《等差数列》三维目标教案

合集下载

数学试讲教案《等差数列》

数学试讲教案《等差数列》

数学试讲教案《等差数列》一、教学目标1. 知识与技能:(1)理解等差数列的定义及其性质;(2)学会运用等差数列的通项公式和求和公式;(3)能够运用等差数列解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生团结合作、积极探究的精神。

二、教学重点与难点1. 教学重点:(1)等差数列的定义及其性质;(2)等差数列的通项公式和求和公式;(3)运用等差数列解决实际问题。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的推导及应用。

三、教学过程1. 导入:(1)复习等差数列的定义及其性质;(2)引入等差数列的实际应用问题,激发学生兴趣。

2. 新课导入:(1)介绍等差数列的通项公式;(2)讲解等差数列的求和公式;(3)运用例题演示等差数列的应用。

3. 课堂练习:(1)布置练习题,让学生巩固等差数列的通项公式和求和公式;(2)引导学生运用等差数列解决实际问题。

四、课后作业1. 复习等差数列的定义及其性质;2. 熟练掌握等差数列的通项公式和求和公式;3. 完成课后练习题,巩固所学知识。

五、教学反思1. 课堂讲解是否清晰,学生是否能理解等差数列的概念和性质;2. 学生是否能熟练运用等差数列的通项公式和求和公式解决实际问题;3. 对学生的反馈进行总结,为下一步教学提供改进方向。

六、教学策略1. 采用问题驱动的教学方法,引导学生从实际问题中发现等差数列的规律;2. 通过小组讨论、互助合作的方式,激发学生的学习兴趣,培养学生的团队协作能力;3. 利用多媒体课件,直观展示等差数列的性质和公式推导过程,提高学生的学习效果。

七、教学评价1. 课堂提问:观察学生在课堂上的参与程度,了解学生对等差数列概念、性质的理解程度;2. 课后作业:检查学生完成作业的情况,评估学生对等差数列公式的掌握水平;3. 单元测试:通过测试了解学生对等差数列知识的综合运用能力。

等差数列教案

等差数列教案

等差数列教案教案: 等差数列教学目标:1. 了解等差数列的概念及特点;2. 掌握等差数列的通项公式;3. 能够应用等差数列解决实际问题。

教学内容:1. 等差数列的概念和特点2. 等差数列的通项公式3. 应用等差数列解决实际问题教学过程:Step 1 引入对学生进行数列知识的复习,复习完之后告诉学生今天要学习的内容是等差数列。

Step 2 等差数列的概念和特点1. 定义:等差数列是指一个数列中,从第二项开始,每一项与其前一项之差相等。

这个公差用d来表示。

2. 等差数列的特点:等差数列可以用一般项的形式表示为an= a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差,n表示项数。

Step 3 等差数列的通项公式1. 推导:假设等差数列的首项为a1,公差为d,那么第n项an可以表示为an = a1 + (n-1)d。

利用这个公式可以得到等差数列的通项公式。

2. 通项公式:an = a1 + (n-1)dStep 4 应用等差数列解决实际问题1. 通过例题引入:假设小明每天存1元钱,第n天他一共存了多少钱?通过将问题分析为等差数列,可以用等差数列的通项公式来解决。

2. 练习:让学生试着解决一些实际问题,如小明从1岁开始每年增长5厘米的身高,那么18岁时他的身高是多少?Step 5 练习巩固通过练习题让学生巩固所学的知识,同时教师可以巡回指导并给予必要的帮助。

Step 6 总结总结等差数列的概念、特点以及通项公式,并强调等差数列在解决实际问题中的应用。

Step 7 作业布置布置相应的作业,要求学生运用所学知识解决实际问题。

教学评价:经过本节课的学习,学生应该能够理解等差数列的概念和特点,并能够应用等差数列的通项公式来解决实际问题。

教师可以通过练习题和课堂表现来进行评价和反馈,以了解学生对于等差数列的掌握情况。

拓展延伸:如果有时间可以进一步拓展等差数列的和公式。

即等差数列前n项和Sn的公式为Sn = (a1 + an) * n / 2。

等差数列教案(多篇)

等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。

二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。

三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。

2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。

3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。

4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。

四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。

五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。

2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。

3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。

六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。

2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。

七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。

名师教学设计《等差数列》示范教学教案

名师教学设计《等差数列》示范教学教案

《等差数列》教学设计一、教材分析本节课是《普通高中课程标准实验教科书•数学5》(人教A版)第二章《数列》的第二节内容,即《等差数列》第一课时。

研究等差数列的定义和通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

本节是第二章的基础,为以后学习等差数列求和、等比数列奠定基础,是本章的重点内容,也是高考重点考察的内容之一,它有着广泛的实际应用,而且起着承前启后的作用。

等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

二、教学目标1、知识与技能:(1)能够准确的说出等差数列的特点;(2)能够推导出等差数列的通项公式,并可以利用等差数列解决些简单的实际问题。

2、过程与方法:通过实例展示,让学生能从具体实例中归纳出等差数列的概念,培养学生的观察能力和抽象概括能力3、情感态度价值观:通过对等差数列的研究,激发主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

