
5
4
7
5 v3 3
v6
6
4
v7
10
23 8
3
v4
V1V7最短路:V1V4 V6V7
最小费用最大流问题
V1V7最短路:V1V4 V6V7;
此路上的最大流量为1,此路上流1。
v2 3
v5
2
5
1
6 v16 5
2 2
v6 4 3
v7
v3
1
10 v4 3 2
费用:10×1=10
乐曲所需的时间为f(a,b,c,d)=(4a+3b+2c+d)/4。 四首乐曲有4!=24种存放顺序,哪一种次序使f
最少?短的存在前:a<b<c<d的f(a,b,c,d)=min 否则如a<b,则顺序b,a,c,d将使f变大。理由是:
f(b,a,c,d)-f(a,b,c,d)=[4b+3a-(4a+3b)]/4=(b-a)/4>0
v2 3 0
v5
2
41
9
1
v6 1
v7
63 v1
v3
9
v4
费用:72+17×3=123
最小费用最大流问题
删边V2V5,路程图中找V1V7最短路。
v2
6
v5
15
6
5
4
7
9
0
v311
v6 4
v7
22
v1
9
V1V7最短路:V1V2V3V5V7
v4
费用:72+17×3=123
最小费用最大流问题
文件的存储; 任务的安排。
安排问题
满足某种要求的安排有没有?有的话,有多少? 如有某个定量指标时,最优安排是否存在?是 否唯一?如存在,怎么找?这类问题是优化关 心的主题。如:著名
的八皇后问题。
存在性问题:设计 一个参观如右3X3的 展览馆的路线,使每 间展馆都到而且不重
复每东西或南北两间
相关文档
最新文档