高中化学 配合物的配位键理论
第二章 配合物的化学键理论

第二章配合物的化学键理论配合物的化学键理论:中心离子与配位体之间的化学键。
第一节配合物的静电理论静电理论的基本观点:认为中心离子是带正电荷的粒子,而配位体是带负电荷的粒子,配合物中的配位键是由单纯的静电相互吸引而形成的,形成配合物的结合能有两项:1 配体与中心离子的吸引能2 配体与配体之间的排斥能U结合=U吸引+U排斥有一些现象不能很好解释:配体一定时,半径相近的金属离子与之形成的配合物的稳定性应相近。
如Na b半径为0.95, Cu+半径为0.96形成的配合物的稳定性却相差很大改进的静电理论:静电极化理论,即中心离子和配位体在静电的作用下,相互会产生变形,中心离子的正电荷可吸引配体的电子,而配体的负电荷则排斥中心离子的电子。
1 自己变形两方面的作用2 使对方变形Na b , K+ , Mg2+ , Ca2+等离子,具有8电子结构,极化弱,因而与配体配位时,变形小Cu2+,Ag+ , Zn2+ , Cd2+等离子,具有18电子结构,极化强,与配体配位时,变形大规则:中心离子具有较强的极化作用或变形性强,与变形性强的配位体配位时,形成的配合物稳定静电理论的评价:提出较早,对早期的配合物的化学键理论有贡献。
不足之处:1 不能解释象Ni(CO)4这样的配合物2 不能解释配合物的磁性和光谱第二节价键理论Sidywich 的配键理论主要的价键理论 Pauling 的电价和共价配位理论 Taube 的内轨和外轨理论主要介绍的价键理论的内容:1 Pauling 提出的杂化轨道理论 2 Taube 提出的内轨和外轨理论 IIIB IVB VB VIB VIIB VB IB IIB Sc Ti V Cr Mn Fe Co Ni Cu Zn 3d 1 4S 2 3d 2 4S 2 3d 3 4S 2 3d 5 4S 1 3d 5 4S 2 3d 6 4S 2 3d 7 4S 2 3d 8 4S 2 3d 94S 13d 10 4S 2Pauling 杂化轨道理论,用于处理配合物的形成其基本假设:中心离子,主要指过渡金属离子的价电子层中能量相近的(n-1)d, ns, np 或nd 轨道杂化后,形成能量等同的杂化轨道,接受配体的孤对电子而形成配合物,Pauling 称这种成键方式形成的为共价配合物。
第9章 9.7配合物的化学键理论

F-, H2O, OH-
常形成外轨型配离子 ( 因配位原子F, O电负性高)
配 CN-, CO
常形成内轨型配离子
体
(C的电负性较低,易给出孤对电子)
NH3, Cl-
内, 外轨型配离子均可形成 ( 由中心离子决定)
4、内轨型和外轨型配合物的稳定性和磁性
1)稳定性(解离程度)
一般来说 , 内轨型配 离子比外轨型配离子稳 定,解离程度小。
常见的轨道杂化类型与配合物几何构型的对应关系
杂化类型 配位数 几何构型
实例
spp ssp2 spp33 dspp22 dspp33 sp33dd22 d22sp33
2
直线型
[Ag(NH3)2]+,[Cu(NH3)2]+
3 平面正三角形
[ CuCl3]-
4
正四面体
[Ni(NH3)4]2+,[Zn(NH3)4]2+
4
正方形
[Cu(NH3)4]2+,[Ni(CN)4]2-
5
三角双锥
[Fe(CO)5]
6
正八面体
[FeF6]3-,[Co(NH3)6]2+
6
正八面体
[Fe(CN)6]3-,[Co(NH3)6]3+
sp, sp2, sp3, sp3d2杂化 形成外轨型配合物
dsp2,dsp3,d2sp3杂化 形成内轨型配合物
正八面体
配体 中心离子
三角双锥
[Zn(NH3)4]2+是正四面体
Zn2+
Fe3+
[FeF6]3-是正八面体
Ni2+
[Ni(CN)4]2-是正方形
Ni2+
F e
高中化学—— 配合物的价键理论

Fe3+ Fe2+ Co3+ Co2+ Mn2+ Fe3+ Co3+ Mn2+ Ni2+
sp3d2 sp3d2 sp3d2 sp3d2 sp3 d2sp3 d2sp3 d2sp3 dsp2
5
5.92
5.88 正八面体
4
4.90
4.为了增加配合物的稳定性,在某些配合物中除了形成 σ 配键外,还能形成反馈 π 配键。
(1)电中性原理:在形成一个稳定的分子或配离子时,其电子结构是竭力设法使每个 原子的静电荷基本上等于零。
(2)反馈 π 键:当配位体给出电子对与中心元素形成 σ 键时,如果中心元素的某些 d 轨道有孤电子对,而配位体有空的 π 分子轨道或空的 p 或 d 轨道,而两者的对称性又合适时, 则中心元素的孤对 d 电子也可以反过来给予配位体形成所谓的“反馈 π 键”。
1.A 的化学式 Cr(NH3)3O4 或 CrN3H9O4 A 的可能结构式如下图:
NH3
O
O
O
O Cr
O and/or O Cr
NH3
O
NH3
O
NH3
NH3
NH3
2.A 中铬的氧化数为+4 3.氧化还原性(或易分解或不稳定等) 4.化学方程式:CrO42-+3NH3+3H2O2=Cr(NH3)3(O2)2+O2+2H2O+2OH-
2.设配合物中碳原子数为 nC,则:nC︰nN=17.74/12︰31.04/14=0.667 已知 nN=2×2+2=6, 所以,nC=0.677×6=4 求出摩尔质量,由于剩余量过小,只能设 A 是氮氢化合物,由此得氢数,可
推得配体 A 为 H2NCH2CH2NH2,
H2C
配合物的结构示意图为:
Fe(CN)63-
第四章 配位键和配位化合物第二节 配合物的化学键理论