三、教学重点难点:重点:等差数列的概念,等差数列的通项公式的推导过程及应用。

难点:等差数列通项公式的推导,用“数学建模"的思想解决实际问题。

四、教学过程(一)、情景导入:1896年,雅典举行第一届现代奥运会,到2008年的北京奥运会已经是第29届奥运会。

观察数据1896,1900,1904,…,2008,2012,()你能预测出第31届奥运会的时间吗?思考1:1、你能根据规律在()内填上合适的数吗?(1)1682,1758,1834,1910,1986,(2062).(2) 32, 25.5, 19, 12.5, 6, …, (-20).(3) 1,4,7,10,(),16,…(4)2, 0, -2, -4, -6,()…看下面几个例子:(1)我们课本的页码数从小到大依次为:1, 2,3, 4,……(2)某人贷款买房,需要月均等额还款。

《等差数列》教案

《等差数列》教案

一、教学目标1. 知识与技能:使学生理解等差数列的概念,掌握等差数列的通项公式和前n 项和公式,能够运用等差数列的性质解决实际问题。

2. 过程与方法:通过探究等差数列的性质,培养学生抽象概括能力、逻辑思维能力和创新能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的广泛应用。

二、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式及性质。

2. 教学难点:等差数列通项公式的推导和前n项和公式的应用。

三、教学准备1. 教师准备:教材、教案、PPT、例题及练习题。

2. 学生准备:预习等差数列相关知识,准备好笔记本和文具。

四、教学过程1. 导入新课:通过生活中的实例引入等差数列的概念,激发学生的学习兴趣。

2. 知识讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,引导学生理解并掌握相关概念。

3. 例题解析:分析并解答典型例题,让学生体会等差数列在实际问题中的应用。

4. 课堂练习:布置练习题,让学生巩固所学知识,教师及时解答疑问。

5. 总结提高:对本节课的内容进行总结,强调等差数列的重要性质和应用。

五、课后作业1. 完成课后练习题,巩固等差数列的相关知识。

2. 查找生活中运用等差数列的实例,下节课分享。

3. 预习下一节课内容,做好学习准备。

六、教学评估1. 课堂讲解:关注学生的听课情况,观察学生对等差数列概念和公式的理解程度。

2. 练习题解答:检查学生对练习题的完成情况,了解学生对知识的掌握情况。

3. 课后作业:审阅课后作业,评估学生对课堂所学知识的消化吸收程度。

七、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列在金融、统计等方面的应用,拓宽学生的知识视野。

2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别,提高学生的数学素养。

八、教学反思1. 课堂讲解:反思教学过程中是否存在讲解不清楚、学生理解困难的问题,针对性地调整教学方法。

高三数学必修五教案等差数列优秀4篇

高三数学必修五教案等差数列优秀4篇

高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

等差数列教案(多篇)

等差数列教案(多篇)

一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。

2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。

4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。

二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。

2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。

4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。

三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。

2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。

3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。

4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。

四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。

2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。

3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。

4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。

五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。

2. 针对学生的练习情况,进行讲解和解答疑惑。

3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。

等差数列教学设计及教案

等差数列教学设计及教案

等差数列教学设计及教案教学目标:1. 理解等差数列的定义和性质。

2. 学会求等差数列的通项公式和前n项和公式。

3. 能够运用等差数列解决实际问题。

教学重点:1. 等差数列的定义和性质。

2. 等差数列的通项公式和前n项和公式。

教学难点:1. 等差数列的通项公式的推导。

2. 等差数列前n项和公式的推导。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾等差数列的定义和性质。

