基于单片机的电风扇智能控制
本科毕业论文---基于单片机智能电风扇控制系统设计

目录摘要 (1)第1章概述 (2)1.1 STC89C52单片机简介 (2)1.2 本设计任务和主要内容 (2)第2章方案选择 (4)2.1 温度传感器的选用 (4)2.2 控制核心的选择 (5)2.3 显示电路 (5)2.4 调速方式 (6)2.5 控制执行部件 (6)第3章硬件设计 (7)3.1 系统总体设计 (7)3.2 控制装置原理 (7)3.3 温度检测和显示电路 (8)3.3.1DS18B20的温度处理方法 (8)3.3.2温度传感器和显示电路组成 (9)3.4 电机调速电路 (10)3.4.1电机调速原理 (10)3.4.2电机控制模块设计 (11)第4章软件设计 (13)4.1 主程序 (13)4.2 数字温度传感器模块和显示子模块 (14)4.3 电机调速与控制子模块 (15)总结 (17)附录1 主要程序代码 (19)附录2 仿真图 (35)附录3 实物图 (36)附录4 元件清单 (37)摘要本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统STC89C52单片机作为控制平台对风扇转速进行控制。
可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动关闭风扇,控制状态随外界温度而定。
所设高低温值保存在温度传感器DS18B20内部E2ROM中,掉电后仍然能保存上次设定值,性能稳定,控制准确。
关键词单片机;温度传感器;智能控制。
四川信息职业技术学院毕业设计说明书第1章概述1.1STC89C52单片机简介STC89C52是美国ATMEL公司生产的低电压、高性能CMOS8位单片机,片内4bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置用8位中央处理器(CPU)和Flash存储单元,功能强大。
基于单片机的智能电风扇的设计

基于单片机的智能电风扇的设计
1. 系统设计思路:
智能电风扇系统由传感器、单片机以及电机驱动电路组成。
传感器检测环境温度、湿度和人体距离等参数,单片机根据这些参数控制电机的工作,并且可以根据预设程序自动调节电风扇的转速和运转模式。
2. 硬件设计:
(1) 传感器模块:
环境温湿度传感器模块和人体距离传感器模块分别采用DHT11和HC-SR501。
(2) 单片机模块:
根据项目需求,使用STM32F103ZET6单片机,主要处理传感器的读取和数据处理,并进行PWM波输出,控制电机转速。
(3) 电机驱动模块:
电机采用直流无刷电机,控制驱动电路采用L298N芯片。
3. 软件设计:
(1)初始化各个模块,包括传感器、GPIO等。
(2)读取传感器的数据,并根据不同温度、湿度和人体距离进行选择参数,设置不同的转速和运转模式。
(3)通过PWM波输出,控制电机的转速,实现电风扇的自动调节和控制。
4. 实现功能:
灵活的温湿度和人体距离检测,自动选择合适的电风扇运转模式和转速,节能环保,人性化的操作界面等。
总之,基于单片机的智能电风扇系统可以在提供便利的同时,达到节能环保的目的。
基于单片机的电风扇模拟控制系统设计

基于单片机的电风扇模拟控制系统设计一、引言电风扇是现代生活中常见的家用电器之一,它的使用方便、功能多样,深受人们喜爱。
随着科技的发展,基于单片机的电风扇控制系统逐渐成为研究的热点。
本文将介绍一种基于单片机的电风扇模拟控制系统设计,旨在提供一个可靠、智能的电风扇控制方案。
二、系统设计1. 系统框架基于单片机的电风扇模拟控制系统主要由单片机、传感器、电机驱动电路、显示器和按键等组成。
其中,单片机充当控制中心的角色,传感器用于采集环境参数,电机驱动电路用于控制电机的转速,显示器和按键用于用户与系统进行交互。
2. 传感器选择传感器的选择对于系统的精确性和稳定性至关重要。
在电风扇控制系统中,常用的传感器有温度传感器和湿度传感器。
温度传感器用于检测环境温度,湿度传感器用于检测环境湿度。
根据不同的需求,可以选择合适的传感器进行使用。
3. 单片机编程单片机是系统中的核心部件,其编程决定了整个系统的功能和性能。
在电风扇控制系统中,单片机需要实现以下功能:- 读取传感器采集到的温度和湿度数据;- 根据设定的温度和湿度阈值,控制电机的转速;- 实时显示温度、湿度和电机转速等信息;- 通过按键进行系统设置和操作。
4. 电机驱动电路电机驱动电路用于控制电机的转速。
常用的电机驱动电路有直流电机驱动电路和交流电机驱动电路。
根据不同的电机类型,选择适合的驱动电路。
在电风扇控制系统中,一般采用直流电机,因此需要设计一个合适的直流电机驱动电路。
5. 显示器和按键显示器和按键用于用户与系统进行交互。
显示器可以显示当前环境的温度、湿度和电机转速等信息,按键则可以用于设置温度和湿度阈值以及控制电机的开关。
合理设计显示器和按键的布局和界面,使用户操作方便,信息清晰。
三、系统优势1. 智能化控制基于单片机的电风扇模拟控制系统可以根据环境的温湿度变化自动调节电机的转速,实现自动控制。
用户只需设定好温湿度阈值,系统会自动根据环境参数进行调节,提供舒适的使用体验。
基于单片机的智能电风扇ppt

5 风扇电机驱动与调速电路
风扇电机接线图如下图4-5所示:
6总电路图
软件流程图如下图所示 :
仿真1
当把温度传感 器DS18B20温 度设置为26.4摄 氏度,用键盘 S2调节系统预 设的温度为22 摄氏度。点击开 始仿真按钮,系 统开始仿真,待 一段时间稳定后, 观察到此时风扇 直流电机的转速 为+14.2r/s,如 左图所示。
系统设计总体方案框图
系统由6个部分组成:电机驱动控制部分、温度采 集部分、温度显示部分、独立键盘部分、复位部分和 晶振部分。系统框图如下图所示:
各部分电路设计
1 按键复位与晶振电路
系统复位与晶振电路如下图所示:
当按下 按键开 关S1时, 系统复 位一次。 晶振为 11.0592 MHz
ቤተ መጻሕፍቲ ባይዱ
2 温度采集模块
仿真4
然后在上一步仿真 的基础上(温度传感 器DS18B20温度设置 为33.4摄氏度,系 统预设的温度为22 摄氏度),用键盘S2 调节系统预设温度 至34摄氏度,此时 可知系统预设温度 大于温度传感器检 测到的温度,观察 到直流风扇电机的 转速逐渐变慢,最 后转速变为0,符合 系统要实现的功能, 如左图所示。
结论
通过以上仿真可以看出,直流风扇电机在系 统设定温度一定的情况下,其转速随着环境温度 (温度传感器检测到的温度)的增加而增大。当 环境温度低于系统预设的温度时,风扇自动停止 运转,实现了系统所设计的功能。
基于单片机的智能电风扇控制系统

目录第1节引言 (3)1.1 智能电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)3.2.2 主要程序 (16)第4节结束语 (19)参考文献 (20)基于单片机的智能电风扇控制系统第1节引言电风扇曾一度被认为是空调产品冲击下的淘汰品,其实并非如此,市场人士称,家用电风扇并没有随着空调的普及而淡出市场,近两年反而出现了市场销售复苏的态势。
其主要原因:一是风扇和空调的降温效果不同——空调有强大的制冷功能,可以快速有效地降低环境温度,但电风扇的风更温和,更加适合老人儿童和体质较弱的人使用;二是电风扇有价格优势,价格低廉而且相对省电,安装和使用都非常简单。
尽管电风扇有其市场优势,但传统电风扇还是有许多地方应当进行改良的,最突出的缺点是它不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。
鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。
1.1 智能电风扇控制系统概述传统电风扇是220V交流电供电,电机转速分为几个档位,通过人为调整电机转速达到改变风力大小的目的,亦即,每次风力改变,必然有人参与操作,这样势必带来诸多不便。
基于单片机的风扇智能控制器硬件设计

1 控 制器 整体设计 方案
在选用单片机时 , 考虑到尽量减少系统 的硬件 电路 , 选用 TA 8 C 2 T 9 5 作为系统控制 的核心 , 其整体 硬件 框 图如 图1 所示 .
红 \
广 —]/I 储模块
过 零 检
L
I
持 静 l 卜 、
A 8 C5 T9 2 \
红 外线 转换 为 电信号 , 信 号经选 频放 大 、 该 解调 后 由 1 输 出与 ' L l 容 的 电信 号 , 信 号可 以直接 脚 I  ̄ z - T 兼 该
I测 模 块 I
可 控 硅 驱 由 n 儿
一 ~
l
开 关
I
l
、
显模 l 示块< =
y
/ 动 电 路
图1 智 能电风扇控制器 的整体硬件框图
风扇智能控制器由微处理器A 8C 2 T 9 5构成核心电路 , 外加红外信号接收电路 , 交流 电过零点检测 电
基于51单片机的智能风扇控制系统设计与实现

基于51单片机的智能风扇控制系统设计与实现智能风扇控制系统是一种能够根据环境温度自动调节风扇速度的系统。
在本文中,将介绍基于51单片机的智能风扇控制系统的设计与实现。
首先,需要明确智能风扇控制系统的主要功能。
该系统的主要功能包括:根据环境温度自动调节风扇速度、显示当前环境温度和风速、设置风扇工作模式等。
下面将详细介绍智能风扇控制系统的硬件设计和软件实现。
硬件设计方面,系统需要使用51单片机作为主控芯片。
此外,还需使用一个温度传感器来感知环境温度。
为了实现显示功能,可以使用一个数码管或液晶显示屏。
此外,还需要一个电机驱动模块来控制风扇的转速。
软件实现方面,首先需要编写一个温度采集程序,从温度传感器中读取环境温度,并将其保存在一个变量中。
然后,需要编写一个风扇控制程序,根据环境温度的变化调节风扇的转速。
可以通过改变电机驱动模块中的PWM信号来控制风扇的转速。
同时,还需要编写一个显示程序,以实时显示当前环境温度和风速。
在风扇控制程序中,可以设置一些阈值来决定风扇的工作模式。
例如,可以设置一个最低温度阈值和一个最高温度阈值。
当环境温度低于最低温度阈值时,风扇停止工作;当环境温度高于最高温度阈值时,风扇以最大速度工作;在最低温度阈值和最高温度阈值之间,风扇的转速随着温度的升高而逐渐增加,以保持环境温度在一个合适的范围内。
此外,还可以为系统添加一些附加功能,如远程控制功能。
可以通过添加一个无线通信模块,使得用户可以通过手机或电脑远程控制智能风扇的开关和工作模式。
综上所述,基于51单片机的智能风扇控制系统可以通过温度传感器感知环境温度,并根据环境温度的变化来调节风扇的转速。
通过添加显示功能和远程控制功能,可以提高智能风扇控制系统的实用性和便利性。
该系统的设计与实现不仅可以提供更舒适的使用体验,还可以节省能源和降低使用成本。
基于单片机的智能温控风扇系统设计

基于单片机的智能温控风扇系统设计一、本文概述随着科技的快速发展,智能家居系统在人们的日常生活中扮演着越来越重要的角色。
其中,智能温控风扇系统作为智能家居的重要组成部分,通过自动调节风速和温度,为用户提供舒适的室内环境。
本文旨在探讨基于单片机的智能温控风扇系统的设计与实现。
本文首先介绍了智能温控风扇系统的背景和意义,阐述了其在现代家居生活中的重要性和应用价值。
接着,文章详细分析了系统的总体设计方案,包括硬件平台的选择、软件编程的思路以及温度控制算法的实现。
在此基础上,文章还深入探讨了单片机在智能温控风扇系统中的应用,包括单片机的选型、外设接口的设计以及控制程序的编写。
文章还注重实际应用的可行性,对智能温控风扇系统的硬件电路和软件程序进行了详细的说明,包括电路原理图的设计、元器件的选择以及程序的调试过程。
文章对系统的性能和稳定性进行了测试和分析,验证了系统的有效性和可靠性。
通过本文的阐述,读者可以全面了解基于单片机的智能温控风扇系统的设计和实现过程,为相关领域的研究和应用提供参考和借鉴。
本文也为智能家居系统的发展提供了新的思路和方法。
二、系统总体设计智能温控风扇系统的设计旨在实现根据环境温度自动调节风扇转速的功能,从而提高使用的舒适性和能源效率。
整个系统以单片机为核心,辅以温度传感器、电机驱动模块、电源模块以及人机交互界面等组成部分。
在总体设计中,首先需要考虑的是硬件的选择与配置。
单片机作为系统的核心控制器,需要选择运算速度快、功耗低、稳定性高的型号。
温度传感器则选用能够精确测量环境温度、响应速度快、与单片机兼容的型号。
电机驱动模块负责驱动风扇电机,需要选择能够提供足够驱动电流、控制精度高的模块。
电源模块需要为整个系统提供稳定可靠的电源。
人机交互界面则用于显示当前温度和风扇转速,同时提供用户设置温度阈值的接口。
在软件设计上,系统需要实现温度数据的采集、处理与传输,风扇转速的控制,以及人机交互界面的管理等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类号:TP203单位代码:10452本科毕业论文基于单片机的电风扇智能控制姓名学号年级 2006专业自动化专业系(院)信息学院指导教师2010年6月12日临沂师范学院2010届本科毕业论文摘要在日常生活中,单片机得到了越来越广泛的应用,特别在小型的自动控制系统的应用中。
本文基于AT89C51单片机设计了电风扇自动调温系统。
通过单片机的控制我们实现了电风扇的主要功能:当按下开关键时,系统初始化默认的设定温度为25度,如果外界温度高于设定温度电风扇进行运转,如果外界温度高于低于设定温度则风页不转动,同时显示外界的温度。
当加减键同时按下时进入温度设定状态,可以设置所需的温度,并同时显示所设定的温度,同时按加减键退出设定功能。
电风扇的自动控制,让电风扇这一家用电器变的更智能化。
克服了普通电风扇无法根据外界温度自动调节转速困难。
智能电风扇的设计具有重要的现实意义。
关键词: AT89C51单片机;温度传感器;直流电机AbstractIn daily life, SCM got more and more widely applied in small system, particularly in the application of automatic control system. This thesis based on AT89C51 to design thermostat automatically electric system .Through the MCU control we realized the fan main function:after you press the button,the default system initialization temperature is 25.If the temperature higher than outside temperature,the fan ran. If the temperature is lower than outside temperature the fan doesn't turn and display outside temperature at the same time.when press add key and subtract key ,enter the temperature setting system. Then we can set temperature what we needed and display the temperature at the same time.We can exit set temperature system by press add key and subtract key at the same time.The automatic control make electric fan become more intelligent in the household appliances.It overcome the difficulty which cannot according to the temperature outside automatically to adjust the speed of the normal fan.Keywords: Semperature sensor; Single Chip Machine ; D.C. electric machine目录一、自动调温电风扇概论 (1)(一)自动调温电风扇简介 (1)(二)自动调温电风扇设计目的 (1)二、自动调温电风扇设计原理和具体结构 (2)(一)自动调温电风扇结构 (2)1、内部结构: (2)2、外部结构 (2)(二)电风扇控制流程图 (3)(三)主要元器件的工作原理简介 (4)1、AT89C51单片机简介 (4)2、直流电机的结构 (5)3、LED显示器 (6)4、温度传感器的原理 (6)5、直流稳压器 (7)三、自动调温电风扇控制系统设计 (8)(一)自动调温电风扇的各模块的控制 (8)1、AT89C51部分 (8)2、电源转换电路部分 (10)3、按键部分 (10)4、单片机复位部分 (11)5、数模转换部分 (11)(二)缓冲与保护部分 (12)(三)自动调温电风扇的整体硬件电路 (12)四、软件设计 (15)(一)主程序设计 (15)(二)总程序 (16)结束语 (21)参考文献 (22)谢辞 (23)一、自动调温电风扇概论我们常见的风扇一般只有四、五个风速挡,用的是人工开关,不知室内温度,只是人为的调节该用哪个挡。
而自动调温电风扇这个设计是一新领域,它用的是在电子行业中应用广泛的AT89C51单片机。
通过单片机与温度探测器结合,将其应用于家用电风扇的转速精确控制上,能够有良好的性能。
(一)自动调温电风扇简介它使用直流电动机的控制以模拟电路为基础,运算放大器、非线性集成电路以及数字电路组成,使得对电风扇各挡风量的调节更加细化,使得电风扇的控制更具人性化,同时它也具有全自动、控制简单、智能化、制作容易。
使用温度传感器、专用控制集成电路和单片机,实现当室温达到自己所设定开启风扇的温度时,电风扇自动开启,并且可以根据室温变换风速;当室温低于这一设定温度时,电风扇自动关闭。
同时显示当前室内的温度,和自己所设定的温度,提醒人们合理的使用电风扇。
(二)自动调温电风扇设计目的进入5月份,天气越来越炎热,尤其到了盛夏,更是酷热难当。
目前可供选择的纳凉工具主要有:空调、普通电风扇、冷风机以及蒲扇、纸扇等等。
空调使用方便,且越来越智能化,但它使用费用高,并且常常给人带来疾病。
而电风扇以其低廉的价格使它的使用极为普遍。
人们常常通宵达旦的使用,一旦气温稍有变化,感冒人数就会急剧增加;冷风机能增强空气的湿度但使用久了,家里电器会受潮,同时也会让使用者长期裸露在外的关节受到危害;蒲扇和纸扇价格低廉,但不自动,目前使用者微乎其微。
在这种情况下,自动调温电风扇应运而生。
我们的生活加快,人们需要处理的事情越来越多,在炎热的夏天,回到家更想好好休息,消除自己一天的工作疲劳,而自动调温电风扇的设计就解决了这些问题。
自动调温电风扇是通过单片机控制来实现直流电动机运转频率的自动调节,从而达到改变风速的目的。
此设计用到AT89C51单片机,它是把微处理器,存储器(RAM和ROM),输入/输出接口以及定时器/计数器等集成在一起的集成电路芯片。
它与集成电路相结合,组成一个设定温度,感温,控制和输出与一身的模块。
利用单片机AT89C51和一些电路对室温进行探测,从而对电风扇进行开和关的一系列控制。
二、自动调温电风扇设计原理和具体结构(一)自动调温电风扇结构自动调温电风扇有内部结构和外部结构组成。
1、内部结构:有集成电路板和直流电机组成,整个部分电路板是重中之中,它上面连接了有单片机,温度传感器,延时开关电路,按键式电磁开关,LED显示器,A/D、D/A转换电路、可控硅触发控制电路、振荡电路、电源电路等。
如图1所示:图1自动调温电风扇内部结构图2、外部结构由外壳、风扇叶、开关、电源线、网罩、转页组成。
如图2所示:图2外部结构图(二)电风扇控制流程图如图3所示:图3 电风扇控制流程图(三)主要元器件的工作原理简介1、AT89C51单片机简介AT89C51 单片机引脚图如图4所示:图4 引脚图管脚定义:Vss :接地。
Vcc :电源,提供掉电、空闲、正常工作电压。
P0.0-0.7 : P0 I/O 口 - P0 口是开漏双向口,可以写为1 使其状态为悬浮用作高阻输入。
P0 也可以在访问外部程序存储器时作地址的低字节,在访问外部数据存储器时作数据总线,此时通过内部强上拉输出1。
P1.0-1.7 : P1 I/O 口 - P1 口是带内部上拉的双向I/O 口,向P1 口写入1时,P1 口被内部上拉为高电平,可用作输入口。
当作为输入脚时,被外部拉低的P1 口会因为内部上拉而输出电流。
P1 口第2 功能:T2(P1.0) 定时/计数器2 的外部计数输入/时钟输出。
T2EX(P1.1) 定时/计数器2 重装载/捕捉/方向控制。
P2.0-2.7 : P2 I/O 口 - P2 口是带内部上拉的双向I/O 口,向P2 口写入1时,P2 口被内部上拉为高电平,可用作输入口。
当作为输入脚时,被外部拉低的P2 口会因为内部上拉而输出电流。
在访问外部程序存储器和外部数据时分别作为地址高位字节和16 位地址(MOVX @DPTR),此时通过内部强上拉传送1。
当使用8 位寻址方式(MOV @Ri)访问外部数据存储器时,P2 口发送P2 特殊功能寄存器的内容。
RST :复位当晶振在运行中,只要复位管脚出现2 个机器周期高电平即可复位,内部有扩散电阻连接到Vss 仅需要外接一个电容到Vcc ,即可实现上电复位。
PSEN :程序存储使能当执行外部程序存储器代码时,PSEN 每个机器周期被激活两次,在访问外部数据存储器时PSEN无效,访问内部程序存储器时PSEN 无效。
XTAL1 :晶体1 反相振荡放大器输入和内部时钟发生电路输入。
XTAL2 :晶体2 反相振荡放大器输出。
2、直流电机的结构直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约大量的人力资源和降低系统成本,从而有效的提高工作效率。
直流电动机的转速与施加于电动机两端的电压大小有关。
电枢电压为Ua,电枢电流为Ia,电枢回路总电阻为Ra,电机常数Ca,励磁磁通量是¢。
根据KVL方程:电机转速n=(Ua-IaRa)/Ca¢,其中,对于极对数p,匝数为N,电枢支路数为a的电机来说:电机常数Ca=pN/60a,意味着电机确定后,该值是不变的。
而在Ua-IaRa中,由于Ra仅为绕组电阻,导致IaRa非常小,所以Ua-IaRa约等于Ua。
由此可见我们改变电枢电压时,转速n即可随之改变。
直流电动机如图5所示:图5直流电机原理图3、LED显示器本设计采用两个一样的集成数码管。
LED数码管由各自的三极管驱动和关闭。
当单片机输出显示数据的同时还输出两个驱动信号送到 DS1、DS2的各自的三极管的基极,使三极管导通从而使LED显示相应输出电压值。