中心离子的氧化数相同,随半径增大,d电子离核越远,受晶体场 的影响越大,分裂能越大。如
[CrCl6]3- △○=162.7kJ.mol-1 [MoCl6]3- △○=229.7kJ.mol-1
2023/2/19
20
型
数
dxy
dyz
dxz
Dx2-y2
dz2
△
正八面体 6 -4.00 -4.00 -4.00 6.00 6.00 10.00
正四面体 4 1.78 1.78 1.78 -2.67 -2.67 4.45
平面正方 4 2.28 -5.14 -5.14 12.28 -4.28 17.42
直线
2 -6.28 1.14 1.14 -6.28 10.28 16.56
2023/2/19
9
●内轨型配合物
——定义 中心离子以部分次外层轨道((n-1)d轨道)与外层轨 道(ns、np轨道)杂化,再与配体成键 ——特点
•配体对中心离子影响大 •d轨道电子排布发生了变化,未成对电子数减小,磁性减小 •配位键稳定性强,键的共价性较强,水溶液中较难离解为简 单离子 ——示例 [Ni(CN)4]2-、[Fe(CN)6]3-、Fe(CO)5、[Cr(H2O)6]3+
4d
5s
5p
sp杂化
2023/2/19
3
(2)配位数为4的配合物 有两种构型。例,Ni2+
3d
4s
4p
●四面体构型 例,[Ni(NH3)4]2+。sp3杂化
3d
4s
4p
sp3杂化 ●平面正方形构型 例,[Ni(CN)4]2-,dsp2杂化,方向指向平面正 方形的四个顶点,Ni2+位于中心,4个CN-分占4个角顶
配合物的化学键理论

杂化
轨道 sp3d2 d2sp3
sp3
dsp2
配键 类型 外轨型 内轨型
外轨型
内轨型
Kf 1014
稳定性
<
1042
107. 96
1031. 3
<
磁性
Ni2+的d电子构型 杂化轨道 配键类型
未成对电子数 磁性
[Ni(NH3)4]2+ [Ni(CN)4]2 d8
sp3 外轨型
dsp2 内轨型
2 顺磁性
弱场配体
强场配体
——以上称为光谱化学序列
4. 电子成对能和配合物高、低自旋
电子在分裂后轨道上的分布遵循: 能量最低原理和洪特规则
如 Cr3+ d3
eg
E t2g
八面体场
d4d7构型的离子, d电子分布有高、低自旋两种方式。
如 Cr2+ d4
[Cr(H2O)6]2+
eg
△o t2g
[Cr(CN)6]4-
中心离子和配体之间以静电引力相互作用而形 成化学键。
中心离子的5个能量相同的d轨道受配体负电场 的排斥作用,发生能级分裂(有的轨道能量升 高,有的能量降低)。
2. 正八面体场中d轨道的能级分裂
无外电场作用下的d轨道 Edxy= Edxz= Edyz= Edx2-y2= Edz2
在带负电荷均匀球形场的作用下,d轨道能量 均升高相同值,能级不发生分裂。
请问: [Zn(NH3)4]2+、 [Ag(NH3)2]+呈现什么颜色?
中心离子d 轨道全空(d0)或全满(d10), 不能发生 d-d跃迁,其水合离子为无色。
解释配合物的稳定性
Eeg=+0.
第3课时配合物理论简介