2. 提问:等差数列有哪些性质?如何判断一个数列是等差数列?二、等差数列的通项公式(15分钟)1. 介绍等差数列的通项公式:an = a1 + (n-1)d。

2. 解释通项公式的含义和推导过程。

3. 举例说明如何使用通项公式求等差数列的第n项。

三、等差数列的前n项和公式(15分钟)1. 介绍等差数列的前n项和公式:Sn = n/2 (a1 + an)。

2. 解释前n项和公式的含义和推导过程。

3. 举例说明如何使用前n项和公式求等差数列的前n项和。

四、等差数列的实际应用(15分钟)1. 举例说明如何运用等差数列解决实际问题,如求等差数列的和、求等差数列中的特定项等。

2. 让学生尝试解决一些实际问题,并讨论解题思路和方法。

五、总结与作业(5分钟)1. 总结等差数列的定义、性质、通项公式和前n项和公式。

2. 布置作业:求等差数列的第n项和前n项和,以及解决一些实际问题。

教学反思:本节课通过导入、讲解、举例和实际应用等环节,让学生掌握了等差数列的定义、性质、通项公式和前n项和公式。

在教学过程中,注意引导学生主动参与,积极思考,通过练习题的解答和实际问题的解决,巩固了所学知识。

在下一节课中,可以进一步拓展等差数列的应用领域,让学生更好地理解和运用等差数列。

六、等差数列的性质深入探讨(15分钟)1. 讲解等差数列的单调性,即等差数列是递增还是递减的。

2. 解释等差数列的奇数项和偶数项的性质。

3. 举例说明等差数列的性质在解决实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: §2.2等差数列
授课类型:新授课
(第1课时)
●三维目标
知识与技能:了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项
过程与方法:经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。

情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识。

●教学重点
等差数列的概念,等差数列的通项公式。

●教学难点
等差数列的性质
●教学过程
Ⅰ.课题导入
[创设情境]
上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。

下面我们看这样一些例子。

课本P41页的4个例子:
①0,5,10,15,20,25,…
②48,53,58,63
③18,15.5,13,10.5,8,5.5
④10072,10144,10216,10288,10366
观察:请同学们仔细观察一下,看看以上四个数列有什么共同特征?
·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列
Ⅱ.讲授新课
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)。

⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +
,则此数列是等差数列,d 为公差。

思考:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?
2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】
等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: d a a =-12即:d a a +=12
d a a =-23即:d a d a a 2123+=+=
d a a =-34即:d a d a a 3134+=+=
……
由此归纳等差数列的通项公式可得:d n a a n )1(1-+=
∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。

由上述关系还可得:d m a a m )1(1-+=
即:d m a a m )1(1--=
则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+--
即等差数列的第二通项公式 =n a d m n a m )(-+ ∴ d=
n
m a a n m -- [范例讲解]
例1 ⑴求等差数列8,5,2…的第20项
⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:⑴由35285,81-=-=-==d a n=20,得49)3()120(820-=-⨯-+=a ⑵由4)5(9,51-=---=-=d a 得数列通项公式为:)1(45---=n a n 由题意可知,本题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项
例3 已知数列{n a }的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
分析:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (n ≥2)是不是一个与n 无关的常数。

解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2)) ])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数
∴{n a }是等差数列,首项q p a +=1,公差为p 。

注:①若p=0,则{n a }是公差为0的等差数列,即为常数列q ,q ,q ,…
②若p ≠0, 则{n a }是关于n 的一次式,从图象上看,表示数列的各点均在一次函数
y=px+q 的图象上,一次项的系数是公差,直线在y 轴上的截距为q.
③数列{n a }为等差数列的充要条件是其通项n a =pn+q (p 、q 是常数),称其为第3通项公式。

④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

Ⅲ.课堂练习
课本P45练习1、2、3、4
[补充练习]
1.(1)求等差数列3,7,11,……的第4项与第10项.
分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项.
解:根据题意可知:1a =3,d =7-3=4.∴该数列的通项公式为:n a =3+(n -1)×4,即n a =4n -1(n ≥1,n ∈N *)∴4a =4×4-1=15, 10a =4×10-1=39.
评述:关键是求出通项公式.
(2)求等差数列10,8,6,……的第20项.
解:根据题意可知:1a =10,d =8-10=-2.
∴该数列的通项公式为:n a =10+(n -1)×(-2),即:n a =-2n +12,∴20a =-2×20+12=-28.
评述:要注意解题步骤的规范性与准确性.
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.
分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.
解:根据题意可得:1a =2,d =9-2=7. ∴此数列通项公式为:n a =2+(n -1)×7=7n -5.
令7n -5=100,解得:n =15, ∴100是这个数列的第15项.
(4)-20是不是等差数列0,-3
2
1,-7,……的项?如果是,是第几项?如果不是,说明理由. 解:由题意可知:1a =0,d =-3
21 ∴此数列的通项公式为:n a =-27n +2
7, 令-27n +27=-20,解得n =7
47 因为-27n +27=-20没有正整数解,所以-20不是这个数列的项.
Ⅳ.课时小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:n a -1 n a =d ,(n ≥2,
n ∈N +).其次,要会推导等差数列的通项公式:d n a a n )1(1-+=,并掌握其基本应用.最后,还要注意一重要关系式:=n a d m n a m )(-+和n a =pn+q (p 、q 是常数)的理解与应用. Ⅴ.课后作业
●板书设计
●授后记。

相关文档
最新文档