华师大版八年级下册数学教案 第二课时 变量与函数
华师大版八年级下册数学教案:17.1 变量与函数

17.1 变量与函数课题变量与函数课时第1课时上课时间教学目标1.知识与技能(1)认识变量、常量.(2)学会用含一个变量的代数式表示另一个变量.2.过程与方法(1)经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己的观点.(2)逐步感知变量间的关系.3.情感、态度与价值观(1)积极参与数学活动,对数学产生好奇心和求知欲.(2)形成实事求是的态度以及独立思考的习惯.教学重难点重点:1.认识变量、常量.2.用式子表示变量间的关系.难点:用含有一个变量的式子表示另一个变量.教学活动设计[来源:学。
科。
网Z。
X。
X。
K]二次设计课堂导入情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.1.请同学们根据题意填写下表:t/小时12345s/千米2.在以上这个过程中,变化的量是,不变化的量是.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.探索新知合作探究自学指导自学课本并思考课堂导入中的几个问题.自我总结:以上问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量是按照某种规律变化的,如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.合作探究1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm,每 1kg重物使弹簧伸长0.5 cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.续表探索新知合作探究探究结论:1.早场电影票房收入:150×10=1 500(元)日场电影票房收入:205×10=2 050(元)晚场电影票房收入:310×10=3 100(元)关系式:y=10x2.挂1 kg重物时弹簧长度:1×0.5+10=10.5(cm)挂2 kg重物时弹簧长度:2×0.5+10=11(cm)挂3 kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).教师指导1.归纳小结:常量与变量:在某一变化过程中,可以取不同数值的量,叫做变量,数值保持不变的量叫做常量.2.方法规律:(1)变量和常量往往是相对的,相对于某个变化过程,比如s,v,t三者之间,在不同研究过程中,作为变量与常量的身份是可以相互转换的.(2)常量、变量与字母的指数没有关系,如S=πr2中,不能说自变量是r2.当堂训练1.分别指出下列各式中的常量与变量.(1)圆的面积公式S=πr2;(2)正方形的周长l=4a;(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10 000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2)如图,每个图中是由若干盆花组成的图案,每条边(包括两个顶点)有(n+1)盆花,每个图案的花盆总数是S,求S与n之间的关系式.板书设计常量与变量1.什么是常量2.什么是变量3.常量与变量的区分教学反思课题变量与函数课时第2课时上课时间教学目标1.知识与技能(1)经过回顾思考认识变量中的自变量与函数.(2)进一步理解掌握确定函数关系式.(3)会确定自变量取值范围.2.过程与方法(1)经历回顾思考过程、提高归纳总结概括能力.(2)通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.3.情感、态度与价值观(1)积极参与活动、提高学习兴趣.(2)形成合作交流意识及独立思考的习惯.教学重难点重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.难点:认识函数、领会函数的意义.教学活动设计二次设计课堂导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化;随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量,当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.探索新知合作探究自学指导问题:我们首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.探究内容中两个问题都有两个变量.问题(1)中,经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1 500;日场x=205,则y=2 050;晚场x=310,则y=3 100.问题(2)中,通过实验可以看出:每当重物质量m确定一个值时,弹簧长度L就随之确定一个值.如果弹簧原长10 cm,每1 kg重物使弹簧伸长0.5 cm.当m=10时,则L=15,当m=20时,则L=20.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.(1)如图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?探索新知合作探究(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量值为a时的函数值.从上面的学习中可知许多问题中的变量之间都存在函数关系.教师指导1.归纳小结:函数:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量值为a时的函数值.2.方法规律:对函数概念的理解,主要应该抓住以下三点:①有两个变量;②一个变量的数值随着另一个变量的数值变化而变化;③自变量每确定一个值,函数有一个并且只有一个值与之对应(但可以有多个自变量数值对应一个函数值).当堂训练1.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)改变正方形的边长x,正方形的面积S随之改变.(2)某村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n的变化而变化.2.一辆汽车油箱现有汽油50 L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1 L/km.(1)写出表示y与x的函数关系式;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油桶中还有多少汽油?板书设计变量与函数1.函数的概念2.函数自变量的取值范围3.函数值教学反思课题平面直角坐标系课时1课时上课时间教学目标1.知识与技能理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;认识并能画出平面直角坐标系;能在给定的直角坐标系中,由点的位置写出它的坐标.2.过程与方法[来源:学科网ZXXK]通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.3.情感、态度与价值观由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.教学重难点重点:1.理解平面直角坐标系的有关知识.2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标.3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点.难点:1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究.2.坐标轴上点的坐标有什么特点的总结.教学活动设计二次设计课堂导入同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?如图给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?自学指导1.什么是数轴?2.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.学生看书,教师巡视,教师督促每一位学生认真、紧张地自学,鼓励学生质疑问难.探索新知合作探究合作探究1.组织学生探究平面直角坐标系的相关知识点.【例】写出图中的多边形ABCDEF各顶点的坐标.2.想一想在例题中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?教师指导归纳小结:(1)认识并能画出平面直角坐标系.(2)在给定的直角坐标系中,由点的位置写出它的坐标.(3)能适当建立直角坐标系,写出直角坐标系中有关点的坐标.(4)横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴.(5)坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0.(6)各个象限内的点的坐标特征是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).[来源:学科网ZXXK][来源:学+科+网]当堂训练1.D(2,-3)的横坐标是,纵坐标是,点D在第象限.2.如果点E的横坐标为0,那么点E在轴上.3.如果点F的纵坐标为0,那么点F在轴上.板书设计平面直角坐标系1.平面直角坐标系的定义2.横坐标、纵坐标3.象限教学反思。
【华师大版教材适用】八年级数学下册《【教案】变量》

(2)该市男学生的平均身高从哪一岁开始迅速增加?
(3)上表反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?
检测反馈
1.分别指出下列各关系式中的变量与常量:
(1)若直角三角形中的一个锐角的度数为α,则另一个锐角β(度)与α间的关系式是β=90-α;
上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量(independent variable),y是因变量(dependent variable),此时也称y是x的函数(function).表示函数关系的方法通常有三种:
(2)若某种报纸的单价为a元,x表示购买份数,则购买报纸的总价y(元)与x间的关系是:y=ax.
交流反思Biblioteka 课后作业课后反思板书设计
情感目标:经历函数概念的抽象概括过程,体会函数的模型思想.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.
重点
在了解函数、常量、变量的基础上,能指出实例中的常量、变量,并能写出简单的函数关系式.
难点
把实际问题抽象概括为函数问题,正确理解函数的概念.
(1)解析法,如问题3中的 ,问题4中的S=πr2这些表达式称为函数的关系式.
(2)列表法,如问题2中的利率表,问题3中的波长与频率关系表.
(3)图象法,如问题1中的气温曲线.
问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),
实践应用
例1下表是某市2000年统计的该市男学生各年龄组的平均身高.
华师大版八下数学17.1变量与函数17.1.1变量与函数说课稿

华师大版八下数学17.1变量与函数17.1.1变量与函数说课稿一. 教材分析华师大版八下数学17.1变量与函数是本册书的重要内容,它为学生提供了研究现实世界数量关系的基本工具。
本节课通过引入变量与函数的概念,让学生体会数学与实际生活的紧密联系,培养学生的数学应用意识。
教材从生活实例出发,引导学生认识变量、常量、函数的概念,并通过丰富的例题和练习题,帮助学生理解和掌握函数的性质。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于代数知识有一定的了解。
他们在日常生活中也接触过一些变量和函数的实际应用,如天气预报中的温度变化、手机话费套餐等。
但学生对于抽象的函数概念和函数的性质的理解还有待提高。
因此,在教学过程中,教师需要关注学生的认知水平,通过生活实例和具体操作,引导学生理解和掌握函数的概念和性质。
三. 说教学目标1.知识与技能:让学生理解变量、常量、函数的概念,掌握函数的性质,能够运用函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生体会数学与实际生活的联系,培养学生的数学应用意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探讨的良好学习习惯。
四. 说教学重难点1.教学重点:变量、常量、函数的概念,函数的性质。
2.教学难点:函数概念的理解,函数性质的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、小组合作等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过生活实例引入变量和常量的概念,引导学生感知数学与生活的联系。
2.新课导入:介绍函数的概念,引导学生理解函数的定义和性质。
3.案例分析:分析具体实例,让学生理解函数的实际应用。
4.小组讨论:让学生分组讨论,探索函数的性质,培养学生合作学习的能力。
5.总结提升:教师引导学生总结本节课所学内容,加深对函数概念和性质的理解。
八年级下数学教案-变量与函数(2)

八年级下数学教案-变量与函数(2) 一、课程目标通过本课程的学习,学生将会达到以下的学习目标:1.掌握变量用字母表示的方法;2.熟练掌握变量在代数式中的应用;3.熟练掌握常量与变量的区别;4.掌握函数的概念以及函数表达式的表示方法;5.掌握函数与变量的关系;二、教学重点和难点重点1.变量表示方法;2.变量在代数式中的应用;3.函数定义与函数表达式。
难点1.理解函数的概念;2.理解函数与变量的关系;3.掌握函数表达式的表示方法。
三、教学步骤1. 导入新知识1.引入变量概念并让学生用字母表示变量;2.让学生举一些例子来解释变量;3.引入常量的概念并让学生解释常量和变量的区别;4.引入函数概念并解释函数的定义。
2. 理解变量在代数式中的应用1.让学生用字母表示式子中的变量;2.让学生举例出一个代数式然后带入数值计算。
3. 函数的定义与表示方法1.解释函数的定义;2.引入函数表达式的表示方法。
4. 函数与变量的关系1.让学生理解函数和变量的关系;2.解释函数表达式中的变量;3.让学生用变量来表示函数表达式。
5. 练习1.带入实际问题,让学生解决问题并运用所学知识。
四、教学方法1.课堂讲授;2.学生练习;3.互动式教学。
五、学习评估1.教师布置作业,让学生运用所学知识解决实际问题;2.在课堂上让学生表现所学知识;3.监测学生在学习过程中的表现。
六、教学资源1.课件PPT;2.试卷模板;3.教学实例。
以上是本节课程的完整教案,希望能够给各位教师在日常教学中提供一些参考。
加强教育良好的教学教案,提高教学效果,使学生受益。
华师大版八下数学17.1变量与函数(第2课时)教学设计

华师大版八下数学17.1变量与函数(第2课时)教学设计一. 教材分析华师大版八下数学17.1变量与函数(第2课时)的内容主要包括函数的定义、函数的表示方法以及函数的性质。
本节课是学生在学习了初中阶段函数的基本概念和表示方法之后,进一步深入研究函数的性质,理解函数在实际问题中的应用。
本节课的内容对于学生来说较为抽象,需要通过实例来帮助学生理解和掌握。
二. 学情分析八年级的学生已经具备了一定的函数知识,对于函数的基本概念和表示方法有一定的了解。
但是,对于函数的性质以及其在实际问题中的应用,可能还存在一定的困惑。
因此,在教学过程中,需要通过实例来引导学生理解函数的性质,并能够将函数知识应用到实际问题中。
三. 教学目标1.理解函数的定义,掌握函数的表示方法。
2.理解函数的性质,能够运用函数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.函数的定义和表示方法。
2.函数的性质及其在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例来理解函数的性质。
2.利用多媒体辅助教学,通过动画和图片来展示函数的性质,增强学生的直观感受。
3.采用小组合作学习的方式,鼓励学生相互讨论,共同解决问题。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.相关实例材料。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的函数知识,为新课的学习做好铺垫。
2.呈现(15分钟)利用多媒体展示函数的定义和表示方法,引导学生理解函数的概念。
通过举例说明函数的性质,让学生初步感知函数的特性。
3.操练(20分钟)让学生分组讨论,选取实例分析函数的性质。
每组选取一个实例,从函数的定义、表示方法以及性质等方面进行深入分析,并总结出函数的特点。
4.巩固(10分钟)让学生通过做练习题的方式,巩固所学内容。
教师及时给予解答和指导,帮助学生掌握函数的知识。
5.拓展(10分钟)引导学生将函数知识应用到实际问题中,举例说明函数在生活中的应用。
新版华东师大版八年级数学下册《17.1变量与函数》教学设计16.

新版华东师大版八年级数学下册《17.1变量与函数》教学设计16.一. 教材分析华东师大版八年级数学下册《17.1变量与函数》是学生在学习了初中数学基础知识后,进一步深入研究数学的重要章节。
本节内容通过引入变量与函数的概念,使学生了解到数学中的变化规律,培养学生对函数思想的认知。
教材内容主要包括变量、常量的定义,函数的定义及表示方法,以及函数的性质。
本节课内容是学生学习函数相关知识的基础,对于学生来说具有重要的意义。
二. 学情分析学生在学习本节课之前,已经掌握了初中数学的基本知识,对数学概念有一定的理解能力。
但学生在学习过程中,可能对变量、常量、函数等概念之间的联系和区别难以理解,需要教师在教学中进行引导。
另外,学生对于函数的表示方法及性质可能感到陌生,需要教师通过具体实例进行讲解,帮助学生掌握。
三. 教学目标1.了解变量、常量的概念,理解变量与函数的关系。
2.掌握函数的定义及表示方法,能够运用函数思想解决实际问题。
3.培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。
四. 教学重难点1.重点:变量、常量的定义,函数的定义及表示方法。
2.难点:函数性质的理解和应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究变量、常量、函数之间的关系。
2.运用实例分析法,通过具体例子讲解函数的定义及表示方法。
3.采用合作学习法,让学生在小组讨论中,共同解决问题,提高学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,包括变量、常量、函数的定义及表示方法等内容。
2.准备一些实际问题,用于引导学生运用函数思想解决问题。
3.准备黑板,用于板书重要知识点。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的知识,如:什么是数学中的变化?什么是常量?以此引出本节课的主题——变量与函数。
2.呈现(15分钟)教师通过PPT展示变量、常量的定义,以及函数的定义及表示方法。
在此过程中,教师需要解释清楚变量、常量、函数之间的关系,让学生理解函数的内涵。
华师大版八下数学17.1变量与函数17.1.1变量说课稿

华师大版八下数学17.1变量与函数17.1.1变量说课稿一. 教材分析华师大版八下数学17.1变量与函数是本册书的重要内容,它为学生提供了用数学的语言和方法来描述现实生活中的变化规律提供了基础。
本节课的主要内容是让学生理解变量的概念,了解变量之间的相互关系,以及函数的概念。
教材通过丰富的实例和 activities 来引导学生理解和掌握这些概念,同时培养学生的数学思维能力。
二. 学情分析学生在进入八年级下学期之前,已经学习了代数初步知识,对一些基本的代数运算和数学概念有一定的了解。
但是,对于变量、函数这些较为抽象的概念,他们可能还比较陌生。
此外,学生可能对用数学语言描述现实生活中的变化规律感到困惑。
因此,在教学过程中,我需要关注学生的认知水平,通过适当的教具和示例,帮助他们理解和掌握这些概念。
三. 说教学目标1.知识与技能目标:学生能够理解变量的概念,了解变量之间的相互关系,掌握函数的定义及其表示方法。
2.过程与方法目标:通过观察、分析和归纳,学生能够发现现实生活中的数量关系,培养其数学思维能力。
3.情感态度与价值观目标:学生能够感受到数学与生活的紧密联系,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:变量、常量的概念,函数的定义及其表示方法。
2.教学难点:理解变量之间的相互关系,以及如何用数学语言描述现实生活中的变化规律。
五. 说教学方法与手段为了帮助学生理解和掌握变量与函数的概念,我将采用以下教学方法和手段:1.情境教学法:通过现实生活中的实例,引导学生理解和掌握变量和函数的概念。
2.数形结合法:利用图形和图像,帮助学生直观地理解变量之间的关系。
3.引导发现法:引导学生通过观察、分析和归纳,发现变量之间的相互关系。
4.教学辅助手段:利用多媒体课件,展示实例和图形,提高教学效果。
六. 说教学过程1.导入:通过展示一些现实生活中的变化现象,如太阳从东方升起,引起学生对变化的关注。
然后提出问题:“这些变化有什么共同点?”引导学生思考和讨论。
华师大版八年级数学下册教案:17.1第二课时 变量与函

第二课时变量与函数教学目标:1、知识与技能:使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。
2、过程与方法:会由自变量的值求函数值。
3、情感态度与价值观:经历从具体实例中抽象出函数的过程,发展抽象思维的能力,感悟运动变化的观点。
教学重、难点:1、重点:在具体情景中分清哪个是变量,哪个是自变量,谁是谁的函数。
2、难点:会由自变量的值求出函数的值。
教学过程一、复习1.填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。
2.如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式.3.如图(三),等腰直角三角形ABC边长与正方形MNPQ的边长均为l0cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合。
试写出重叠部分面积y与长度x之间的函数关系式.二、求函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。
从右边的分析可以看出,第n排的排数座位数座位 l 18一方面可以用18+(n-1)表 2 18+13 18+2示,另一方面可以用m表示,所以……m=18+(n-1) n 18+(n-1)n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1≤n≤30的整数或0<n<31的整数。
请同学们试着写出上面第2、3两个问题中自变量的取值范围。
2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)y=3x-l (2)y=2x2+7 (3)y=1x+2(4)y=x-2分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x+2)必须不等于0式子才有意义,对于第(4)题,(x-2)必须是非负数式子才有意义.3.函数值例2.在上面的练习(3)中,当MA=1cm时,重叠部分的面积是多少?请同学们求一求在例1中当x=5时各个函数的函数值.三、课堂练习课本第28页练习的第1、2、3题四、小结五、作业课本第29页的第3、4、5、6题.六、教后反思:通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,有的题目的自变量的取值范围也很难确定,只有通过一定量的练习才能做到熟练地解决这个问题;另一方面,对于用数学式子表示的函数关系式的自变量的取值范围,考虑两个方面,其一是分母不能等于0,其二是开偶次方的被开方数是非负数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时变量与函数
教学目标:
1、知识与技能:使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。
2、过程与方法:会由自变量的值求函数值。
3、情感态度与价值观:经历从具体实例中抽象出函数的过程,发展抽象思维的能力,感悟运动变化的观点。
教学重、难点:
1、重点:在具体情景中分清哪个是变量,哪个是自变量,谁是谁的函数。
2、难点:会由自变量的值求出函数的值。
教学过程
一、复习
1.填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。
2.如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式.
3.如图(三),等腰直角三角形ABC边长与正方形MNPQ的边长均为l0cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合。
试写出重叠部分面积y与长度x之间的函数关系式.
二、求函数自变量的取值范围
1.实际问题中的自变量取值范围
问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?
问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。
从右边的分析可以看出,第n排的排数座位数
座位 l 18
一方面可以用18+(n-1)表 2 18+1
3 18+2
示,另一方面可以用m表示,所以……
m=18+(n-1) n 18+(n-1)
n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1≤n≤30的整数或0<n<31的整数。
请同学们试着写出上面第2、3两个问题中自变量的取值范围。
2.用数学式子表示的函数的自变量取值范围
例1.求下列函数中自变量x的取值范围
(1)y=3x-l (2)y=2x2+7 (3)y=
1
x+2
(4)y=x-2
分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x+2)必须不等于0式子才有意义,对于第(4)题,(x-2)必须是非负数式子才有意义.
3.函数值
例2.在上面的练习(3)中,当MA=1cm时,重叠部分的面积是多少?
请同学们求一求在例1中当x=5时各个函数的函数值.
三、课堂练习
课本第28页练习的第1、2、3题
四、小结
五、作业
课本第29页的第3、4、5、6题.
六、教后反思:通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,有的题目的自变量的取值范围也很难确定,只有通过一定量的练习才能做到熟练地解决这个问题;另一方面,对于用数学式子表示的函数关系式的自变量的取值范围,考虑两个方面,其一是分母不能等于0,其二是开偶次方的被开方数是非负数.。