第3课时配合物理论简介一配位键1.配位键的概念是成键原子一方提供孤电子对,另一方提供空轨道形成的共价键,是一类特殊的共价键。
2.配位键表示方法:A→B,其中A是,B是。
如:NH4+3.配位键的形成条件①成键原子一方能提供孤电子对。
如分子有NH3、H2O、HF、CO等;离子有Cl-、OH-、CN-、SCN-等。
①成键原子另一方能提供空轨道。
如H+、Al3+、B及过渡金属的原子或离子。
4.配位键的特点:配位键是σ键,特殊的共价键,同样具有饱和性和方向性。
一般来说,多数过渡金属的原子或离子形成配位键的数目是基本不变的,如Ag+形成2个配位键;Cu2+形成4个配位键等。
5.常见含配位键的物质:NH+4、H3O+、CO、AlO2-、[B(OH)4]-、H2SO4二配位化合物1.配合物的概念把与某些以结合形成的化合物称为配位化合物,简称配合物。
如[Cu(NH3)4]SO4、[Ag(NH3)2]OH、NH4Cl等均为配合物。
2.配合物的形成上述实验现象产生的原因主要是配离子的形成。
以配离子[Cu(NH3)4]2+为例,NH3分子中氮原子的孤电子对进入Cu2+的空轨道,Cu2+与NH3分子中的氮原子通过共用氮原子提供的孤电子对形成配位键。
配离子[Cu(NH3)4]2+可表示为3.配合物的组成配合物[Cu(NH3)4]SO4其组成如下图所示:(1)中心原子是提供空轨道接受孤电子对的原子。
中心原子一般都是带正电荷的阳离子(此时又叫中心离子),过渡金属离子最常见的有Fe3+、Ag+、Cu2+、Zn2+等。
(2)配体是提供孤电子对的阴离子或分子,如Cl-、NH3、H2O等。
配体中直接同中心原子配位的原子叫做配位原子。
配位原子必须是含有孤电子对的原子,如NH3中的N原子,H2O 中的O原子等。
(3)配位数是直接与中心原子形成的配位键的数目。
如[Fe(CN)6]4-中Fe2+的配位数为6。
形成配合物的条件形成配合物的中心原子(离子)必须存在空轨道,配体一般都存在着孤电子对。
配位化合物的化学键理论

2 晶体场稳定化能 ( C F S E )
d 电子在晶体场中分裂后的d轨道中排布,其能量
用E晶 表示,在球形场中的能量用E球 表示。因晶体场
的存在,体系总能量的降低值称为晶体场稳定化能 ( Crystal Field Stabilization Energy )。 由E球=0,则 CFSE = E球-E晶 = 0 - E晶
d
dz2 dx2-y2
d
dxy dxz dyz
Jahn-Teller 效应
解释 Cu(NH3)42+ 离子的正方形结构,
[Cu(NH3)4(H2O)2]2+ 离子为拉长的八面体结构?
按晶体场理论,Cu2+ 为d9 电子构型。在八面体场
中,最后一个电子有两种排布方式:一种是最后一个电子
应用: 用晶体场稳定化能解释水合热的双峰 曲线 M2+(g) + 6H2O(l) = M(H2O)62+(aq)
d 电子数 |H|
第一过渡元素M2+的水合热绝对值 对其d电子数作图 热力学对水合热的计算,随d电子数的增加,水合热 应是平缓上升的直线,如图中虚线所示,但是实验数 据作图为双峰曲线,为什么?
原子轨道;
Pauli原理:同一原子轨道只能容纳自旋方
式不同的两个电子;
Hund规则:电子分布到能量简并的原子轨
道上时,优先以自旋相同的方式分占不同
轨道。
例 讨论过渡金属 d 4 组态在八面体场中电子排布。
低自旋方式 △ > P
高自旋方式 △ < P
分裂能△ :简并的d轨道分裂后最高能量d
轨道和最低能量d轨道之差;
配位阴离子: [Cr(CN)6]3- 和 [Co(SCN)4]2-
配合物的价键理论

sp sp2 sp3 d2sp2 d2sp3
直线型 三角形 正四面体 四方锥
正八面体 [Fe(CN)6]4-
一定程度上解释了配合物的磁学性 质
顺磁性的[Ni(H2O)6]2+:
•• •• •• •• •• ••Fra bibliotek3d4s
4p
4d
sp3d2杂化,外轨型
3、 价键理论的缺点
i. 不能预测配合物的高、低自旋状态
称为光谱化学序列 说明: (1)即配位场强的顺序,几乎和中心离子无关。 说明: )即配位场强的顺序,几乎和中心离子无关。 (2)强场配位体:∆o大 )强场配位体: 者 弱场配位体: 弱场配位体:∆o小者
值随中心离子而改变。 ②当配位体固定时, △o值随中心离子而改变。 当配位体固定时, A、中央离子电荷愈高,△o值愈大。 、中央离子电荷愈高, 值愈大。 例如
个配体需要6个杂化轨道 解:6个配体需要 个杂化轨道 d2sp3或 sp3d2 个配体需要 或
Mn2+ 3d5:
µ实测表明有1个单电子:
有2个内层空d轨道,采取d2sp3杂化; 八面体,内轨型,较稳定
2、价键理论的优点 很好地解释了配合物的空间构型和配位数
配位数 2 3 4 5 6 杂化轨道 空间构型 举例 [Ag(CN)2][CuCl3]2[MnCl4]2NiBr3(PR3)
⑴定义 d电子从未分裂的d轨道进入分裂的d轨道所产生的总能量下降 值,称为晶体场稳定化能,并用CFSE表示。 dz2, d(x2-y2) eg 10Dq
6Dq
Es
自由离子d轨道 球形场
4Dq
dxz,dxy,dyz
t2g
d轨道在Oh场中轨道能级的分裂图
量子力学指出: